清华大学《运筹学教程》胡运权主编课后习题答案

合集下载

清华大学运筹学教程胡运权主编课后习题答案

清华大学运筹学教程胡运权主编课后习题答案

8 10
x1 , x2 0
目标函数最优值(下界)为:6.4
17
第18页/共66页
l.7 分别用单纯形法中的大M法和两阶 段法求解下列线性规划问题,并指出属哪—
类解。
max Z 3x1 x2 2x3
x1 x2 x3 6
(1)
st
2x1 2x2
x3 x3
0
2
x j 0(, j 1,,3)
所以最优解为X*=(1,3/2,0,0)T
第11页/共66页
0点
A1点 A2点
max Z 2x1 x2 3x1 5x2 15
(2) st.6x1 2x2 24 x1, x2 0
11
第12页/共66页
第13页/共66页
第14页/共66页
d
x
2

l.5 讨论c
,
上题(1)中,若目标函数变为max Z = d的值如何变化,使该问题可行域的每个
8
第9页/共66页
1.4 分别用图解法和单纯形法求解下述 线性规划问题,并对照指出单纯形表中的各 基可行解对应图解法中可行域的哪一顶点。
max Z 10x1 5x2
(1)
st.35xx11
4 x2 2 x2
9 8
x1, x2 0
9
第10页/共66页
cj
10
5 00
CB
xB
b
x1
x2
max Z x1 x2
(3)
st
6 .
x1 10x2 5 x1
120 10
5 x2 8
唯 一 最 优 解 ,x1 10, x2 6
Z 16
max Z 5x1 6x2 2x1 x2 2

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第二版)(胡运权)课后答案(清华大学出版社)

运筹学教程(第⼆版)(胡运权)课后答案(清华⼤学出版社)运筹学教程(第⼆版)习题解答第⼀章习题解答运筹学教程1.1 ⽤图解法求解下列线性规划问题。

并指出问题具有惟⼀最优解、⽆穷多最优解、⽆界解还是⽆可⾏解。

1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5 x 1 + 6 x 2≤ 82 5 ≤ x ? 1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3) 1 2 x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 21 2 ? ≥ 12 2 1 ? x , x ≥ 0 .? ?2 x 1 + x 2 ≤ 2st ?3x + 4 x (2) max Z = 3x 1 + 2 x 2x , x ≥ 0 1 2该问题⽆解≥ 12 2 1 ? ? 2 x 1 + x 2 ≤ 2st .?3 x +4 x ( 2 ) max Z = 3 x 1 + 2 x 2第⼀章习题解答3 2 1x = 1, x = 1, Z = 3是⼀个最优解⽆穷多最优解,1 2x , x ≥ 0 ? 2 1 ? ? ? 4 x 1 + 6 x 2 ≥ 6st .?2 x + 2 x ≥ 4 (1) min Z = 2 x 1 +3 x 2该问题有⽆界解1 2x , x ≥ 0 ? ≤ 2 2 1 ? .? 2 x 1 - x 2 ≥ 2st- 2 x + 3x (4) max Z = 5x 1 + 6 x 2第⼀章习题解答唯⼀最优解, x 1 = 10, x 2 = 6, Z = 16 ≤ 82 5 ≤ x ?1 ? 5 ≤ x ≤ 10 .?max Z = x 1 + x 26 x 1 + 10 x 2 ≤ 120st ?(3)第⼀章习题解答运筹学教程1.2 将下述线性规划问题化成标准形式。

