大学物理复习题集(下)复习题解答

合集下载

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。

3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。

速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。

如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。

25:一质点沿半径为米的圆周运动,其转动方程为??2?t。

质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。

南京大学物理化学下册(第五版)复习题解答:最新整理

南京大学物理化学下册(第五版)复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

南京大学物理化学下册(第五版)复习题及解答.docx

南京大学物理化学下册(第五版)复习题及解答.docx

第八章电解质溶液1・Faraday电解定律的基本内容是什么?这定律在电化学中有何用处? 答:法拉第电解定律的基本内容是:通电于电解质溶液之后,(1)在电极上(两相界面),发生化学变化的物质的量与通入电荷成正比・(2〉若将几个电解池串联,通入一定的电荷量后,在各个电解池的电极上发生化学变化的物质的量都相等.Q(E)=Z+eL=z^F根据Faraday定律,通过分析电解过程中反应物在电极上物质的量的变化,就可求岀电荷量的数值,在电化学的定量研究和电解工业上有重要的应用.2.电池中正极、负极、阴极、阳极的定义分别是什么?为什么在原电池中负极是阳极而正极是阴极?答:给出电子到外电路的电极叫做电池的负极,在外电路中电势低.从外电路接受电子的电极叫做电池的正极,在外电路中电势较高.发生氧化作用的电极称为阳极,发生还原作用的一极称为阴极•原电池的阳极发生氧化作用•阴极发生还原作用,内电路的电子由阳极运动到阴极•所以原电池的阴极是正极,阳极是负极.3・电解质溶液的电导率和摩尔电导率与电解质溶液浓度的关系有何不同?为什么?答:强电解质溶液的电导率随着浓度的增大而升高(导电粒子数目增多),但大到一定程度以后,由于正、负离子之间的相互作用增大,因而使离子的运动速率降低,电导率反而下降•弱电解质的电导率随浓度的变化不显著,浓度增加电离度减少,离子数目变化不大•摩尔电导率随浓度的变化与电导率不同,浓度降低,粒子之间相互作用减弱,正、负离子的运动速率因而增加,故摩尔电导率增加.4.怎样分别求强电解质和弱电解质的无限稀释摩尔电导率?为什么要用不同的方法?答:在低浓度下,强电解溶液的摩尔电导率与乞成线性关系.在一定温度下,一定电解质溶液来说,0是定值,通过作图,直线与纵坐标的交点即为无限稀释时溶液的摩尔电导率人箒•即外推法.弱电解质的无限稀释摩尔电导率A益,根据离子独立移动定律,可由强电解质溶液的无限稀释摩尔电导率A 益设计求算,不能由外推法求岀,由于弱电解质的稀溶液在很低浓度下与坨不呈直线关系•并且浓度的变化对4m 的值影响很大,实验的误差很大,由实验值直接求弱电解质的A益很困难.5.离子的摩尔电导率、离子的迁移速率、离子的电迁移率和离子迁移数之间有哪些定量关系式?答:定量关系式:厂+ = “+ dE/ dZ r- = u- dE/ dl厂+ •厂-离产迁移速率山+ 4一离子的电迁移率.饥I4 7一厂++~・"乍=耳=母卯正离子迁移数艺= 1无限稀释强电解质溶液銘=益4 +銘・-盈=(屛+“GF・6.在某电解质溶液中,若有i种离子存在,则溶液的总电导应该用下列哪个公式表示: 答:对电解质溶液来说电导G是其导电的能力,以1一1型电解质溶液为例.⑴G=^+舟+ ・・・;(2)G = 爭?