变压器后备保护动作原理和事故处理..

合集下载

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则

变压器后备保护分析与动作跳闸处理原则一、变压器后备保护的分析变压器后备保护是保护变压器免于由于内部故障或外部原因引起的过电流、欠电压、过温度等异常情况,从而保证变压器的正常运行和延长其使用寿命的重要措施。

变压器后备保护的分析主要包括对变压器运行情况的监测和故障诊断。

1.监测变压器运行情况:监测变压器的运行情况是通过对变压器的各项参数进行实时监测,包括电流、电压、温度等。

其中,电流是变压器运行的重要参数,通过检测电流的大小和变化趋势,可以判断变压器是否处于正常运行状态。

电压是供电给变压器的重要参数,通过检测电压的稳定性和输出质量,可以判断变压器是否受到过电压或欠电压的影响。

温度是变压器工作的重要参数,通过检测变压器各部位的温度变化,可以判断变压器是否处于正常工作温度范围内。

2.故障诊断:故障诊断是根据变压器的实际使用情况和各项参数的变化情况,通过分析故障原因和故障特征,确定变压器的故障类型和位置。

常见的变压器故障包括短路、接地、绕组开路、绝缘老化等。

通过对故障的分析和诊断,可以及时采取相应的措施进行处理,保证变压器的正常工作。

1.过电流保护跳闸处理原则:当变压器的电流超过额定电流的一定倍数时,应立即进行过电流保护跳闸处理。

跳闸保护的动作时间应根据变压器的额定容量和负载情况进行合理设定,不能过早跳闸,也不能过迟跳闸,以免损坏变压器和其他设备。

2.过温度保护跳闸处理原则:当变压器的温度超过设定的上限温度时,应立即进行过温度保护跳闸处理。

跳闸保护的动作时间应根据变压器的额定容量和散热条件进行合理设定,不能过早跳闸,也不能过迟跳闸,以免损坏变压器。

3.欠电压保护跳闸处理原则:当变压器的输入电压低于设定的阈值时,应立即进行欠电压保护跳闸处理。

跳闸保护的动作时间应根据变压器的额定容量和敏感度要求进行合理设定,不能过早跳闸,也不能过迟跳闸,以免对网络供电和用户用电造成不良影响。

4.短路和接地保护跳闸处理原则:当变压器发生短路或接地故障时,应立即进行短路和接地保护跳闸处理。

变压器过流保护等后备保护动作跳闸的处理(全文)

变压器过流保护等后备保护动作跳闸的处理(全文)

变压器过流保护等后备保护动作跳闸的处理(全文)变压器过流等后备保护动作跳闸,主保护未动作,一般应视为外部(差动保护范围以外)故障,即母线故障或线路故障越级使变压器后备保护动作跳闸。

变压器本体发生故障,由过流等后备保护动作跳闸的几率很小。

变压器过流等后备保护动作跳闸,要正确推断故障范围和停电范围,必须熟知变压器后备保护的保护范围和动作时跳哪些开关。

1 变压器后备保护的保护范围和动作时跳哪些开关1.1 单侧电源的双圈降压变压器:后备保护一般装在高压侧,作为低压侧母线及各分路的后备保护。

动作时,其第一时限跳低压侧母线分段(或母联)开关,第二时限跳变压器两侧开关。

1.2 单侧电源的三圈降压变压器:中低压侧的后备保护,分别作相应的中地侧母线和线路的后备保护。

动作,其第一时限跳本侧母线分段(或母联)开关,第二时限跳变压器本侧(有故障的一侧)开关。

高压侧的后备保护,作为中低压侧的总后备,又是变压器本体的后备保护,动作时跳变压器三侧开关,其动作时限大于中低压侧后备保护的动作时限。

有的三圈变压器在中压或低压侧不装过流等后备保护,由高压侧后备保护的第一、二时限代替,动作时第一、二时限分别跳开中压或低压侧母线分段(或母联)开关及中压(或低压)侧开关,第三时限跳变压器三侧开关。