运筹学清华大学出版社胡运权着课后答案

运筹学清华大学出版社胡运权着课后答案

�12 x1 � 3 x2 � 6 x3 � 3 x4 � 9
(1)
st
��8 ��3
x1 x1
� �
x2 x6
� 4 x3 �0

2 x5
� 10
�� x j � 0�, j � 1,� ,6�
min Z � 5 x1 � 2 x2 � 3 x3 � 2 x4
� x1 � 2 x2 � 3 x3 � 4 x4 � 7
运筹学教程�第二版� 习题解答
运筹学教程
1.1 用图解法求解下列线性规划问题。并指出问 题具有惟一最优解、无穷多最优解、无界解还是无可 行解。
min Z � 2 x1 � 3 x2 � 4 x1 � 6 x2 � 6
(1) st .�� 2 x1 � 2 x2 � 4 �� x1 , x2 � 0
Z
0
0.5
2
0
5
0
0
1
1
5
2/5
0
11/5
0
43/5
page 10 6 January 2011
School of Management
运筹学教程
1.4 分别用图解法和单纯形法求解下述线性规划 问题�并对照指出单纯形表中的各基可行解对应图解 法中可行域的哪一顶点。
max Z � 10 x1 � 5 x2 �3 x1 � 4 x2 � 9
max Z � x1 � x2 �6 x1 � 10 x2 � 120 (3) st.�� 5 � x1 � 10 �� 5 � x2 � 8
max Z � 3x1 � 2 x2 �2 x1 � x2 � 2
(2) st.��3x1 � 4 x2 � 12 �� x1, x2 � 0

运筹学 胡运权 课后答案课件

运筹学 胡运权 课后答案课件

m
a ij y i c j
i1
yi 0
y

i


( j 1,..., n1 )
( j n1 1,..., n ) (i 1,...m 1 ) (i m 1 1,...m )
运筹学 胡运权 课后答案
2.4
运筹学 胡运权 课后答案
运筹学 胡运权 课后答案
2.9
运筹学 胡运权 课后答案
(d)
对偶问题:
max w 2y1 3 y2 5 y3
y1 2y2 y3 2
3 y1
y2 4 y3 2
4 y1 3 y2 3 y3 4
y1 0, y2 0, y3取 值 无 约 束
对偶问题:
m
m i n w b i y i i1
m
a ij y i c j
i1
(1,2章)
运筹学 胡运权 课后答案
图解法:
当 x2 2 x 11 5z经 过 运筹点 学 胡( 运1 权, 课3 2 后) 答案时 , z最 大 。
单纯形法:添加松弛变量化为标准形式,
max z 10x1 5x2 0x3 0x4
3x1 5 x1
4x2 2x2
x3
x4
9 8

x
j
0
( j 1, 2, 3, 4)
运筹学 胡运权 课后答案
1.6(a)
运筹学 胡运权 课后答案
运筹学 胡运权 课后答案
1.7
运筹学 胡运权 课后答案
1.8
(P36公式)表1-24中,x1,x5为基变量,g=1, h=0,l=0。
运筹学 胡运权 课后答案
1.11
运筹学 胡运权 课后答案

二三版兼用《运筹学教程》胡运权主编课后习题答案(第三章)

二三版兼用《运筹学教程》胡运权主编课后习题答案(第三章)
表3-37
城市
电站
1
2
3

15
18
22

21
25
16
第三章习题解答
习题3.12的解答
城市 城市
电站
1-1
城市 1-2
城市2
城市 3-1
城市 3-2
产量

150 15
15 250 18
22
22 400

140 21
第三章习题解答
表3-35
食品厂
面粉厂
1
2
3
产量

3 10
2 20

4 11
8 30

8 11
4 20
销量
15 25 20
第三章习题解答
习题3.10的解答
食品厂 面粉厂
Ⅰ Ⅱ Ⅲ 销量
1
3 15 4
8 15
2
10 5 11 20 11 25
3
20 2 8 4
20
4
0 10 0
0 10
产量
20 30 20
B3
B4 产量
A1 A2 A3 销量
3
7
6
45
2
4
3
22
4
3
8
56
3
3
2
2
第三章习题解答
习题3.9的解答
销地
产地
B1 B2 B3 B4 B5 产量A1源自33 7 6 24 0 5
A2
2 4 23 2 0 2
A3 销量
4 33 8 5 30 6 33223
第三章习题解答
3.10 某市有三个面粉厂,它们供给三个面食加工 厂所需的面粉。各面粉厂的产量、各面食加工厂加工 面粉的能力、各面食加工厂和各面粉厂之间的单位运 价,均表示于表3-35中。假定在第1,2和3面食加工厂 制作单位面粉食品的利润分别为12元、16元和11元, 试确定使总效益最大的面粉分配计划(假定面粉厂和面 食加工厂都属于同一个主管单位)。

