固体物理知识点总结 第四章

合集下载

固体物理知识总结

固体物理知识总结

§5-2 线缺陷——位错 线缺陷——位错
一,位错的基本类型
"刃位错 刃位错"和"螺位错 螺位错" 刃位错 螺位错 刃型位错的特点是位错线垂直 垂直于滑移矢量b; 垂直 螺型位错的特点是位错线平行 平行于滑移矢量b. 平行 位错线的特征
二,位错的运动
位错的滑移 位错的攀移
§5-3 面缺陷与体缺陷
一,层错(堆垛层错) 二,晶界 三,小角晶界 四,体缺陷(包裹体)
2.元胞 初基元胞,基矢, 初基元胞,基矢,格矢,威格纳-赛兹 元胞(W-S元胞,对称元胞), 3.惯用元胞和轴矢 惯用元胞,轴矢
三,常见晶体结构举例
致密度η(又称空间利用率),配位数,密 堆积 1. 简单立方(sc) 配位数=6,惯用元胞包含格点数 = 1 惯用元胞包含格原子数 = 1 2. 面心立方(fcc) 配位数=12,惯用元胞包含格点数=4 惯用元胞包含格原子数 = 4 3.体心立方(bcc) 配位数=8,惯用元胞包含格点数=2 惯用元胞包含格原子数 = 2
九,硅和锗的能带结构 1. 能带的简并 2. k空间等能面 3. 回旋共振 4. 硅和锗的导带结构 5. 硅和锗的价带结构
第五章
§5-1
晶体缺陷
点缺陷
一,点缺陷的类型 (1)肖脱基(Schottky)缺陷 (2)费伦克尔(Frenkel)缺陷 (3)间隙原子缺陷 (4)色心
二,杂质原子 施主,受主杂质的能级
(4)旋转-反演操作(象转操作) 2.分数周期平移T/n
(1) n度螺旋轴指数 2.晶向指数 3.晶面指数(密勒指数)
六角晶系的四指数表示.
六,倒格子与布里渊区 1. 倒格子:
(1)定义 (2)倒格子的重要性质(正倒格子间的关系) 2. 布里渊区(B.Z) 七,晶体x光衍射 1.决定散射的诸因素 1.决定散射的诸因素 (1)原子散射因子 (2)几何结构因子

第四章固体物理

第四章固体物理


sin Ka ~ Ka
2 2

得 2C /M k2a2
第四章固体物理
3.k的取值限制 (周期性边界条件)
我们前面研究的对象是理想晶体(所以可借用 波函数来处理),边界上与内部的原子是一样的,既
理想晶体不考虑晶体边界,没有边界效应。 对实际长为L的一维原子链,要作为理想晶体来 对待,就要用到周期性边界条件(即循环边界条件或
至目前为止,尚未找到其它边界条件可以获得与实 验更加符合的结果,所以周期性边界条件成为我们 处理的晶格振动唯一选项。
周期性边界条件并没有改变方程解的形 式,只是对解提出一定的条件,q 只可 取N个不同的值,每个q对应着一个格波。
第四章固体物理
周期性边界条件下K取值很多,无数个。 但实际中可将格波K取值限制在一定范围内

2 n
L
混 K的周期(倒格矢): G 2 n

a
一个布里渊区 (周期)中拥有 的k的数目:
2 / a L Na N 2 / L a a
布里渊区中的k值数目=晶体中初基晶胞的数目。对长为L的 一维原子链中的独立的简正模式数等于晶体中的原子数。
第四章固体物理
5.群速
若晶体中有一个扰动,有一个原子偏离了平衡 位置。由于原子间有相互作用,则这个扰动可以 看作是基本格波组成的波包的运动,波包的运动 速度是格波的群速,vg d dk 。它是有一系列格 波叠加起来的波包的运动,波包中心所对应的速
C |k| M