为什么?G=K AJ I K =A H \ • c稀电解质溶液A m =Ai +Am ・•・〃=(△: +Am >C = Am ・ c+Am ・ c «+ =Am • c 则 G+ =/c> A/2・•・G 总=G++G —=盒+古…=工盒・7. 电解质与非电解质的化学势表示形式有何不同?活度因子的表示式有何不同? 答:非电解质的化学势的表示形式:活度因子表示式:非电解质a m ^ = Vm^ —电解质 QB=a 甘• a^r =a±・&为什么要引进离子强度的概念?离子强度对电解质的平均活度因子有什么影响?答:在稀溶液中,影响离子平均活度因子7士的主要因素是离子的浓度和价数,并且离子价数比浓度影 响还要更大一些•且价型愈高,影响愈大,因此而提出离子强度的概念.I = *另加必对平均活度因子的影响lg/+=—常数/!9. 用DebyeHuckel 极限公式计算平均活度因子时有何限制条件?在什么时候要用修正的Debys Hiickel 公式? 答:限制条件为:① 离子在静电引力下的分布遵从Boltzmann 分布公式,并且电荷密度与电势之间的关系遵从静电学中的Poisson (泊松)公式.I② 离子是带电荷的圆球,离子电场是球形对称的,离子不极化•在极稀溶液中可看成点电荷.③ 离子之间的作用力只存在库仑引力,其相互吸引而产生的吸引能小于它的热运动的能量.④ 在稀溶液中,溶液的介电常数与溶剂的介电常数相差不大,可以忽略加入电解质后的介电常数的变 化.若不把离子看作点电荷,考虑到离子的直径,极限公式修正为:—A\z+z- 1/7lgy 士随着离子半径的增大而增大•所以溶液中离子溶度增加,迁移速率亦将增加.12. 影响难溶盐的溶解度主要有哪些因素?试讨论AgCl 在下列电解质溶液中的溶解度大小,按由小 到大的次序排列出来(除水外,所有的电解质的浓度都是0・1 mol ・dm'3).(l) NaNQ (2)NaCl (3)H 2O (4)CuSC)4 (5)NaBr阿=阴(T) +RTlnZn.B 今=炖(丁) +RTlnoni ・B电解质 /zB=/^(T)+RTlnaB=〃g(T) + RTlna# • cf-7M Blgz±= 1+辆I ・10. 不论是离子的电迁移率不是摩尔电导率,氢离子和氢氧根离子都比其他与之带相同电荷的离子要 大得多,试解释这是为什么?答:在水溶液中,屮和OH-离子的电迁移率和摩尔电导率特别大,说明 屮和OH —在电场力作用下 运动速率特别快,这是因为水溶液具有氢键质子可以在水分子间转换,电流很快沿着氢键被传导.11. 在水溶液中带有相同电荷数的离子,如Li 十,Na 十,K + ,Rb +,…,它们的离子半径依次增大,而迁移 速率也相应增大,这是为什么?答:IF ,Na+ ,K+ ,Rb 〒等离子带有相同的电荷,离子半径依次增大,根据修正的Debye-Huckel 公式:答:影响难溶盐的溶解度的主要因素有:①共同离子影响,如AgBr在NaBr中的溶解度远小于水中的溶解度.②其它电解质的影响,其它电解质的存在通过影响离子强度,影响难溶盐的活度系数,从而影响溶解度.溶解度顺序为:(2)<(3)<(1)<(4)«5).13.用Pt电极电解一定浓度的CuSQ溶液,试分析阴极部、中部和阳极部溶液的颜色在电解过程中有何变化?若都改用Cu电极,三部溶液颜色变化又将如何?答:Pt是惰性电极,阴极部溶液中C£+被还原生成Cu,溶液中Ci?+的浓度变小,颜色变淡,阳极部溶液中+向中部迁移,颜色变淡,中部的颜色在短时间内基本保持不变.用Cu做电极时,阴极部的颜色变淡,中部基本不变,阳极部颜色变深.14.什么叫离子氛?Debye-Hiickel-()nsager电导理论说明了什么问题?苔:溶液中每一个离子都被电荷符号相反的离子所包围,由于离子间的相互作用使得离子分布不均匀, 从而形成离子氛.Deby^Huckel-Oisager电导理论说明,电解质溶液的摩尔电导率与离子间相互作用、离子的性质、离子本身结构和溶剂能力以及介质的介电常数都有关系.第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