运筹学胡运权 部分课后习题答案

运筹学胡运权 部分课后习题答案

第一章P43-1.1(1)当取A (6/5,1/5)或B (3/2,0)时,z 取最小值3。

所以该问题有无穷多最优解,所有线段AB 上的点都是最优解。

P43-1.2(1)令''4'44x x x -=,z z -='''4'4321'55243max x x x x x z +-+-=,,,,,,232142222465''4'43216''4'43215''4'4321''4'4321≥=-+-++-=+-+-+=-+-+-x x x x x x x x x x x x x x x x x x x x x x x xP43-1.4(1) 图解法:A(0,9/4),Z 1=45/4;B(1,3/2),Z 2=35/2;C(8/5,0),Z 3=16。

单纯形法:10 5 0 0C b X b b x1x2x3x4θ0 x39 3 4 1 0 30 x48 5 2 0 1 8/5δ10 5 0 00 x321/5 0 14/5 1 -3/5 3/210 x18/5 1 2/5 0 1/5 4δ0 1 0 -25 x23/2 0 1 5/14 -3/1410 x1 1 1 0 -1/7 2/7δ0 0 -5/14 -25/14依次相当于:原点;C;B。

P44-1.7(1)2 -1 2 0 0 0 -M -M -MC b X b b x1x2x3x4x5x6x7x8x9θ无界解。

两阶段法:阶段二:P45-1.10证明:CX (0)>=CX*,C*X*>=C*X (0) CX (0)-CX*+C*X*-C*X (0)>=0,即(C*-C)(X*-X (0))>=0。

P45-1.13设饲料i 使用x i (kg ),则543218.03.04.07.02.0m in x x x x x z ++++=s.t. 7001862354321≥++++x x x x x 305.022.05.054321≥++++x x x x x1008.022.05.054321≥++++x x x x x0,,,,54321≥x x x x x第二章P74-2.1(1)321532m ax y y y w ++=22321≤++y y y 243321≤++y y y 4334321=++y y y 无约束321,0,0y y y ≤≥P75-2.4(1),06353322232max 212121212121≥≥≤-≤+≤-≤++=y y y y y y y y y y y y w(2) (8/5,1/5)(3) 无穷多最优解。

16993-运筹学-习题答案选03_整数规划

16993-运筹学-习题答案选03_整数规划

运筹学教程(胡运权主编,清华第4版)部分习题答案(第五章)5.1设长度为a j的毛坯截取x j根,则min z = L - ∑j=1,2,...,n a j x js.t. ∑j=1,2,...,n a j x j≤ Lx j ≥ 0, integer, j = 1, 2, …, n即max z’ = ∑j=1,2,...,n a j x js.t. ∑j=1,2,...,n a j x j≤ Lx j ≥ 0, integer, j = 1, 2, …, n5.2设x j = 1, 当第j队员上场;x j = 0, 当第j队员不上场,则max z = 1.92x1 + 1.90x2 + 1.88x3 + 1.86x4 + 1.85x5 + 1.83x6 + 1.80x7 + 1.78x8s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8= 5x1 + x2 = 1x6 + x7 + x8 ≥ 1x6 ≤ 2 – (x1 + x4)x2 + x8 ≤ 1x j ={0 or 1}, j = 1, 2, …, 85.3max z = ∑i=1,2,...,m c i x is.t. ∑i=1,2,...,m a i x i≤ a∑i=1,2,...,m b i x i≤ bx i = 0 or 1, i = 1, 2, …, m5.4(1) x* = (3, 1); z* = 7(2) x* = (0, 9); z* = 95.5(1) 无可行解(2) x* = (1, 0, 0); z* = 25.6设x j = 1, 当消防站j不关闭;x j = 0, 当消防站j关闭min w = x1 + x2 + x3 + x4s.t. x1 + x2≥ 1 (区域1有消防站负责)x1 + x2≥ 1 (区域2有消防站负责)x1 ≥ 1 (区域3有消防站负责)x1 + x3≥ 1 (区域4有消防站负责)x3≥ 1 (区域5有消防站负责)x1 + x3 + x4≥ 1 (区域6有消防站负责)x1 + x4≥ 1 (区域7有消防站负责)x1 + x2 + x4≥ 1 (区域8有消防站负责)x2 + x4≥ 1 (区域9有消防站负责)x4≥ 1 (区域10有消防站负责)x3 + x4≥ 1 (区域11有消防站负责)x1, x2, x3, x4 = 0 或1最优解:x* = (1, 0, 1, 1); z* = 35.7设y i = 0,当条件i被选;y i = 1,当条件i不选∑j=1,2,…n a ij x j ≥ b i - My i, ( i = 1, 2, …, p)∑i=1,2,...,p y i = p - q5.11(1) 令x = 0x0 +1x1 + 4x2 + 6x3; x j = 0 or 1; x0 + x1 + x2 +x3 = 1(2) 令x = 0x0 +1x1 + 4x2 + 6x3; x j = 0 or 1; x0 + x1 + x2 +x3 = 1。