在长波近似的情况下,

v a c 常数 M
晶体可视为连续介质,
格波可视为弹性波。

弹性波

m
2π a
π a
第四o章固体物理π a

固体物理总结

固体物理总结

4.当电子(或光子)与晶格振动相互作用时,交换能量以
为单位。
晶体热容
1.固体比热的实验规律 (1)在高温时,晶体的比热为3NkB; (2)在低温时,绝缘体的比热按T3趋于零。
2.模式密度
定义:
D(
)
lim
0
n
m D()d3N 0
计算:D3 n12 V π c3
ds
s qq
3.晶体比热的爱因斯坦模型和德拜模型
2.线缺陷
当晶格周期性的破坏是发生在晶体内部一条线的周围近邻,
这种缺陷称为线缺陷。位错就是线缺陷。
位错
刃型位错:刃型位错的位错线与滑移方向垂直。 螺旋位错:螺旋位错的位错线与滑移方向平行。
位错缺陷的滑移
刃位错:刃位错的滑移方向与晶体受力方向平行。
螺位错:螺位错的滑移方向与晶体受力方向垂直。
第 五 章 能带理论 总结
Kn
(k
Kn 2
)
0
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V(rR n)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
1.晶体的结合能 晶体的结合能就是自由的粒子结合成晶体时所释放的能量, 或者把晶体拆散成一个个自由粒子所需要的能量。
EbU(r0)U(r0)
2.原子间相互作用势能
u(r)rAm rBn A、B、m、n>0
其中第一项表示吸引能,第二项表示排斥能。
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
k
r
e ik r
uk
r

固体物理学:第四章总结

固体物理学:第四章总结
2
(r
ki
Rn)
bi 2
eik
,(i
Rn
(r ),
1,2 ,3 )
(r ) (r )
k
kKh
在此范围内k共有N个值(N为晶体原胞数) 。
近自由电子近似
1.模型: 假定周期场起伏较小,而电子的平均动能比其势
能的绝对值大得多。作为零级近似,用势能的平均值V0代替
V(x),把周期性起伏V(x)-V0作为微扰来处理。
Rs
5.能带宽度: E Emax Emin
费米面的构造法
1.画出布里渊区的广延区图形;
2.画出自由电子费米面(费米面的广延区图);
N
kF
Z(k )dk
0
kF 0
2N A
2πkdk
πk
2 F
2N A
kF
A
1
2

3.将落在各个布里渊区的费米球片断平移适当的倒格矢进
入简约布里渊区中等价部位;
3.结论:
发生能量不连续的波矢 k 满足的条件可改写为:
Kn
(k
Kn 2
)
0
k'
k
Kn
0
Kn
对于三维的情况,沿各个方向在布里渊区边界E(k)函数是 间断的,但不同方向断开时的能量取值不同,因而有可能使能 带发生重叠。
紧束缚近似
1.模型
晶体中的电子在某个原子附近时主要受该原子势场V
(r
Rm
)
的作用,其他原子的作用视为微扰来处理,以孤立原子的电子
态作为零级近似。
2.势场
V r V (r Rm )
'V
(r
Rn
)

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理学讲义4.1

固体物理学讲义4.1

第四章能带理论能带理论的出发点是固体中的电子不再束缚于个别原子,而是在整个固体内运动(这要求电子的平均自由程远大于晶格常数),称为共有化电子。

能带理论是近似理论。

由于固体中大量电子的运动是相互关联的,每个电子的运动受到其他电子和原子的影响,在如此大量粒子的多体系统严格求解是不可能的。

大多数情况下我们关心的是价电子的运动状态,在单原子结合成固体的过程中价电子的运动状态发生大的变化,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实。

这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以及电子波函数反对称性而带来的交换作用。

能带理论是单电子近似理论,即把每个电子的运动看成是独立的在一个等效势场中的运动。

单电子近似理论最早用于研究多电子原子,又称为哈特里(Hartree)-福克(κoΦ)自洽场方法。

把多体问题简化为单电子问题需要进行多次简化。

1、绝热近似:原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论电子问题时可以认为离子是固定在瞬时位置上。

这样多种粒子的多体问题就简化为多电子问题;2、哈特里-福克自洽场方法:每个电子是在固定的离子势场以及其他电子的平静势场只运动;3、所有的离子势场和其他电子的平均场是周期性的势场。

对于三维的周期场中的单电子问题只能用各种近似方法求解。

通常选取某个布洛赫函数形式的集合作为完备的基本函数族,把晶体电子的波函数用此函数的集合展开,然后代入薛定谔方程,确定展开式的系数所满足的久期方程,据此求能量本征值,再依照逐个本征值确定波函数展开式的系数。

不同的方法仅在于选择不同的函数集合。

能带理论取得相当的成功,但也有他的局限性。

如过渡金属化合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不能把价电子看成共有化电子,周期场的描述失去意义,能带理论不再适用。

此外,长电子和晶格相互作用的强弱程度来看,在离子晶体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起前进的,这些情况都不能简单看成周期场中单电子运动。