大学物理 下 计算题参考答案

大学物理 下 计算题参考答案

大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。

⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。

求 (1)导体内部各点的磁感应强度。

(2)导体内壁和外壁上各点的磁感应强度。

解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。

由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。

解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。

)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。

O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。

大学物理下册重点复习题

大学物理下册重点复习题

例11-8 设在半径为R 的球体内,其电荷分布是对称的,电荷体密度 ρ= k r (0≤r ≤R ),ρ=0(r>R ),k 为一正的常量,用高斯定理求场强与r 的函数关系。

在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r kr V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4kr r kr dV q rVπ=π==⎰⎰ρ(r ≤R)以该球面为高斯面,按高斯定理有0421/4εkr r E π=π⋅得到()0214/εkr E =,(r ≤R ) 方向沿径向向外。

按高斯定理有0422/4εkR r E π=π⋅得到()20424/r kR E ε=,(r >R )方向沿径向向外。

假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电例11-13假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开场增加到Q 的过程中,外力共作多少功? (1) 令无限远处电势为零,那么带电荷为q 的导体球,其电势为RqU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能q RqW A d 4d d 0επ==(2)带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR qq A A 004d d πεR Q 028επ=11-1 如下图,真空中一长为L 的均匀带电细直杆,总电荷为q ,试证明在直杆延长线上距杆的一端距离为d 的P 点的电场强度大小为:()d L d q+π=04E ε设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q /L , 在x 处取一电荷元d q =λd x = q d x /L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为:⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 11-5 图中所示为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为λ=λ0 (x -a ),λ0为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.解:在任意位置x 处取长度元d x ,其上带有电荷 d q =λ0 (x -a )d x 它在O 点产生的电势()xxa x U 004d d ελπ-=O 点总电势⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ11-6 一半径R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势 在圆盘上取一半径为r →r +d r X 围的同心圆环.其面积为 d S =2πr d r 其上电荷为 d q =2πσr d rLqx它在O 点产生的电势为002d 4d d εσεrr q U =π=总电势02d 2d εσεσRr U U RS ===⎰⎰ 11-7 在盖革计数器中有一直径为2.00 cm 的金属圆筒,在圆筒轴线上有一条直径为0.134 mm 的导线.如果在导线与圆筒之间加上850 V 的电压,试分别求: (1) 导线外表处 (2) 金属圆筒内外表处的电场强度的大小.设导线上的电荷线密度为λ,与导线同轴作单位长度的、半径为r 的(导线半径R 1<r <圆筒半径R 2)高斯圆柱面,那么 高斯定理有 2πrE =λ / ε0得到E = λ/ (2πε0r ) (R 1<r <R 2)方向沿半径指向圆筒.导线与圆筒之间的电势差⎰⎰⋅π==2121d 2d 012R R R R r rr E U ελ120ln 2R R ελπ=那么()1212/ln R R r U E = 代入数值,那么:(1) 导线外表处()121121/ln R R R U E ==2.54 ×106 V/m(2) 圆筒内外表处()122122/ln R R R U E ==1.70×104 V/m 11-8 在强度的大小为E ,方向竖直向上的匀强电场中,有一半径为R 的半球形光滑绝缘槽放在光滑水平面上(如图).槽的质量为M ,一质量m 带有电荷+q 的小球从槽的顶点A 处由静止释放.如果忽略空气阻力且质点受到的重力大于其所受电场力,求:(1) 小球由顶点A 滑至半球最低点B时相对地面的速度;(2) 小球通过B 点时,槽相对地面的速度.设小球滑到B 点时相对地的速度为v ,槽相对地的速度为V .小球从A →B 过程中球、槽组成的系统水平方向动量守恒 m v +MV =0 对该系统,由动能定理mgR -EqR =21m v 2+21MV 2② ①、②两式联立解出()()m M m qE mg MR +-=2v 方向水平向右.()()m M M qE mg mR M m V +--=-=2v 方向水平向左. 11-9 如下图,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.设无穷远处为电势零点,那么A 、B 两点电势分别为0220432ελελ=+=R R RU A 0220682ελελ=+=R R R U B q 由A 点运动到B 点电场力作功()0001264ελελελq q U U q A B A =⎪⎪⎭⎫ ⎝⎛-=-= 11-10 电荷以一样的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V .(1) 求电荷面密度σ.(2) 要使球心处的电势也为零,外球面上应放掉多少电荷? (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441r r r r σσε()210r r +=εσ2100r r U +=εσ=8.85×10-9C / m 2(2) 设外球面上放电后电荷面密度为σ',那么应有()21001r r U σσε'+='= 0即σσ21r r -='外球面上应变成带负电,共应放掉电荷()⎪⎪⎭⎫ ⎝⎛+π='-π='212222144r r r r q σσσ()20021244r U r r r εσπ=+π==6.67×10-9C 11-12 质量为m 、电荷为-q 的粒子沿一圆轨道绕电荷为+Q 的固定粒子运动,证明运动中两者间的距离的立方与运动周期的平方成正比. 