1.3 多侧电源的三圈降压变压器:1.3.1 某一侧带有方向的后备保护(如:方向零序过流保护。

复压闭锁方向过流保护等):其动作方向是指向本侧母线。

带方向的后备保护和低压侧的后备保护,各作本侧母线及线路的后备保护。

动作时,第一时限跳本侧母线分段(或母联)开关,第二时限跳变压器本侧开关。

1.3.2 高、中压侧不带方向的后备保护(如:复压闭锁过流等):既可以作各自本侧母线及线路的后备保护,又可以作变压器及另两侧的后备保护。

动作时跳变压器三侧开关。

变压器后备保护动作,单侧跳闸时,跳闸侧一段母线失压。

三侧跳闸时,中低压侧可能各有一段母线失压。

2 变压器后备保护动作单侧跳闸的处理变压器某一侧过流等后备保护动作,单侧开关跳闸,跳闸侧一段母线失压(该侧母线分段或母联开关先跳开后,只有一段母线失压。

变压器事故处理及案例分析

变压器事故处理及案例分析

六、变压器各种保护动作的原因、 现象和主要检查工作
(7)检查各法兰连接处和导油管有无冒油。 (8)检查变压器压力释放阀、呼吸器是否喷油。 (9)检查气体继电器内有无气体积聚。 (10)检查气体继电器的二次接线有无异常,重点检查气体 继电器接线盒内有无进水受潮和短路。
六、变压器各种保护动作的原因、 现象和主要检查工作
四、变压器事故跳闸的现象
• 1.主保护动作跳闸现象 (1)事故警报、警铃鸣响,监控后台机主接线图主变压器 各侧断路器显示绿闪。 (2)主变压器各侧表计指示零,主变压器单电源馈电母线 和线路表计均指示零。 (3)主变压器主保护中至少一个动作,故障录波器动作。 (4)气体继电器内可能有气体聚集。主变压器内部严重短 路故障时,可有压力释放阀动作。
• 1.变压器的断路器跳闸时,应根据保护动作情况和一次设 备的故障现象,判明故障原因后再进行处理。
五、变压器事故处理基本原则
• 2.当并列运行中的一台变压器跳闸后,应密切关注运行中 的变压器有无过负荷现象,加强运行主变压器的负荷监视 ,增加冷却器的运行数量。若运行变压器过负荷,应报告 调度采取相应的措施。变压器过负荷可采取的措施有: 1)从系统中转移负荷。 2)变压器过负荷运行。此时应启动变压器的全部冷却器, 运行中注意监视负荷、油温和设备接点有无过热。按变压 器过负荷倍数查出允许过负荷运行的时间。变压器有绝缘 缺陷或冷却器有故障的不允许过负荷运行。 3)拉线路限负荷。
四、变压器事故跳闸的现象
• 2.后备保护动作跳闸的主要现象 (1)事故警报、警铃鸣响,监控后台机主接线图变压器一 侧或各侧断路器显示绿闪。 (2)跳闸断路器表计指示零,变压器单电源馈电的母线和 线路表计指示零。 (3)变压器相应后备保护动作。 (4)变压器内部故障可有轻瓦斯动作。