八年级物理上册_第四章物态变化笔记整理_人教新课标版

八年级物理上册_第四章物态变化笔记整理_人教新课标版

液化定义物质由气态变为液态的过程。

(液化要放热)方式冷却现象1、水开后,壶嘴看见“白气”(壶中汽化出来的水蒸气,遇到冷空气液化成小雾滴)易错点:水蒸气是无色无味、透明的、无法用人眼看到。

人眼看到“白气”,是水蒸气遇冷液化而成的“小雾滴”,“白气”是液体,不是气体。

2、夏天自来水管水缸表面会出汗。

(空气中的水蒸气遇冷液化成水珠)3、冬天,嘴里呼出“白气”。

夏天,冰棍周围冒“白气”。

(水蒸气遇冷液化成小雾滴)4、冬天,窗户内侧看见模糊的“水汽”。

(屋内水蒸气遇到冷玻璃液化成小水珠)5、冬天,室外看见的雾。

(水蒸气遇冷液化而成的小雾滴)加压1、常温下,将石油气压缩装入钢瓶中,以液态石油气的形式保存。

2、“长征”火箭的燃料和助燃剂分别是:压缩而成的“液态氢”和“液态氧”。

3、甲烷打火机凝华定义物质由气态直接变成固态的过程。

(凝华放热)举例霜、雪、雾凇、冰花、冰棒纸外面的白霜等,都是空气中的水蒸气遇冷凝华而成的。

升华定义物质由固态直接变成气态的过程。

(升华吸热,所以升华能够制冷)举例卫生丸(樟脑丸)升华;钨丝升华(灯丝变细);干冰升华(人工降雨,储存食物);冰冻的衣服变干;碘易升华为紫色碘蒸气(加碘盐)自然界的水形态物态变化具体过程云液化、凝华高空中的水蒸气遇冷液化成小水珠,遇强冷凝华成小冰晶雨液化、凝华、熔化含有水蒸气的空气升入高空,温度降低,水蒸气液化成小水滴或凝华成小冰晶,最后下落时,小冰晶熔化成小水滴露液化春夏季晴朗的白天,地表水受热蒸发形成水蒸气;在夜间气温降低,空气中的水蒸气遇冷液化成小水珠,附着在花草上。

雾液化气温降低时,空气(相对湿润)中的水蒸气遇冷液化成小水珠附着在尘埃上霜凝华冬天的早晨气温较低,空气中的水蒸气凝华成的小冰晶雪凝固、凝华云中的小水珠凝固成小冰晶,与原来的水蒸气凝华成的小冰晶一起下落成雪注意点(理解部分)一、探究固体熔化时温度的变化规律、沸腾图像分析:图1为某晶体的熔化图像,AB阶段该物质吸收热量,温度逐渐上升,处于固态;当温度升到t0时,开始熔化,t0为该晶体的熔点,整个BC阶段为熔化过程,虽继续吸收热量,但温度保持不变,整个熔化过程为固液混合态;CD阶段该物质已熔化为液态,继续加热,温度再次逐渐上升。