运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案(第七章)

运筹学教程(第三版)清华大学出版社出版 郭耀煌 胡远权编著 习题答案习题答案(第七章)
page 9 3 May 2011
决策(分配资金) 决策(分配资金) 0 0 0 0 0 0 1 64 64 64 64 2 68 68 68 3 78 78 4 76
最优 决策 0 1 2 3 3
最优决策 的效益值 0 64 68 78 78
School of Management
运筹学教程
第七章习题解答
表7-20 项目 A B C 投资额 0 0 0 0 1 41 42 64 2 48 50 68 3 60 60 78 4 66 66 76 单位:万元 单位:
page 8 3 May 2011
School of Management
运筹学教程
第七章习题解答
工厂3 工厂 状态( 状态(可能的 投资数) 投资数) 0 1 2 3 4
运筹学教程
第七章习题解答
最优解: 购买1, 购买1, 购买3。 最优解: Al购买 , A2购买 , A3购买 。可靠性 为0.042。 。
page 13 3 May 2011
School of Management
运筹学教程
第七章习题解答
7.6 某工厂有 000台机器,可以在高、低两种不 某工厂有l 台机器, 台机器 可以在高、 同负荷下进行生产,假没在高负荷下生产时, 同负荷下进行生产 , 假没在高负荷下生产时 , 产品的 年产量s1和投入的机器数量y1的关系为s1=8y1, 机器的 年产量 和投入的机器数量 的关系为 完好率为0.7;在低负荷下生产时,产品的年产量s 完好率为 ; 在低负荷下生产时 , 产品的年产量 2 和 投入的机器数量y 的关系为s 投入的机器数量 2 的关系为 2=5y2 , 机器的完好率为 0.9。 现在要求制定一个 年生产计划 , 问应如何安排 年生产计划, 。 现在要求制定一个5年生产计划 使在5年内的产品总产量最高 年内的产品总产量最高。 使在 年内的产品总产量最高。 表示低负荷, 解:y=0表示低负荷,y=1表示高负荷 表示低负荷 表示高负荷 Y(1)=0 Y(2)=0 Y(3)=1 Y(4)=1 Y(5)=1 各月的产量如下: 各月的产量如下: X(1)=5000,X(2)=4500,X(3)=64800, , , , X(4)=4536,X(5)=3175.2 ,

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。

1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。

000000虿X113.0000000。

000000螇X210。

0000002800。

000000莃X318。

0000000.000000肁X410.0000001100。

000000莈X120.0000001700.000000袆X220.0000001700。

000000螄X320.0000000。

000000蕿X130.000000400.000000膇X230。

0000001500。

000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。

000000—2800。

000000羆3)2.0000000.000000羆4)0。

000000—2800.000000节5)0。

000000-1700.000000蝿NO。

ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

习题答案选01_线性规划和单纯形法

习题答案选01_线性规划和单纯形法

习题答案选01_线性规划和单纯形法运筹学教程(胡运权主编,清华第三版)部分习题答案(第一章)1.1(1)无穷多解:α (6/5, 1/5) + (1- α) (3/2, 0),α∈ [0,1]。