设半径为r 、周期为T ,那么有r /m r4qQ220v =πε 因为v = r ω = r( 2π / T ) 所以qQ / (4πε0r 2) = mr (4π2 / T 2) M A m,q CBEEO ARλ R 3 R 8 B即得r 3 = Q qT 2 / (16π3ε0m )11-15 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量. 由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E xeΦb 2N ·m 2/C 平行于xOz 平面的两个面的电场强度通量3003±=±==⋅S E S E yeΦb 2 N ·m 2/C11-18 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内外表半径为R 1,外外表半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.由高斯定理知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U . 在球层内取半径为r →r +d r 的薄球层.其电荷为d q = ρ 4πr 2d r 该薄层电荷在球心处产生的电势()00/d 4/d d ερεr r r q U =π=整个带电球层在球心处产生的电势()212200002d d 21R R r r U U R R-===⎰⎰ερερ因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ11-19 电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0)的点电荷,求带电细棒对该点电荷的静电力. 沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a x x a q E -π=-π=ελε()⎰--π=2/2/204d L L x a x E ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕-萨定律)60sin 90(sin 402︒-︒π=dIB μ 式中6/330tan 21l l Oe d =︒⋅== )231(34602-⋅π=lI B μ)332(40-π=l I μ方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有acb acb ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反.方向沿x 轴正向.点电荷受力:=F 例14-1在真空中,电流由长直导线b 点从三角形框流出,经长直导线求正三角形的中心点O 处的磁感强Oxzy bb b PO -L/2 L/2 d x d qa.∴)332(402-π==lIB B μ,B的方向垂直纸面向里.例14-2 如下图,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面并且距离平板一边为b 的任意点P 的磁感强度.利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度xiB π=2d d 0μxxπ=2d 0δμ方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都一样,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx 20δμb ba +π=ln 20δμ方向垂直纸面向里. 例14-3 如下图,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.λωR I =2/32230)(2y R R B B y +==λωμB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关 由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1那么1014R IB μ=同理, 2024R IB μ=∵21R R >∴21B B <故磁感强度12B B B -=204R I μ=104R Iμ-206R I μ=∴213R R =例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.由安培定律B l I f ⨯=d d ,ab 整曲线所受安培力为 ⎰⎰⨯==b aB l I f fd d 因整条导线中I 是一定的量,磁场又是均匀的,可以把I和B 提到积分号之外,即⎰⨯=b aB l I f d B l I ba⨯=⎰)d (B ab I⨯=载流一样、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-9 如下图,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω线匀速旋转.试求圆筒内部的磁感强度.如下图,圆筒旋转时相当于圆筒上具有同向的面电流密度i ,σωσωR R i =ππ=)2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得ab i ab B 0μ=σωμμR i B 00==.均匀磁场,磁感强度的大小为σωμR B 0=,方向平行轴线朝右.14-4 如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影局部均匀带正电荷,面电荷密度为+σ ,其余局部均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?带电圆盘转动时,可看作无数的电流圆环的磁场在O 点的叠加. 某一半径为ρ 的圆环的磁场为)2/(d d 0ρμi B =而ρσωρωρρσd )]2/([d 2d =π⋅π=i ∴ρσωμρρσωρμd 21)2/(d d 00==B正电局部产生的磁感强度为r B r2d 2000σωμρσωμ==⎰+负电局部产生的磁感强度为)(2d 200r R B Rr-==⎰-σωμρσωμ今-+=B B ∴r R 2=14-9 如下图,有两根平行放置的长直载流导线.它们的直径为a ,反向流过一样大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.解:建立坐标系,应用安培环路定理,左边电流产生的磁感应强度x 2IB 01πμ=; 方向向里 右边电流产生的磁感应强度)x a 3(2I B 02-πμ=; 方向向外 应用磁场叠加原理可得磁场分布为, )3(2200x a I x I B -π+π=μμ)252(a x a ≤≤B 的方向垂直x 轴及图面向里. 