固体物理知识点总结

固体物理知识点总结

一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序短程有序多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体;原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体;每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴晶轴为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞;晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞;WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子;4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积;六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数;晶体最大配位数为12,晶体可能配位数12,8,6,4,3,2;晶列过任意两格点的直线称为晶列晶向晶列方向晶向指数晶面全部格点用一族平行平面包含,该平行平面族称为晶面族,族中每个平面称为晶面晶面指数晶面在元胞基矢截距的倒数的互质整数组称为晶面指数密勒指数hkl晶面在晶胞基矢上截距的倒数的互质整数组称为密勒指数面间距面密度体密度致密度解理面对原子晶体,密勒指数简单的晶面族,面间距较大,晶面格点密度大,晶面间结合力较小,容易解理;对离子晶体,晶面格点密度大且晶面是电中性的晶面容易解理7、倒格子:定义倒格子是晶格点阵在波矢空间的傅立叶变换倒格子基矢倒格矢布里渊区以任意倒格点为原点,作所有倒格矢的垂直平分面将倒格子空间分成的一系列区域,称为布里渊区理论公式1、布拉菲点阵分布函数2、倒格矢3、倒格子基矢与正格子关系式4、晶面指数57-60、密勒指数61、晶面间距65-66、晶面原子密度的计算图形和关系曲线1、简单立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同晶面上格点分布、倒格子基矢、第一布里渊区2、体心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区2、面心立方配位数、元胞、元胞基矢、晶胞、晶胞基矢、不同面上格点分布、倒格子基矢、第一布里渊区3、115-1204、金刚石结构最小结构单元、配位数、元胞、晶胞、晶胞基矢、不同面格点分布、倒格子基矢、第一布里渊区第二章晶体结合基本概念1、两粒子间排斥力及其性质两粒子间吸引力及其性质两粒子间总相互作用力及其特点2、两粒子间相互作用势能晶体总相互作用能晶体结合能绝对零度下,忽略粒子零点振动能,晶体粒子最小总相互作用势能等于晶体结合能3、离子键及特点马德隆常数4、共价键的形成及其特点两个原子各出一个电子,在两个原子核之间形成较大电子云密度被两个原子共用、自旋相反配对的电子结构极性共价键形成及其特点共用电子对偏向负电性大的原子的共价键6、金属键形成及其特点金属原子结合成金属晶体时,价电子脱离原子成为晶格共有电子,原子成为正离子实,共有化电子与离子实库仑引力构成金属键7、范德瓦耳斯键形成及其特点原子负电性原子电离能基态原子失去一个电子成为正离子所需能量原子亲和能基态原子俘获一个电子成为负离子时释放的能量5、原子负电性与晶体结构关系10、SP3、SP2、SP轨道杂化的形成及其性质原子S、P轨道波函数杂化形成的波函数给出的电子几率分布称为杂化轨道;理论公式1、两粒子间相互作用能的一般形式2、两粒子间相互作用力的一般形式3、晶体体积弹性模量4、原子负电性计算式图形和关系曲线1、两粒子相互作用势能2、两粒子相互作用力3、SP3杂化轨道示意图第三章晶格振动基本概念1、一维单原子晶格振动及其特点2、一维双原子晶格振动及其特点3、简谐近似原子绕格点弹性振动谐振,振动位移与弹性力成正比4、最近邻近似5、周期性边界条件6、格波8、格波波矢、波矢空间、波矢密度第一布里渊区波矢个数8、色散关系圆频率-波长关系群速度相速度原子振动状态用格波位相描述,波速等于振动位相传播速度,称为相速度6、光学支格波声学支格波长纵光学波、长纵声学波基元中两个原子相反振动,形成长光学波10、振动模式数每个波矢对应一个声学波圆频率和一个光学波圆频率;N个元胞一维双原子晶格共有2N个独立振动模式自由度;11、振动模式数与晶体结构的关系11、声子晶格振动能量的“量子”声子准动量声子统计分布一定温度下,晶体中能量为的平均声子数由玻色-爱因斯坦统计给出,平均声子数12、振动模式密度12、正则变换独立振动模式的正交性、完备性周期性边界条件下,所有的晶格振动模式构成正交、完备集态空间理论公式1、一维格波、二维格波三维格波解2、一维、二维、三维晶格周期性边界3、三维晶格振动总能量表达式及其意义4、晶格振动模式密度定义5、一维、二维、三维晶格振动模式密度计算图形和关系曲线1、一维单原子晶格色散关系曲线2、一维双原子晶格色散关系曲线第四章晶体能带基本概念1、单电子近似包括:绝热近似假设相对于电子运动速度,离子实近似固定在格点上不动;平均场近似假设每个价电子所处的周期场相同,与其它价电子、离子实的库仑相互作用只与该价电子位置有关周期性势场近似若单电子势具有晶格平移周期性,晶体价电子的定态薛定谔方程求解转化为晶格周期场中单电子薛定谔方程求解2、电子共有化运动、晶体电子、能带电子波包代表的电子称为能带电子3、布洛赫定理布洛赫波的物理意义4、周期性边界条件5、电子波矢、波矢空间、波矢空间密度、电子能态状态密度6、能带共有化电子能量本征值,不同波矢对应的能量值能级的集合,称为能带禁带能隙、满带、空带、导带能量最低的空带、价带能量最高的满带、近满带、半满带、能带底、能带顶、能带宽度7、准经典近似、波包8、电子平均速度能带电子波包群速度定义为能带电子的平均速度电子加速度9、电子有效质量及其物理意义电子有效质量概括了周期场对电子的作用,使外场下能带电子的运动,可用服从牛顿运动定律、具有有效质量的“赝电子”来描述;能带底电子有效质量能带顶电子有效质量10、导体、绝缘体、半导体的能带图11、固体导电性特点及其能带论解释11、空穴及物理意义电场作用下,缺1个电子的能带中其余2N-1个电子对电流的贡献等效为1个带正电子电量粒子的贡献,这个粒子称为空穴、空穴电荷量、空穴有效质量理论公式1、一维晶格、二维晶格、三维晶格的状态能态密度2、布洛赫波函数3、电子、空穴平均速度4、电子、空穴有效质量5、晶体电子在外场作用下的牛顿第二定律6、单电子近似下的薛定谔方程图形和关系曲线1、电子能带的四种不同表示方法2、导体、半导体、绝缘体能带三、试卷结构共七大题1、填空题20空,共20分2、画图及计算10分3、概念解释题共5个概念,10分4、画图及计算15分5、论述题10分6、画图及论述15分7、运用公式计算20分满分:100分四、成绩构成期末考试成绩80%,平时成绩20%特点:1、考试题目体现不同章节内容的连续 2、对所学内容的准确掌握补充:第一章PPT68改错第一章PPT75说明。