(2)无可行解;(3)x* = (10,6),z* = 16;(4)最优解无界。

1.2(1)max z’ = 3x1 - 4x2 + 2x3 - 5x’4 + 5x’’4s.t. –4x1 + x2 –2x3 + x’4–x’’4 = 2x1 + x2 –x3 + 2x’4–2x’’4 + x5 = 14–2x1 + 3x2 + x3 –x’4+ x’’4– x6 = 2x1, x2, x3, x’4, x’’4, x5, x6 ≥ 0(2)max z’ = 2x’1 + 2x2 –3x’3 + 3x’’3s.t. x’1 + x2 + x’3 –x’’3 = 42x’1 + x2 –x’3 + x’’3 + x4 = 6x’1, x2, x’3, x’’3, x4, ≥ 01.3(1)基解:(0, 16/3, -7/6, 0, 0, 0);(0, 10, 0, -7, 0, 0);(0, 3, 0, 0, 7/2, 0),是基可行解,z = 3,是最优解;(7/4, -4, 0, 0, 0, 21/4);(0, 16/3, -7/6, 0, 0, 0);(0, 0, -5/2, 8, 0, 0);(1, 0, -1/2, 0, 0, 3);(0, 0, 0, 3, 5, 0),是基可行解,z = 0;(5/4, 0, 0, -2, 0, 15/4);(3/4, 0, 0, 0, 2, 9/4),是基可行解,z = 9/4;(0, 0, 3/2, 0, 8, 0),是基可行解,z = 3,是最优解。

(2)基解:(-4, 11/2, 0, 0);(2/5, 0, 11/5, 0),是基可行解,z = 43/5;(-1/3, 0, 0, 11/6);(0, 1/2, 2, 0),是基可行解,z = 5,是最优解;(0, -1/2, 0, 2);(0, 0, 1, 1),是基可行解,z = 5,是最优解;最优解:α (0, 1/2, 2, 0) + (1- α) (0, 0, 1, 1),α∈ [0,1]。

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

2)c=0
3)c>0
d<0 d=0 d>0
0
c 3 d 4
A1点 A1点 A3点
A2A3线段
3 c 5 4 d 2
c 5 d 2 c 5 d 2
c 3 d 4
A2点
A1A2线段 A1点
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st .a21 x1 a22 x2 b2 x1 , x2 0
-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
x6
是否基 可行解
Z
(x1,x2,x3)
(x1,x2,x4) (x1,x2,x5) (x1,x2,x6)
0
0 0 7/4
61/3
10 3 -4
-7/6
0 0 0

最新二三版兼用《运筹学教程》胡运权主编课后习题答案(第三章)模板精品课件

最新二三版兼用《运筹学教程》胡运权主编课后习题答案(第三章)模板精品课件
第三页,共20页。
第三章习题(xítí)解答
3.4 详细说明用位势法(对偶变量法)求检验数的原理。 解:原问题的检验数也可以利用(lìyòng)对偶变量来计算 :
ij cij (ui v j ) i 1,2,m; j 1,2,, n
其中,ui和vj就是原问题约束(yuēshù)对应的对偶 变量。由于原问题的基变量的个数等于m+n-1。所 以相应的检验数就应该等于0。即有:
2、约束系数只取0或1。 3、约束系数矩阵的每列有两个1, 而且只有两个1。前m行中有一个1,或n 行中有一个1。 第一页,共20页。
第三章习题(xítí)解答
3.2 运输问题的基可行解应满足什么条件?将其填入运 输表中时有什么体现?并说明在迭代计算过程(guòchéng)中 对它的要求。
解:运输问题基可行解的要求是基变量的个数等于m+n1。填入表格时体现在数字格的个数也应该等于m+n-1。在 迭代过程(guòchéng)中,要始终保持数字格的个数不变。
第二页,共20页。
第三章习题(xítí)解答
3.3 试对给出运输问题初始基可行解的西北角法、最 小元素法和Vogel法进行比较,分析给出的解之质量不同 的原因。
解:用西北角法可以快速得到初始解,但是由于 (yóuyú)没有考虑运输价格,效果不好;最小元素法从最 小的运输价格入手,一开始效果很好,但是到了最后因 选择余地较少效果不好; Vogel法从产地和销地运价的级 差来考虑问题,总体效果很好,但是方法较复杂。
cij (ui v j ) 0 i 1,2,m; j 1,2,, n
第四页,共20页。
第三章习题(xítí)解答
由于(yóuyú)方程有m+n-1个, 而变量有m+n个。所以上面 的方程有无穷多个解。任意确定一个变量的值都可以通过方程 求出一个解。然后再利用这个解就可以求出非基变量的检验数 了。