14-1 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度v射入该磁场区域,假设要使电子不从上面边界跑出,电子的速度最大不应超过多少? 电子进入磁场作圆周运动,圆心在底边上.当电子轨迹与上面边界相切时,对应最大速度,此时有如下图情形.R R l =︒+45sin )(∴l l R )12()12/(+=-=由)/(eB m R v =,求出v 最大值为m leBm eBR )12(+==v14-2 一边长a =10 cm 的正方形铜线圈,放在均匀外磁场中,B 竖直向上,且B = 9.40×10-3 T ,线圈中电流为I =10 A .(1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少? (2) 假假设线圈能以某一条水平边为固定轴自由摆动,问线圈平衡时,线圈平面与竖直面夹角为多少?(铜线横截面积S = 2.00 mm 2,铜的密度ρ = 8.90 g/cm 3 )(1) 2Ia p m =,方向垂直于线圈平面.︒=⨯=90sin B p B p M mm = 9.40×10-4 N ·m (2) 设线圈绕AD 边转动,并且线圈稳定时,线圈平面与竖直平面夹角为θ ,那么磁场对线圈的力矩为)21sin(θ-π=⨯=B p B p M m m θcos B p m =重力矩:)sin 21(2sin θθa mg mga L +=θρsin 22g S a ==θcos B p m θρsin 22g S a 712.3)/(2ctg ==BI g S ρθ 于是θ = 15°14-3 试证明任一闭合载流平面线圈在均匀磁场中所受的合磁力恒等于零.由安培公式,电流元l Id 受磁场作用力为OrR ωIa a I xO2aIa aIxO 2a l 45° vBOOO ′R Rl45°B AC DImg mg mg n B)(21θ-.B l I F⨯=d d 那么闭合电流受总磁力为B l I B l I F F ⨯=⨯==⎰⎰⎰)d (d d 其中,因为B 为恒矢量,可提出积分号外而保持叉乘顺序不变.由于0d =⎰l (∵多边形矢量叠加法那么) ∴0=F(证毕)14-4一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,),在维持它们的电流不变和保证共面的条件下,将它们的距离从2/3a 变为2/5a 形线圈所做的功.如图示位置,线圈所受安培力的合力为])(22[10102a x I xI aI F +π-π=μμ 方向向右 从x = a 到x = 2a 磁场所作的功为⎰+-π=aax ax x IaI A 2210d )11(2μ)3ln 2ln 2(2210-π=I aI μ例16-2 如下图,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感)长直带电线运动相当于电流λ⋅=)(t I v .正方形线圈内的磁通量可如下求出x a x a I d 2d 0+⋅π=μΦ2ln 2d 2000⋅π=+π=⎰Ia x a x Ia a μμΦ2ln t d I d 2a t d d 0i πμ=-=εΦ2ln t d )t (d a 20v λπμ=2ln td )t (d a R 2R )t (i 0i v λπμ=ε=例16-3电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ω 心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如下图))/1(00t t -=ωω的规律(ω 0和t 0是常数)筒以ω旋转时,相当于外表单位长度上有环形电流π⋅2ωL Q ,它和通电流螺线管的nI 等效. 按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:LQ B π=20ωμ (方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为:La Q B a 2202ωμΦ=π=在单匝线圈中产生感生电动势为=Φ-=εt d d )d d (220t L Qa ωμ-00202Lt Qa ωμ=感应电流i 为0020RLt 2Qa R i ωμ=ε=i 的流向与圆筒转向一致. 例16-5 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(小环的电阻为R ')?带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带 带内有电流R t R I d )(d ωσ=d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωμμ== 在中心产生的磁感应强度的大小为 ))((21120R R t B -=σωμI 2I 2a选逆时针方向为小环回路的正方向,那么小环中2120))((21r R R t π-≈σωμΦ t t R R r t i d )(d )(2d d 1220ωσμΦε-π-=-=tt R R R r R i i d )(d 2)(π1220ωσμε⋅'--='=例16-6 求长度为L 的金属杆在均匀磁场B中绕平行于磁场方向的定轴OO '转动时的动生电动势.杆相对于均匀磁场B的方位角为θ,杆的角速度为ω,转向如下图.在距O 点为l 处的d l 线元中的动生电动势为 d ε l Bd )(⋅⨯=v θωsin l =v∴⎰⎰⋅απ=⨯=εLv vd cos )21sin(B d )B (L⎰⎰θω=θω=ΛθL2d sin B sin d sin lB θω22sin 21BL =ε 的方向沿着杆指向上端.例16-9 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如下图.求线圈中的感应电动势ε,并说明线圈中的感应电动势的方向.无限长载流直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针为线圈回路的正方向,与线圈相距较远和较近的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr r I d dd μμΦ2ln 2d 20202π-=π⋅-=⎰Id r r I d ddμμΦ总磁通量34ln 2021π-=+=Id μΦΦΦ感应电动势为:34ln 2d d )34(ln 2d d 00αμμεπ=π=-=d t I d t Φ由ε >0,所以ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.16-2半径为R 的长直螺线管单位长度上密绕有n 匝线圈.在管外有一包围着螺线管、面积为S 的圆线圈,其平面垂直于螺线管轴线.螺线管中电流i 随时间作周期为T 的变化,如下图.求圆线圈中的感生电动势ε.画出ε─t 曲线,注明时间坐标. 螺线管中的磁感强度ni B 0μ=,通过圆线圈的磁通量i R n 20π=μΦ. 取圆线圈中感生电动势的正向与螺线管中电流正向一样,有td id R n t d d 20i πμ-=Φ-=ε. 