主变后备保护原理和保护范围

主变后备保护原理和保护范围
主变后备保护原理和保 护范围
XX,a click to unlimited possibilities
汇报人:XX
目录
01 主 变 后 备 保 护 原 理
02 主 变 后 备 保 护 范 围
Part One
主变后备保护原理
差动保护原理
差动保护原理:利用电流互感器检测主变各侧电流的变化,通过比较主变 各侧电流的大小和相位,实现差动保护。 差动保护的优点:动作速度快,灵敏度高,可靠性高。
距离保护原理
原理:基于电压和电流的相位差来测量短路点到保护装置的距离 优点:不受系统阻抗的影响,可靠性高 局限性:易受系统运行方式的影响,需要校验保护装置的定值 应用场景:适用于长距离输电线路的保护
零序电流保护原理
零序电流的产生:当系统中发生不对称故障时,三相电流的矢量和不为零,形成零序电流。
零序电流保护的原理:通过检测零序电流的大小和方向,判断系统中是否存在故障,进而触 发相应的保护动作。
零序电流保护的优点:结构简单,灵敏度高,能够快速切除故障。
零序电流保护的局限性:易受系统运行方式和接地状况的影响,可能会产生误动作或拒动作。
Part Two
主变后备保护范围
变压器内部故障
变压器内部故障可能引发严 重后果
主变后备保护范围包括变压 器内部故障
主变后备保护能够及时切除 故障,防止事故扩大
差动保护的局限性:易受励磁涌流和变压器充电的影响。
差动保护的应用范围:广泛应用于变压器的保护。
电流保护原理
电流保护原理:通过检测线路中的电流异常变化来触发保护动作,切除故障部分,保证电力 系统安全运行。
动作条件:电流超过整定值,持续时间达到设定时间。
保护类型:过流保护、电流速断保护、差动保护等。

变压器保护原理及试验方法最终版

变压器保护原理及试验方法最终版

2.2 后备保护的原理
2.2.1 过流保护 过流保护用于降压变压器,动作电流Idz的整定应考虑
躲过切除外部短路后电机自启动和变压器可能出现的最大负
荷电流,动作方程:I>Idz 且t >Tdz。即短路电流I大于
动作电流定值Idz,持续时间t大于动作时间定值Tdz。一个 装置中可以设置多段过流保护,每段的Idz和Tdz各不相同, Idz越大 Tdz越小。
据,动作方程:I2>K2xbI1。
K2xb为二次谐波制动系数整定值,推荐为0.15。 满足动作方程就闭锁差动保护,否则开放差动保护。
原理二:波形判别原理。
基波的波形是正弦波,完整对称。励磁涌流存在大量谐 波分量,波形是间断不对称的。保护装置利于三相差动电流 的波形判别作为励磁涌流的识别判据,判断波形是对称完整 的就开放差动保护,否则就闭锁差动保护。
2.2.6 零序过压保护
对全绝缘的变压器,中性点直接接地时采用零序过流保 护,而在中性点不接地时采用零序过压保护。
有些变压器在中性点装设放电间隙作为过电压保护,这 种变压器保护的零序过流保护和零序过压保护就变为间隙零 序过流保护和间隙零序过压保护,在间隙击穿过程中,间隙 零序过压和零序过流交替出现,有的厂家的装置一旦零序过 压或零序过流元件动作后,两个保护就相互展宽,使保护可 靠动作。
在实际的变压器差动保护装置中,其比率制动特性如图 4所示,图4中平行于横坐标的AB段称为无制动段,它是由启 动电流和最小制动电流构成的,动作值不随制动电流变化而 变化。我们希望制动电流小于变压器额定电流时无制动作用, 通常选取制动电流等于被保护变压器高压侧的额定电流的二 次值。即: Izd=Ie/nLH
2.2.7 失灵保护 220kV以上的断路器发生拒动时,会危及整个