固体物理精品教学(华南理工大学)《固体物理》基本概念和知识点.docx

固体物理精品教学(华南理工大学)《固体物理》基本概念和知识点.docx

《固体物理》基本概念和知识点第一章基本概念和知识点1)什么是晶体、非晶体和多晶?(□)□晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程屮不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。

由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。

2)什么是原胞和晶胞?(0)□原胞是最小的晶格重复单元,不考虑对称性,原胞只包含1个原子;从对称性的角度,选取几倍于原胞大小的重复单元,称为品胞,一个品胞中有大于2个以上的原子。

3)晶体共有几种晶系和布喇菲格子?(□)□按结构划分,晶体可分为7大晶系,共14布喇菲格子。

4)立方晶系有几种布喇菲格子?画出相应的格子。

(□)□立方晶系有简单立方、体心立方和面心立方三种布喇菲格子。

5)什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。

(□)0简单晶格中,一个原胞只包含一个原子,所有的原子在儿何位置和化学性质上是完全等价的。

复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格(子晶格),复式格子由它们的子晶格相套而成。

Au、Ag和Cu具有面心立方晶格结构,碱金属Li、Na. K为体心立方结构,它们均为简单晶格。

NaCK CsCl、ZnS以及具有金刚石结构的Si、Ge等均为复式格子。

6)钛酸顿是由几个何种简单晶格穿套形成的?(□)□ BaTiO.在立方体的项角上是锲(Ba),钛(Ti)位于体心,面心上是三组氧(0)。

三组氧(01, OIL 0111)周围的情况各不相同,整个晶格是由Ba、Ti和01、OIL 0111各自组成的简立方结构子晶格(共5个)套构而成的。

7)为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(□)□金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。

金刚石结构由两套完全等价的面心立方格子穿套构成。

金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。

固体物理学第四章

固体物理学第四章
当T0时,CV 0,与实验结果定性符合。 但实验结果表明, T0 , CV ∝T3; 根据Einstein模型,T0,
0 CV exp 0 kBT
28
Einstein模型 金刚石热容量的实验数据
29
4.6 Debye模型 一、模型
假设:晶体是各向同性的连续弹性介质,格波可以看
l V
1 U (T ) s (q)[ns (q) ] 2 s ,q
色散关系
对于实际晶体,晶格振动波矢的代表点密集的均匀分布于布 里渊区内,因此可引入频率分布函数 ( ), 将上式改写为:
在 附近单位频率间隔内的振动模式的数目
ρ()d :频率在-+d之间的振动模式数
0
E 3/2 f ( E )dE
17
才有明显变化,因此 T 0 K 时只有能量在 EF 附近 kBT 范围内 f ( E )
1
(0 E EF kBT )
f ( E)

E EF k BT 2kBT
( EF kBT E EF kBT )
0
( E EF kBT )
1 ( , q) (q)[n( , q) ] 2
与同一波矢 q 相应的角频率 (q ) 可以不止一个——不同的 频支。因此与晶格振动相应的固体的内能为:
1 U (T ) s (q)[ns (q) ] 2 s ,q
23
则晶格振动的定容热容为:
U (T ) C T
与温度有关的内能: 绝缘体 金属
晶格振动能量 晶格振动能量+价电子的热动能
低温下才考虑
3
4.1 电子气的状态密度
金属的自由电子气Drude模型
4