在0 < t < T / 4内,TI T I t im m 44/d d ==,20i R n πμ-=εT I m 4=T I nR m /420μπ-=在T / 4 < t < 3T / 4内,T I T I t im m 42/2d d -=-=,=εi T /I nR 4m 20μπ. 在3T / 4 < t < T 内,TI T I t im m 44/d d ==,=εi T I nR m /420μπ-.ε ─t 曲线如图. 16-4 如下图,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 通过矩形线圈的磁通量Φ.(2) 在图示位置时矩形线圈中的电动势ε. 建立坐标系,x 处磁感应强度x2IB 0πμ=;方向向里在x 处取微元,高l 宽dx ,微元中的磁通量:OωBθLdI I εi tT /4 3T /4T /2 TOiI m -I T /4 T /23T /4Tta bvlxdx x 2I Bydx S d B d 0 πμ==⋅=Φ 磁通量:⎰⎰⋅πμ==S0x d r 2I S d B )t ( Φ⎰++πμ=tb t a 0x x d 2I v v t a t b ln 2I 0v v ++μ=π 感应电动势ab2)a b (I t d d 00t π-μ=-=ε=v Φ方向:顺时针 16-5在一长直密绕的螺线管中间放一正方形小线圈,假设螺线管长1 m ,绕了1000匝,通以电流I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .) n =1000 (匝/m) nI B 0μ=nI a B a 022μΦ=⋅=tI n Na t Nd d d d 02με-=Φ-==π2×10-1 sin 100 πt (SI) ==R I m m /επ2×10-1 A= 0.987 A16-8 两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高?建立坐标(如图)那么:21B B B +=x I B π=201μ,)(202a x I B -π=μxIa x I B π--π=2)(200μμ,B 方向⊙ d εx x a x I x B d )11(2d 0--π==v v μ ⎰⎰--πμ=ε=ε+x d )x1a x 1(2I d ba 202av b a b a I ++π=2)(2ln20v μ感应电动势方向为C →D ,D 端电势较高.16-11两根平行长直导线,横截面的半径都是a ,中心线相距d ,属于同一回路.设两导线内部的磁通都略去不计,证明:这样一对导线单位长的自感系数为 aa d L -π=ln 0μ取长直导线之一的轴线上一点作坐标原点,设电流为I ,那么在两长直导线的平面上两线之间的区域中B 的分布为 rIB π=20μ)(20r d I-π+μ 穿过单位长的一对导线所围面积〔如图中阴影所示〕的磁通为==⎰⋅SS B d Φr rd r Iad ad )11(20⎰--+πμa a d I -π=ln0μa a d I L -π==ln 0μΦ例18-1在双缝干预实验中,波长λ=5.50×10-7m 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D=2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1)∆x =20D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,那么应有r 2-r 1=k λ所以(n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处例18-6 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸外表的曲率半 径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的X 围内可观察到的明环数目. a2a x +d x 2a +bII C Dv xOx2a drIIOr(1) 明环半径()2/12λ⋅-=R k r ()Rk r 1222-=λ=5×10-5 cm (或500 nm) (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm ,k =r 2 / (R λ)+0.5=50.5 故在OA X 围内可观察到的明环数目为50个. 18-3 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为∆x =12.0 mm .(1) 求两缝间的距离. (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (1) x = 2kD λ / dd = 2kD λ /∆x 此处k =5∴d =10 D λ / ∆x =0.910 mm (2) 共经过20个条纹间距,即经过的距离l =20 D λ / d =24 mm18-6 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干预现象中,距劈形膜棱边l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干预条纹,A 处是明条纹还是暗条纹?(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=λ/2处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度e 4=2/3λ∴()l l e 2/3/4λθ===4.8×10-5 rad (2) 由上问可知A 处膜厚为e 4=3×500 / 2 nm =750 nm 对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为2/24λ'+e ,它与波长λ'之比为0.32/1/24=+'λe .所以A 处是明纹 18-8 曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如下图.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求: (1) 从中心向外数第k 个明环所对应的空气薄膜的厚度e k .(2) 第k 个明环的半径用r k ,(用R ,波长λ和正整数k 表示,R 远大于上一问的e k .) (1)第k 个明环,λλk e k =+2124/)12(λ-=k e k(2)(2)∵λλk e k ==212222)(k k e R r R -+=2222k k k e Re R r +-+=式中k e 为第k 级明纹所对应的空气膜厚度∵k e 很小,R e k <<,∴2k e 可略去,得)2/(2R r e k k =∴λλk R r k =+21)2/(222/)12(λR k r k -=(k =1, 2, 3 …)例19-3一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.08 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜,求:〔1〕在透镜焦平面处的屏上,双缝干预条纹的间距;〔2〕在单缝衍射中央亮纹X 围内的双缝干预亮纹数目N 和相应的级数。