变压器主保护与后备保护知识全解

变压器主保护与后备保护知识全解

变压器主保护与后备保护知识全解变压器是连续运行的静止设备,运行比较可靠,故障机会较少。

但由于绝大部分变压器安装在户外,并且受到运行时承受负荷的影响以及电力系统短路故障的影响,在运行过程中不可避免的出现各类故障和异常情况。

1、变压器的常见故障和异常变压器的故障可分为内部故障和外部故障。

内部故障指的是箱壳内部发生的故障,有绕组的相间短路故障、一相绕组的匝间短路故障、绕组与铁芯间的短路故障、绕组的断线故障等。

外部故障指的是变压器外部引出线间的各种相间短路故障、引出线绝缘套管闪络通过箱壳发生的单相接地故障。

变压器发生故障危害很大。

特别是发生内部故障时,短路电流所产生的高温电弧不仅会烧坏变压器绕组的绝缘和铁芯,而且会使变压器油受热分解产生大量气体,引起变压器外壳变形甚至爆炸。

因此变压器故障时必须将其切除。

变压器的异常情况主要有过负荷、油面降低、外部短路引起的过电流,运行中的变压器油温过高、绕组温度过高、变压器压力过高、以及冷却系统故障等。

当变压器处于异常运行状态时,应给出告警信号。

2、变压器保护的配置短路故障的主保护:主要有纵差保护、重瓦斯保护等。

短路故障的后备保护:主要有复合电压闭锁过流保护、零序(方向)过流保护、低阻抗保护等。

异常运行保护:主要有过负荷保护、过励磁保护、轻瓦斯保护、中性点间隙保护、温度油位及冷却系统故障保护等。

3、非电量保护利用变压器的油、气、温度等非电气量构成的变压器保护称为非电量保护。

主要有瓦斯保护、压力保护、温度保护、油位保护及冷却器全停保护。

非电量保护根据现场需要动作于跳闸或发信。

(1)瓦斯保护当变压器内部发生故障时,由于短路电流和短路点电弧的作用,变压器内部会产生大量气体,同时变压器油流速度加快,利用气体和油流来实现的保护称为瓦斯保护。

轻瓦斯保护:当变压器内部发生轻微故障或异常时,故障点局部过热,引起部分油膨胀,油内气体形成气泡进入气体继电器,轻瓦斯保护动作,发出轻瓦斯信号。

主变后备保护原理和保护范围汇总

主变后备保护原理和保护范围汇总
电压保护。过电流继电器和低电压继电器的整定原则与低电压起动过电流保 护相同。负序过电压继电器的动作电压按躲过正常动行时的负序滤过器出现
的最大不平衡电压来整定,通常取U2· set=(0.06—0.12)UN由此可见,复合
电压起动过电流保护在不对称故障时电压继电器的灵敏度高,并且接线比较 简单,因此应用比较广泛。
五、接地短路的后备保护
电力系统中,接地故障常常是故障的主要形式求在变压器上装设接
地(零序)保护。作为变压器本身主保护的后备保护和相
邻元件接地短路的后备保护。
1、变电所单台变压器的零序电流保护 中性点直接接地运行的变压器毫无例外都采用 零序过电流保护作为变压器接地后备保护。零序 过电流保护通常采用两段式,零序I段与相邻元件 零序电流保护I段相配合;零序电流保护II段保护 与相邻元件零序电流保护后备段相配合。与三绕 组变压器相间后备保护类似,零序电流保护在配 置上要考虑缩小故障影响范围的问题。根据需要, 每段零序电流保护可设两个时限,并以较短的时 限动作于缩小故障影响范围,以较长的时限断开 变压器各侧断路器。
三、后备保护的分类
远后备保护:当主保护或断路器拒动时,由相邻电力
设备或线路的保护来实现的后备保护。
近后备保护:当主保护拒动时,由本设备或线路的另 一套保护来实现后备的保护;当断路器拒动时,由断路器
失灵保护来实现近后备保护。
高后备保护和低后备保护是相对变压器而言的,变压 器高压侧的后备保护称为高后备,变压器低压侧的后备保 护称为低后备。
足选择性要求,在高压侧或中压侧要加功率方向元件,其方向可指向 该侧母线。方向元件的设置,有利于加速跳开小电源侧的断路器,避 免小系统影响大系统。
(2)高压及中压侧有电源或三侧均有电源的三绕组降压变压器和联 络变压器,相间故障后备保护为了满足选择性要求,在高压或中压侧 要加功率方向元件,其方向宜指向变压器。 (3)反应相间故障的功率方向继电器,通常由两只功率方向继电器 构成,接入功率方向继电器的电流和电压应按90接线的要求。为了消 除三相短路时功率方向继电器的死区,功率方向继电器的电压回路可 由另一侧电压互感器供电。