固体物理第四章4.5

固体物理第四章4.5

因为整个晶体保持电中性,这就限定在离子晶体中,对肖特基缺陷应有数目相同
的正、负离子空位,而对夫伦克尔缺陷,则应有数目相同的正离子空位和正填隙
原子,以及数目相同的负离子空位和负填隙离子。
典型的A+B-离子晶体 B-空位
+ _
+ _
_ + _
+
_
_
+ _
+ _ +
+ + _ + _ +
_ _ +
A+填隙离 子

eD k BT
4.5 离子晶体的热缺陷在外场中的迁移
离子晶体的结构特点:
正、负离子相间排列在格点上,每个离子均被配位数相等的异号离子所包围。 无论是形成正、负离子空位,还是形成正、负填隙离子,都会在缺陷处形成正的 或负的带电中心。
A+B-型离子晶体中共有4种带电的本征缺陷 正电中心的点缺陷:负离子空位和正填隙离子; 负电中心的点缺陷:正离子空位和负填隙离子。
C ( x ) C0 e eEx / k BT
比较两式可得

eD k BT
上式称为爱因斯坦关系,它具有普遍意义。由上式可以看出,当温度一定 时,扩散系数大的材料,其迁移率也高。
爱因斯坦关系也在无电场的情况下求出,结论相同
eD k BT
若离子定向漂移达到平衡后突然撤去外电场,由于A+填隙离子浓度右高左低,它要 从浓度高的右端向左端扩散,通过扩散作用,使A+填隙离子的浓度最终达到均匀分布。
( E 2 eEa / 2 ) / k BT
P右 v02e ( E2 eEa / 2 ) / k BT
其中v02是填隙原子的振动频率,单位时间向右的净跳跃次数

固体物理第四章总结1

固体物理第四章总结1

第四章总结成员及分工1:一维晶格以及三维晶格的振动2:晶格热容的量子理论3:简谐近似和简谐坐标4:晶格的状态方程和热膨胀5:离子晶体的长波近似4-1 一维晶格以及三维晶格的振动一、知识脉络二、重点1.格波的概念和“格波”解的物理意义(1)定义:晶格原子在平衡位置附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。

(2)物理意义:一个格波解表示所有原子同时做频率为ω的振动,不同原子之间有位相差。

相邻原子之间的位相差为aq 。

(3) q 的取值范围:-(π/a)<q ≤(π/a)这个范围以外的值,不能提供其它不同的波。

q 的取值及范围常称为布里渊区(Brillouin zones )。

(4) Born-Von Karman 边界条件: 1)(=-Naq i e h Naq ⨯=π22.一维单原子链的色散关系22241[1cos ]sin ()2aq aq m m ββω=-=把 ω 与q 之间的关系称为色散关系(disperse relation),也称为振动频谱或振动谱。

3.一维单原子链的运动方程相邻原子之间的相互作用βδδ-≈-=d dvF ad v d ⎪⎪⎭⎫ ⎝⎛=22δβ 第n 个原子的运动方程11()(2)n n n n i t naq nq m Ae ωμβμμμμ∙∙+--=+-=4.一维双原子链中两种原子的运动方程及其解(1)运动方程( equation))2(2221212n n n n M μμμβμ---=+++∙∙ )2(2221212n n n n M μμμβμ---=+++∙∙(2)方程的解(solution)])2([2q na t i n Ae -=ωμ ])12([12aq n t i n Be +-+=ωμ5.声学波与光学波的概念与物理意义(1)声学波与光学波的定义}]sin )(41[1{2/1222aq M m mM mM M m +-++=+βω }]sin )(41[1{2/1222aq M m mMmM M m +--+=-βω ω+对应的格波称为光学波(optic wave )或光学支(optic branch) ;ω-对应的格波称为声学波(acoustic wave)或声学支(acoustic branch )(2)两种格波的振幅比aq m A B cos 222ββω--=⎪⎭⎫⎝⎛++aq m A B cos 222ββω--=⎪⎭⎫⎝⎛--(3)ω+ 与ω- 都是q 的周期函数)()(q aq --=+ωπω)()(q aq ++=+ωπω其中aq a22ππ≤〈-6.对色散关系的讨论(1)一维单原子链与一维双原子链的格波解的差异一维单原子链只有一支格波(一个波矢对应一个格波)— 声学波;而一维双原子链则有两支格波(一个波矢对应两个格波)— 声学波和光学波,两支格波的频率各有一定的范围:0)0()(min ==--ωω Maβπωω2)2()(max ==-- m aβπωω2)2()(min ==++ mMM m )(2)0()(max +==++βωω 在ω-max 与ω+min 之间有一频率间隙,说明这种频率的格波不能被激发。