大学物理2期末复习

大学物理2期末复习
(1)今使线圈平面保持竖直,则线圈所受的磁力矩为多少.
(2)假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.
解:1.(1)Pm=IS=Ia2
方向垂直线圈平面.
线圈平面保持竖直,即Pm与B垂直.有
Mm=Pm×B
Mm=PmBsin(/2)=Ia2B
=9.4×10-4mN
(2)平衡即磁力矩与重力矩等值反向
在平面②的上方向左,在平面②的下方向右.
(1)两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J
(2)两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0
练习九安培力
三、计算题
1.一边长a=10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2,铜的密度=8.90g/cm3),放在均匀外磁场中.B竖直向上,且B=9.40103T,线圈中电流为I=10A .线圈在重力场中求:
解:1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.半径为R的薄圆盘均匀带电,总电量为Q.令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.
解;2.在圆盘上取细圆环电荷元dQ=2rdr,
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
四、证明题
1.如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.

大学物理(下)期末复习题

大学物理(下)期末复习题

大学物理(下)期末复习题一、填空题1、 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, 位置势能与动能相等。

2.有一平面简谐波沿x 轴正方向传播,波速为6s m /,已知在0=x 处的质点的振动方程为))(23cos(1.0m t y ππ-=,则波动方程为 ;质点在x 轴上m x 3-=处的振动方程为 ,m x 3-=处的振动加速度为 。

3.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =______,波速u =________,波长λ = 。

4. 一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为________________。

5. 已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________。

6. 如图所示,两个直径微小差别的彼此平行的滚珠之间的距离,夹在两块平晶的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹。

如果两滚珠之间的距离L 变大,则在L 范围内干涉条纹的数目 ,条纹间距 (填变化情况)。

7. 如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,若薄膜厚度为e ,而且321n n n >>,则两束透射光的位相差为 。

8. 在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,这光波的波长 。

9.在单缝衍射中,沿第二级明纹的衍射方向狭缝可分为 个半波带,沿第三级暗纹的衍射方向狭缝可分为 个半波带,若用波长为λ的单色光照射时沿衍射角为θ方向,宽度为b 的单缝可分为 个半波带。

南京大学物理化学下册(第五版)复习题及解答

南京大学物理化学下册(第五版)复习题及解答




RT ln a zF
7.在公式 ΔrGm =-zE F 中,ΔrGm 是否表示该电池各物都处于标准态时,电池反应的 Gibbs 自由能变 化值?
Θ
Θ
Θ
答:在公式 ΔrGm =-zE F 中,ΔrGm 表示该电池各物都处于标准态时,在 T,p 保持不变的条件 下,按电池反应进行 1mol 的反应时系统的 Gibbs 自由能变化值。 Θ 8.有哪些求算标准电动势 E 的方法?在公式 Θ Θ 中, E 是否是电池反应达平衡时的电动势?K 是否是电池中各物质都处于标准态时的平衡常数? 答:求算标准电动势 E
Θ
ΔrGmΘ =-ZEΘF=ΔrHmΘ-TΔrSmΘ
E r H =-zE F+zFT m T p
(5).稀的 HCI 水溶液中,HCl 的平均活度因子 Y±; Θ 电池:Pt|H2(p )|HCl(m)|AgCl(s)|Ag(s) Θ + 净反应:H2(p ) + AgCl(s) = H (aH+)+Cl (aCl-) +Ag(s)
1 d A n kc A a dt p 若A为理想气体,则有 A A RT
aA P
rc
rp
1 dpA k p pAn a dt

1 d A 1 1 dpA p kc A a dt a RT dt RT
可逆卿一定电流密度下每个电极的实际析出电势等于逆电势加上或减去电极超电势?超电势使得电解池的阴阳两极随电流密度的增大阳极更正阴极更负?外加电压变大消耗电动增多?而原电池的阳极随着电流密度的增加而变小阴极的电势增大总体上原电池的电动势减小所作的电动减小从能量消耗上讲无论原电池或是电解池极化作用都zefzft为负值则表示化学反应的等是不利的但超电势也可以利用?如极谱分析?就是利用浓差极化来分析的一种方法