最新主变后备保护原理和保护范围

最新主变后备保护原理和保护范围

复合电压启动过流保护的优点:
1、由于负序电压继电器的整定值小,因此在不对称 短路时,电压元件的灵敏系数高。
2、当经过变压器后发生不对称短路时,电压元件的 工作情况与变压器所采用的接线方式无关。
变压器保护装置的工作流程如图6-1所 示,保护测量变压器的各参量未超过定 值时,保护处于正常状态。当发生故障 时,装置中各保护根据测量判定故障是 否发生在各自的保护范围内。当变压器 内部故障时,纵差保护动作跳闸;若故 障点在油箱内,气体保护能以较高的灵 敏度动作于跳闸。无论是内部故障还是 外部故障,变压器相间后备保护均应启 动。若为接地故障,零序保护作为接地 故障的后备保护也同时启动。在后备保 护动作延时内,故障若消失,后备保护 返回到正常工作状态;若故障仍存在, 则动作于跳闸,将变压器从电网中切除。 此外,当变压器出现过负荷等异常工作 状态时,相应的保护动作发出信号。
1、过电流保护
过电流保护装置的原理 接线如图5-18所示,其工 作原理与线路定时限过电 流保护相同。保护动作后, 跳开变压器两侧的断路器, 保护的起动电流按照过变 压器可能出现的最大负荷 电流来整定,即
式中 Krel —可靠系数,取1.2—1.3; Kr—返回系数,取0.8—0.95; IL·max — 变压器可能出现的最大负荷电流。 IL·max 可按以下情况考虑,并取最大值:
后备保护是指阻抗保护、低电压过流保护、复合 电压过流保护、过流保护,它们都能反应变压器的过 流状态,但它们的灵敏度不一样,阻抗保护的灵敏度 高,过流保护的灵敏度低。
三、后备保护的分类
远后备保护:当主保护或断路器拒动时,由相邻电力 设备或线路的保护来实现的后备保护。
近后备保护:当主保护拒动时,由本设备或线路的另 一套保护来实现后备的保护;当断路器拒动时,由断路器 失灵保护来实现近后备保护。

变压器后备保护整定计算方法 故障诊断

变压器后备保护整定计算方法 故障诊断

变压器后备保护整定计算方法故障诊断变压器是电力系统中常见且重要的设备之一,它在输电、配电过程中扮演着关键的角色。

为了确保变压器的安全可靠运行,需要合理设置后备保护和进行故障诊断。

本文将介绍变压器后备保护整定计算方法和故障诊断的基本原理与步骤。

一、变压器后备保护整定计算方法1. 选型和安装:根据变压器的额定电压、容量和使用环境,选择合适的保护装置。

保护装置的安装位置应考虑到便于操作和维护,并与变压器的绝缘水平相匹配。

2. 整定参数的计算:后备保护装置的整定参数包括动作时间、定时电流、短路电流等。

根据变压器的特性和保护要求,使用以下公式进行计算:动作时间 = Kt × t定时电流 = Kc × Ib短路电流 = Ks × Isc其中,Kt、Kc、Ks为系数,t为时间常数,Ib为变压器的额定电流,Isc为变压器的短路电流。