固体物理学复习总结

固体物理学复习总结

第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。

晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。

非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。

3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。

固体物理讲义第四章

固体物理讲义第四章

第四章 晶格振动和晶体的热学性质● 晶格振动:晶体中的原子在格点附近作热振动● 原子的振动以波的形式在晶体传播(原子的振动波称为格波) ● 晶格振动对晶体的性质有重要影响 主要内容● 晶格动力学(经典理论,1912年由波恩和卡门建立)晶格振动的模式数量(有多少种基本的波动解) 晶格振动的色散关系(波动的频率和波数的关系)● 晶格振动的量子理论 ● 固体的热容量 4.1 一维单原子链的振动原子链共有N 个原胞,每个原胞只有一个原子,每个原子具有相同的质量m,平衡时原子间距等于晶格常数a,原子沿链方向运动,第n 个原子离开平衡位置的位移用x n 表示,第n 个原子和第n+1个原子间的相对位移为 一维单原子链原子振动时,相邻两个原子之间的间距: 基本假设● 平衡时原子位于Bravais 格点上 ● 原子围绕平衡位置作微振动●简谐近似:原子间的相互作用势能只考虑到平方项 微振动时:简谐近似:势能展开式保留到二次项微振动:原子离开平衡位置的位移与原子间距相比是小量。

晶体中原子的平衡位置由原子结合能(势)决定。

任何一种晶体,原子间的相互作用势能可以表述成原子之间距离的函数。

n n x x -=+1δδ+=a x ()()⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=+=222 21 )(δδδa ax d U d x d U d a U a U x U把qa改变一个2π的整数倍,原子的振动相同,因此可以把qa限制负pi和正pi之间,此范围以外的q值,并不提供新的物理内容.群速度是指波包的传播速度,dw/dq,也就是能量在介质中的传播速度。

在布里渊区的边界上,群速度为零,波是一个驻波。

4.2 一维双原子链的振动q趋于0时,w也趋于零,称为声学波4.3 三维晶格的振动(略) 一个原胞中有n 个原子晶格基矢: 原胞数目: 原子的质量: 对于一个波矢q,有3n 个ω(即有3n 支色散曲线) 在3n 支色散关系中,当q→0时(长波):有三支ω →0,且各原子的振幅趋于相同,这三支为声学波。

固体物理(第4章)

固体物理(第4章)
§5-1 布洛赫定理——能带理论
能带理论是单电子近似的理论 —— 把每个电子的运动看成 是独立的在一个等效势场中的运动 单电子近似 —— 最早用于研究多电子原子__ 哈特里-福 克 自洽场方法 能带理论的出发点 —— 固体中的电子不再束缚于个别的原 子,而是在整个固体内运动 ___ 共有化电子 共有化电子的运动状态 —— 假定原子实处在其平衡位置, 把原子实偏离平衡位置的影响看成微扰 理想晶体 —— 晶格具有周期性,等效势场V(r)具有周期性
3 e
—— 整数
§5-1 布洛赫定理——能带理论
2 i
l3 N3
1 e
2 i
l1 N1 l2 N2 l3 N3
2 e 3 e
2 i
l1 l3 l2 —— 引入矢量 k b1 b2 b3 N1 N2 N3
—— 倒格子基矢
2 i
满足 a i b j 2 ij
—— 根据每个本征值确定电子波函数展开式中的系数,得 到具体的波函数
§5-1 布洛赫定理——能带理论
§4-1 布洛赫定理
具有晶格周期性时 布洛赫定理 —— 势场 V ( r )
电子的波函数满足薛定谔方程
2 2 பைடு நூலகம்[ V ( r )] ( r ) E ( r ) 2m
势场为晶格周期性函数
§5-2 一维周期场中电子运动的近自由电子近似——能带理论
1)
2 k l Na 2 k l Na
2)
§5-2 一维周期场中电子运动的近自由电子近似——能带理论
2 k k n k | V ( x ) | k V (n ) —— V(x)的第n个 a 傅里叶系数 2 k k n k | V ( x ) | k 0 a 2 k k n k | H | k V (n ) a 2 k k n k | H | k 0 a