《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
1) 118400.0
VARIABLE VALUE REDUCED COST
Z 0.000000 1.000000
X11 3.000000 0.000000
X21 0.000000 2800.000000
X31 8.000000 0.000000
X41 0.000000 1100.000000
X12 0.000000 1700.000000
程序法
6.4a
破圈法
避圈法
最小部分树16
6.4b
最小部分树32
172页6.11
红色曲线为使用一年卖出
蓝色曲线为使用两年卖出
绿色曲线为使用三年卖出
紫色曲线为使用四年卖出
最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4
三种方案分别为:第一年年初买新车,年末卖掉再买新车,一直用到第四年年末卖掉;
X2 1.000000 2.000000 INFINITY
X3 4.000000 1.000000 1.500000
X1,X2,X3 0.000000 0.000000 INFINITY
RIGHTHAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE
RHS INCREASE DECREASE
d)
maxz=3x1+x2+4x3-0.4y
s.t.
6x1+3x2+5x3≤45
3x1+4x2+5x3-y≤30
x1,x2,x3,y≥0
用lomdo求解为
LP OPTIMUM FOUND AT STEP 0
OBJECTIVE FUNCTION VALUE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学教程
第一章习题解答
1.3 对下述线性规划问题找出所有基解, 指出哪些是基可行解,并确定最优解。
max Z 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
st
8 3
x1 x1
x2 x6
4x3 0
2 x5
10
x j 0(, j 1,,6)
min Z 5x1 2x2 3x3 2x4
第一章习题解答
max Z x1 x2 6x1 10x2 120 (3) st. 5 x1 10 5 x2 8
唯一最优解,x1 10, x2 6, Z 16
max Z 5x1 6x2
(4)
st.22xx11
x2 3x2
2
2
x1, x2 0
该问题有无界解
5
School of Management
X
0
对于任何0 a 1, 两点连线上的点X满足:
X aX (1) (1 a) X (2)也是可行解,且
CT X CT aX (1) CT (1 a) X (2)
C T aX (1) aCT X (2) C T X (2)
CT X (2) , 所以X也是最优解。
page 24 13 April 2021
(1)
st
x12x1x23xx23
2x4 x3
14 x4
. 2
x1, x2, x3 0, x4无约束
max Z 3x1 4x2 2x3 5x41 5x42
4x1 x2 2x3 x41 x42 2
st
x1 x2 x3 2x1 3x2
2x41 2x42 x3 x41 x42
运筹学教程
第一章习题解答
1.2 将下述线性规划问题化成标准形式。
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
(1)
st
x12x1x23xx23
2x4 x3
14 x4
. 2
x1, x2 , x3 0, x4无约束
min Z 2x1 2x2 3x3
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
b=2, cC=j4-, dZ=j -2, g=10, h=0,-7f=3, i=5j , e=2,kl=0, (l)
page 15 13 April 2021
15
School of Management
运筹学教程
第一章习题解答
l.6 考虑下述线性规划问题:
max Z c1x1 c2 x2
st.aa2111xx11
a12 x2 a22 x2
b1 b2
x1, x2 0
21上0≤界≤a。式1b22≤中≤5,1,481,试≤≤确bc11定≤≤目132, 标,42≤函≤c数a2≤2最1≤6优,5-值,14≤的≤a下a112≤界2≤3和6, ,
4 x2 2 x2
9 8
x1, x2 0
page 12 13 April 2021
12
School of Management
运筹学教程
第一章习题解答
max Z 2x1 x2
(2)
st.63xx11
5x2 2x2
15 24
x1, x2 0
page Z x1 2x2 x3 4x4
st.2x1
x2
x1 x2 x4 3x3 2x4
4 2 5 7
(i) (ii)
x1, x2 , x3, x4 0
模型中α,β为参数,要求:
(1) 组 成 两 个 新 的 约 束 (i)’ = (i)+(ii) , (ii)’ = (ii)一2(i),根据(i)’,(ii)’以x1,x2为基变量,列出 初始单纯形表;
17
School of Management
运筹学教程
第一章习题解答
解:下界对应的模型如下( c,b取小,a取大)
max Z x1 4x2
st.43xx1165xx22
8 10
x1, x2 0
最优值(下界)为:6.4
page 18 13 April 2021
18
School of Management
(2)
st
x1 x2 x3 4 2x1 x2 x3 6
x1 0, x2 0, x3无约束
page 6 13 April 2021
6
School of Management
运筹学教程
第一章习题解答
min Z 3x1 4x2 2x3 5x4
4x1 x2 2x3 x4 2
X *是 max Z C* X的最优解,故
C* X * C* X 0 0;
(C* C)(X * X 0 )
C(X 0 X *) C*(X * X 0) 0
page 25 13 April 2021
25
School of Management
运筹学教程
第一章习题解答
1.11 考虑线性规划问题
6 x2 2 x2
6 4
x1, x2 0
无穷多最优解,
x1
1, x2
1,Z 3
3是一个最优解
max Z 3x1 2x2
(2)
st.32xx11
x2 2 4x2 12
x1, x2 0
该问题无解
4
School of Management
运筹学教程
page 5 13 April 2021
-3/4
2
c x1 1 1 0
page 14
j
13 April 2021
00
-2/14 -
10/35
3/14d- 14
School of Management
运筹学教程
第一章习题解答
当 c/d 在 3/10 到 5/2 之 间 时 最 优 解 为 图 中 的A点;当c/d大于5/2且c大于等于0时最优解 为图中的B点;当c/d小于3/10且d大于0时最优 解为图中的C点;当c/d大于5/2且c小于等于0 时或当c/d小于3/10且d小于0时最优解为图中 的原点。
page 16 13 April 2021
16
School of Management
运筹学教程
第一章习题解答
解:上界对应的模型如下(c,b取大,a取小)
max Z 3x1 6x2
st
.21xx1142xx22
12 14
x1, x2 0
最优值(上界)为:21
page 17 13 April 2021
运筹学教程
第一章习题解答
l.7 分别用单纯形法中的大M法和两阶
段法求解下列线性规划问题,并指出属哪—类
解。
max Z 3x1 x2 2x3
x1 x2 x3 6
(1)
st
2x1 2x2
x3 x3 0
2
x j 0(, j 1,,3)
该题是无界解。
page 19 13 April 2021
运筹学教程
同样适合 第三版黄皮版
page 1 13 April 2021
1
School of Management
运筹学教程
运筹学教程(第二版) 习题解答
安徽大学管理学院
洪文
page 2 13 April 2021
School of Management
运筹学教程
第一章习题解答
1.1 用图解法求解下列线性规划问题。 并指出问题具有惟一最优解、无穷多最优解、 无界解还是无可行解。
a=3, j=5, k= -1.5
page 23 13 April 2021
23
School of Management
运筹学教程
第一章习题解答
1.9 若X(1)、X(2)均为某线性规划问题的
最优解,证明在这两点连线上的所有点也是
该问题的最优解。 max Z CT X
设X (1)和X (2)满足: AX b
6x2 15x3 x2 x3 5
15
x j 0(, j 1,,3)
该题无可行解。
page 22 13 April 2021
22
School of Management
运筹学教程
第一章习题解答
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知项数目a∼l值。X1 X2 X3 X4 X5
x2
x3
x4
0.5 2
0
0
1
1
0 11/5 0
Z 5 5 43/5
11
School of Management
运筹学教程
第一章习题解答
1.4 分别用图解法和单纯形法求解下述
线性规划问题,并对照指出单纯形表中的各基
可行解对应图解法中可行域的哪一顶点。
max Z 10x1 5x2
(1)
st.35xx11
(2)
st
2x1x1 22x2x23xx33
4 x4 2 x4
7 3
x j 0, ( j 1,4)
page 9 13 April 2021
9
School of Management
运筹学教程
第一章习题解答
max Z 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
x5 x6
14 2
x1, x2 , x3 , x41, x42 , x6 0
相关文档
最新文档