系数的选择根据不同的保护要求进行,通常可以参考国家标准和相关规范。

3. 精确计算:在实际计算中,应考虑变压器短路阻抗、变压器连续和短时额定容量、线路电流等因素,进行精确的整定计算。

还应根据变压器的负载率、温度等实际情况进行校正,确保保护装置的可靠性和合理性。

二、故障诊断1. 原理:变压器的故障诊断是通过对变压器的电气参数和振动、声音等物理量进行检测分析,判断变压器是否发生故障、故障的类型和位置等。

常见的故障类型包括短路、断线、绕组接地、绝缘老化等。

2. 步骤:(1)监测检测:通过安装传感器和在线监测装置,对变压器的电流、电压、温度、振动等进行实时监测和检测。

监测数据的获取和存储应做好相应的记录和管理工作。

(2)数据分析:对监测数据进行分析,比较实际测量值和正常工作状态下的参考值,判断是否存在异常。

可以使用数据处理软件和专业的算法进行分析和判断。

(3)故障诊断:根据分析结果,结合变压器的工作情况和设备特点,对故障类型和位置进行诊断。

可以运用故障诊断专家系统和人工智能技术进行辅助诊断。

110kV主变低后备保护越级跳闸事故原因分析及对策

110kV主变低后备保护越级跳闸事故原因分析及对策

110kV主变低后备保护越级跳闸事故原因分析及对策【摘要】作为变电站的主要设备之一,电力变压器的运行状态与供电系统的可靠运行有着最直接的内在联系。

在电力变压器的日常运行维护中,配网故障频繁冲击着昂贵的电力变压器系统,使其负荷量大幅度增加,最终就会导致故障的出现。

本课题针对某地区一起110kV低压侧出线故障引起主变低保护越级跳闸事故,通过具体分析该越级保护动作发生的潜在性原因,同时结合该问题出现的线路故障原理,提出针对性的110kV主变设备保护配合方案,并经过技术分析,给出进一步的改进措施。

希望本课题的研究,能够为变电站电力系统的维护与故障检修带来一定的应用价值。

【关键词】低后备保护;越级;110kV;主变;改进措施1引言近十年来,随着我国经济体系的快速发展,带来了各行各类电子产品的繁荣盛世,也给我国的电力系统带来了越来越大的压力。

用电量的增加,用户需求标准的提升,使得各种类型的无预兆的短路故障日渐增多。

从客观角度上来说,电力变压器系统体系故障率的增加,导致其对应设备维修率的提高,同时也大大降低了主电力变压器的寿命。

因此,需要给予主变足够重视,在工作中多加关注它,从而做到及时发现主变内部潜在的各类故障与缺陷,降低其故障率的发生。

2019年的某变电站就出现过110kV主变低后备保护越级事故,该事故的发生,可以清楚的暴露出很多变电站在主变低后备保护越级方向存在的一些关键问题,这些问题必须被重视起来,并得到很好的解决,才能够确保变电站的电力变压器能够稳定安全的运行,从而进一步确保我国电力事业乃至经济体系的大幅度发展与进步。

2.事故发生原因某地220kV变电站,在正规运行过程中,110kV线路出现临时线路故障,其对应的断路器马上出现一系列的拒动反应,其具体的表现形式为主变压器在低后备情况下显示为越级跳闸状态,导致电力系统瞬间崩塌,造成了一定的经济损失的同时,也给整个电力体系敲响了警钟。