固体物理4-4

固体物理4-4

ò
¶Z j
=
hw j 2
+
hw j
hw j
e k BT - 1
在一定温度下,晶格振动的总能量为:
hwj 1 E = å hwj+ å = E + E (T ) 0 æ hwj ö j 2 j exp ç -1 ÷ çk T ÷ è B ø 1 E0 = å hwj —— 晶体的零点能
j
2
E (T ) = å
æ hw0 ö CV ® exp ç ÷®0 è k BT ø
?
原因:爱因斯坦模型过于简单,忽略了各格波之间的频率差别。
Einstein模型 金刚石热容量的实验数据
Q E = 1320 K
温度较低时
晶体热容主要由频率较低的声学支格波决定
Wa<Wo
声学支格波的声子数较多,对热容贡献较大 温度低时更明显
光子与晶格的非弹性散射
入射光子受到声子散射,变成散射光子,与此同时在 晶格中产生,或者吸收一个声子 光子与声子的作用过程满足
Hale Waihona Puke v v w(q), qv 能量守恒 hw '- hw = ± hw ( q ) v v v v 动量守恒 hk '- hk = ± hq ± hK h
- 发射声子的过程 + 吸收声子的过程
2
æ hw 0 ö exp ç ÷ k T è B ø
æ hw 0 ö ¶E \ CV = = 3Nk B ç ÷ × 2 ¶T k T è B ø é æ hw0 ö ù êexp ç ÷ - 1ú è k BT ø û ë æ hw0 ö = 3Nk B f B ç çk T ÷ ÷ 爱因斯坦热容函数 è B ø
Dulong-Petit:在常温下大多数固体的热容量差不多定律都等于24.9J/mol·K 在温度不太低时,电 子对热容贡献小,可 忽略不计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 金属自由电子理论 总
电子气的热容量 功函数和接触电势差

自由电子气的能量状态
自由电子气的能量状态
一、自由电子气的能量状态 1.自由电子气(自由电子费米气体):是指自由的、无相互 :是指自由的、 作用的、遵从泡利原理的电子气。 作用的、遵从泡利原理的电子气。 2.自由电子气的能量
2πnx kx = L ; 2πny ; ky = L k = 2πnz ; z L
−( E0 −EF )
4πem j= 3 (kBT)2 e h
3.接触电势
kBT
= AT e
2 −ϕ kBT
两块不同的金属A 两块不同的金属A和B相接触,或用导线连接起来,两块 相接触,或用导线连接起来, 金属就会彼此带电产生不同的电势V 称为接触电势。 金属就会彼此带电产生不同的电势 A和VB,称为接触电势。
1 VA − VB = ( ϕ B −43; C = γT + bT
e V a V
3
π2 k2 R 2 B = π Z γ = N0 Z 0 2 EF 2T 0 F
12 Rπ4 b= 3 5 θD
功函数和接触电势差
1.功函数: 电子在深度为E 的势阱内,要使费米面上的电子逃离金属, 电子在深度为 0的势阱内,要使费米面上的电子逃离金属, 的能量, 称为脱出功又称功函数。 至少使之获得ϕ=E0-EF的能量,ϕ称为脱出功又称功函数。 2.里查逊—德西曼公式
h2k 2 h2 2 2 E= (kx + k 2 + kz ) = y 2m 2m
3.能态密度
∆Z dZ N(E) = lim = E dE ∆E→0 ∆
自由电子气的能态密度
dZ = cE1 2 N(E) = dE
2m 其中C = 4 π V c h 2
3 2
二、电子气费米能量 1.分布函数
2.费米能量
N = ∫ f (E)N(E)dE


2 0 N = C EF 3
2
( )
32
h 3n 0 EF = 2m 8π
EF
23
h2 3nπ2 = 2m
(
)
23
π 2 k BT 0 ≈ E F 1 − 0 12 E F

2

f (E) =
1 e( E−EF ) kBT + 1
在热平衡时,能量为 的能级被电子占据的概率 的能级被电子占据的概率。 在热平衡时,能量为E的能级被电子占据的概率。 EF---费米能级 等于这个系统中电子的化学势 ,它是温度 费米能级(等于这个系统中电子的化学势 费米能级 等于这个系统中电子的化学势), T和晶体自由电子总数 的函数。 和晶体自由电子总数N的函数 和晶体自由电子总数 的函数。
等能面称为费米面 费米面。 = 3.费米面: E=EF的等能面称为费米面。
在绝对零度时,费米面以内的状态都被电子占据, 在绝对零度时,费米面以内的状态都被电子占据,球外没 有电子。 有电子。 T≠0时,费米球面的半径kF比绝对零度时费米面半径小, ≠ 时 费米球面的半径 比绝对零度时费米面半径小, 此时费米面以内能量离E 此时费米面以内能量离 F约kBT范围的能级上的电子被激发到 范围的能级上的电子被激发到 EF之上约kBT范围的能级。 范围的能级。 之上约 范围的能级
相关文档
最新文档