经过事后分析与查找原因后,确定事故出现的主要原因为:110kV主变压器由于侧断路器低后备保护,导致了断路器失灵,从而致使主变后备保护显示为跳闸动作。

主变后备保护原理和保护范围

主变后备保护原理和保护范围
流保护。 (2)中性点可能接地或不接地运行,配置一段两时 限零序无流闭锁零序过电压保护。 (3)中性点经放电间隙接地运行,配置一段两时限 式间隙零序过电流保护。 对于双圈变压器,后备保护可以只配置一套, 装于降压变的高压侧(或升压变的低压侧);三 绕组变压器,后备保护可以配置两套:一套装于 高压侧作为变压器的后备保护,另一套装于中压 侧或低压的电源侧,作相邻后备。
1、后备保护用于在主保护故障拒动情况下,保护 变压器。一般包含: (1)高压侧复合电压启动的过电流保护; (2)低压侧复合电压启动的过电流保护; (3)防御外部接地短路的零序电流、零序电压保 护; (4)防止对称过负荷的过负荷保护; (5)和高压侧母线相联的保护:高压侧母线差动 保护、断路器失灵保护; (6)和低压侧母线相联的相关保护:低压侧母线 差动保护等。
六、后备保护的保护范围:
五、接地短路的后备保护
电力系统中,接地故障常常是故障的主要形式,因此,
大电流接地系统中的变压器,一般要求在变压器上装设接
地(零序)保护。作为变压器本身主保护的后备保护和相
邻元件接地短路的后备保护。
1、变电所单台变压器的零序电流保护 中性点直接接地运行的变压器毫无例外都采用 零序过电流保护作为变压器接地后备保护。零序 过电流保护通常采用两段式,零序I段与相邻元件 零序电流保护I段相配合;零序电流保护II段保护 与相邻元件零序电流保护后备段相配合。与三绕 组变压器相间后备保护类似,零序电流保护在配 置上要考虑缩小故障影响范围的问题。根据需要, 每段零序电流保护可设两个时限,并以较短的时 限动作于缩小故障影响范围,以较长的时限断开 变压器各侧断路器。
2、多台变压器并联运行时的接地后备保护
对于多台变压器并联运行的变电所,通常采用一部分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器后备保护动作原理
零序方向过流保护原理图
注:TV断线时,方向元件退出
零序过流保护原理图
变压器后备保护动作原理
中性点直接接地运行时零序保护原理图
中性点直接接地运行变压器零序电流 保护工作原理 零序电流保护I段作为变压器及母线 的接地故障后备保护,其起动电流和延 时t1应与相邻元件单相接地保护I段相 配合,通常以较短延时t1=0.5~1.0S 动作于母线解列;以较长的延时t2=t1 +Δt有选择地动作于断开变压器高压侧 断路器。 零序电流保护II段作为引出线接地故 障的后备保护,其动作电流和延时t3 应与相邻元件接地后备段相配合。通常 t3应比相邻元件零序保护后备段最大 延时大一个Δt,以断开母联断路器或 分段断路器,t4=t3+Δt动作于断开变 压器高压侧断路器。
变电站事故处理系列
变压器后备保护动作原理及事故处理
威虎山公司
座山雕
变压器后备保护动作原理及事故处理
变压器后备保护的配置及原理 变压器后备保护的保护范围 变压器各后备保护动作原因分析
目录
变压器后备保护动作后故障范围的检查 变压器后备保护动作跳闸后的处理
220KV主变电量保护配置图
220KV主变后备保护的配置
主变后备保护动作跳闸,主保护 未动作一般应视为外部故障即母 线故障或线路故障越级使主变后 备保护动作跳闸
主变后备保 护动作原因 分析
零序方向过流:方向指向母 线时,动作后一般是母线或 者线路接地后保护装置拒动 ,方向指向主变时动作后一 般是下一级母线或者线路接 地后保护拒动,主变主保护 拒动的几率很小
经检查,线路 没有保护动作信号 掉牌时有两种可能 :一是故障时保护 没动作,二是母线 故障
分路上有保护动 作信号掉牌时应将 掉牌的线路开关断 开,并检查母线及 变压器跳闸开关无 问题,重点检查线 路开关拒跳原因
变压器后备保护事故处理

保护动作情况、信号、仪表指示等,判断故障范围和停电故障范围,打印故障录波报告, 若站用变失去可先倒站用变,投入事故照明。 2、断开失压母线上的各分路开关,发现未有断开的,手动打跳,检查母线及变压器开关无异常 后对失压母线充电(高压侧开关跳闸后用母联开关对失压母线充电时投入充电保护,中低压侧开 关跳闸后用主变开关对母线充电时一般应将后备保护时限改小) 3、双母线接线的变电站,如是母线故障时,可用冷倒的方式将运行于故障母线的线路开关倒至 正常母线恢复供电。 4、如因隔离故障点使母线PT停电时,可将PT隔离后对失压母线充电,充电正常后合上PT二 次并列开关,再恢复线路供电。 5、如失压母线和线路无任何故障现象和异常,可在各路开关全部断开的情况下,根据调度命令, 合上主变开关和母联开关对母线充电正常后,退出线路重合闸,依次逐条试送线路,查明拒动的 开关。 6、间隙保护动作后,检查设备无异常后可等待调度通知处理。
零序过流:零序电流保护I段作为变压器 及母线的接地故障后备保护, II段作为引 出线接地故障的后备保护,其动作电流和 延时应与相邻元件接地后备段相配合
中性点间隙保护:动 作后为系统接地故障
变压器后备保护事故处理
3 2
1
变压器后备保护 动作跳闸后线路越 级跳闸的可能性要 比母线故障大的多 ,因此跳闸后应重 点检查线路开关保 护有无掉牌, 220KV以上线路还 要重点检查保护装 置是否故障。
变压器后备保护动作原理
复压闭锁过流原理图(微机保护)
作为母线、线路和主变保护拒动后的后 备保护,动作时限整定比带方向的复压闭锁 过流要长
变压器后备保护动作原理
复压闭锁过流原理(电磁式保护)
复压闭锁过流定义:复压是指相间电压低或负序电压高,当系统发生短路时,往往伴随着 电压降低和电流增大的情况,为了防止系统正常时而电流保护误动,因此我们在过流保护的基 础上加装电压闭锁元件,这样就构成了复压闭锁过流保护。 (1)当发生不对称短路时,故障相电流继电器动作, 同时负序电压继电器动作,其动断触点断开,致使低电 压继电器KV失压,动断触点闭合,起动闭锁中间继电 器KM。相电流继电器通过KM常开触点起动时间继电 器KT,经整定延时起动信号和出口继电器,将变压器 两侧断路器断开。 (2)当发生对称短路时,由于短路初始瞬间也会出现 短时的负序电压,KVN也会动作,使KV失去电压。当 负序电压消失后,KVN返回,动断触点闭合,此时加 于KV线圈上的电压已是对称短路时的低电压,只要该 电压小于低电压继电器的返回电压KV不致于返回,而 且KV的返回电压是其起动电压的Kre(大于1)倍,因 此,电压元件的灵敏度可提高Kre倍。复合电压启动的
变压器后备保护动作原理
间隙CT、零序CT实际图
间隙CT
零序CT
变压器后备保护事故处理
复压闭锁方向过流:方向指向母线时 ,动作后一般是母线或者线路短路后 保护装置拒动,方向指向主变时动作 后一般是下一级母线或者线路短路保 护拒动,主变主保护拒动的几率很小
复压闭锁过流:一般作为终端站主变的 后备保护,Ⅰ段动作后一般是母线故障 ,第一时限动作后跳母联,第二时限动 作后跳本侧,Ⅱ段和线路保护配合,动 作后一般是线路保护拒动,Ⅲ段作为Ⅰ 、Ⅱ段后备,动作后跳三侧开关
变压器后备保护动作原理 间隙零序保护原理图
分级绝缘变压器零序保护组成 由零序电压保护、零序电流保护、间隙零序电流保护共 同构成 分级绝缘变压器零序保护原理 当系统发生一点接地,中性点接地运行的变压器由其零 序电流保护动作于切除。若高压母线上已没有中性点接地 运行的变压器,而故障仍然存在时,中性点电位将升高, 发生过电压而导致放电间隙击穿,此时中性点不接地运行 的变压器将由反应间隙放电电流的零序电流保护瞬时动作 于切除。如果中性点过电压值不足以使放电间隙击穿,则 可由零序电压保护带0.3~0.5S的延时将中性点不接地运行 的变压器切除。
1、复压闭琐方向过流 2、复压闭锁过流 3、零序方向过流 4、零序过流
5、中性点间隙零序过流
6、中性点间隙零序过压
变压器后备保护动作原理
复压闭锁方向过流原理图(微机保护)
1、当方向指向母线时,作为 母线和线路保护拒动时的后备 保护 2、当方向指向主变时,作为主 变主保护和下级开关保护拒动时 的后备保护
相关文档
最新文档