最新南京大学物理化学下册(第五版傅献彩)复习题及解答

最新南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。

对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。

2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。

不同。

当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。

3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。

标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。

因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。

4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。

电极电势有正有负是相对于标准氢电极而言的。

不能测到负电势。

5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

100102大学物理(二) - 19

100102大学物理(二) - 19

《大学物理(二)》课程综合复习资料一、选择题1.有一接地的金属球,用一弹簧吊起,金属球原来不带电,若在它的下方放置一电量为q 的点电荷,则(A )只有当q >0时,金属球才下移. (B )只有当q <0时,金属球才下移. (C )无论q 是正是负金属球都下移. (D )无论q 是正是负金属球都不动.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0.在保持电源接通的条件下,在两极板间充满相对电容率为r ε的各向同性均匀电介质,则该电容器中储存的能量W 为: (A ) 0W W r ε=.(B )r W W ε/0=.(C )0)1(W W r ε+=.(D )0W W =.3.关于稳恒磁场的磁场强度H ρ的下列几种说法中哪个是正确的? (A )H ρ仅与传导电流有关.(B )若闭合曲线内没有包围传导电流,则曲线上各点的H ρ必为零. (C )若闭合曲线上各点H ρ均为零,则该曲线所包围传导电流的代数和为零. (D )以闭合曲线L 为边缘的任意曲面的H ρ通量均相等.4.如图所示,一个电量为+q 、质量为m 的质点,以速度v ρ沿x 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从0=x 延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v ρ-从磁场中某一点出来,这点坐标是x =0和 (A )qB mv y =,(B )qB mv y 2=,(C )qB mvy 2-=,(D )qBmv y -= .5.在边长为a 的正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为:(A)aQ 04πε.(B)aQ 02πε.(C)aQ0πε.(D)aQ022πε6. 在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零.7.运动电荷q ,质量为m ,以初速0V ρ进入均匀磁场中,若0V ρ与磁场的方向夹角为α,则 (A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变. 8. 一带电体可作为点电荷处理的条件是(A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小.9.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示.当两极板带上恒定的等量异号电荷时,有一个质量为 m 、带电量为+q 的质点,平衡在极板间的空气区域中.此后,把电介质抽去,则该质点(A )保持不动.(B )向上运动.(C )向下运动.(D )是否运动不能确定.10.一带电体可作为点电荷处理的条件是(A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小. 11.下列几个说法中哪一个是正确的?(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强方向可由q F E /ρρ=定出,其中q 为试探电荷的电量,q 可正、可负,F ρ为试探电荷所受的电场力.(D )以上说法都不正确.12.电场强度为E ρ的均匀电场,E ρ的方向与X 轴正向平行,如图所示.则通过图中一半径为R的半球面的电场强度通量为(A )E R 2π.(B )E R 221π. (C )E R 22π. (D )013. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和在两极板间的位置不同,对电容器电容的影响为:(A )使电容减小,但与介质板相对极板的位置无关. (B )使电容减小,且与介质板相对极板的位置有关. (C )使电容增大,但与介质板相对极板的位置无关.(D )使电容增大,且与介质板相对极板的位置有关.14.半径为r 的均匀带电球面1,带电量为q ;其外有一同心的半径为R 的均匀带电球面 2,带电量为Q ,则此两球面之间的电势差U 1-U 2为: (A ))11(40R r q-πε. (B ))11(40r R q -πε. (C ))(410R Q r q -πε. (D )r q 04πε. 15.有两个直径相同带电量不同的金属球,一个是实心的,一个是空心的.现使两者相互接触一下再分开,则两导体球上的电荷:(A )不变化. B )平均分配. (C )集中到空心导体球上.(D )集中到实心导体球上.二、填空题1. 一电量为C 1059-⨯-的试探电荷放在电场中某点时,受到N 10209-⨯向下的力,则该点的电场强度大小为 ,方向 .2. 当带电量为q 的粒子在场强分布为E ρ的静电场中从a 点到b 点作有限位移时,电场力对该粒子所作功的计算式为A = .3. 图示为某静电场的等势面图,在图中画出该电场的电力线.4. 均匀磁场的磁感应强度B ρ垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 .5. 带有N 个电子的一个油滴,其质量为m ,电子的电量的大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为 ,大小为 .6.如图所示,在带电量为q 的点电荷的静电场中,将一带电量为0q 的点电荷从a 点经任意路径移动到b 点,电场力所作的功A = .7.一带电量为Q 的导体球,外面套一不带电的导体球壳(不与球接触)则球壳内表面上有电量Q l = ,外表面上有电量Q 2= .8.一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的电介质,则管内中部附近磁感强度B = ,磁场强度H = .9.一平行板电容器,两板间充满各向同性均匀电介质,已知相对电容率为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D = ,电场强度的大小E = .10.面积为S 的平面,放在场强为E ρ的均匀电场中,已知E ρ与平面间的夹角为)21(πθ<,则通过该平面的电场强度通量的数值=Φe 。

南京大学物理化学下册第五版复习题解答:最新整理

南京大学物理化学下册第五版复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

大学物理(下)习题精选

大学物理(下)习题精选

1. 磁场复习题1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

(提示:无限长载流平板可看成许多无限长的载流直导线组成) 解:利用无限长载流直导线的公式求解。

(1)取离P 点为X 宽度为dx 的无限长载流细条,它的电流di=δdx(2)这载流长条在P 点产生的磁感应强度xdxx di dB o o πδμπμ22==方向垂直纸面向里。

(3)所有载流长条在P 点产生的磁感应强度的方向都相同,所以载流平板在P 点产生的磁感应强度⎰⎰+===+bb a x x dx dB B o b a bln 22πδμπδμο,方向垂直纸面向里。

2、书上习题7-16解:(1)取半径为r 的园为回路 ()()22222a r ab I rB -⋅-=ππμπ 所以, ()r a r ab IB 222202-⨯-=πμ (2) ⎰⋅=bardr j I π2⎰⋅=bardr Kr π23233a b K -⋅=π 因此,()3323a b IK -=π又根据环路定理,⎰⋅⋅=rrdr Kr rB απμπ22032330a r K -⋅=πμ故有 3333033023a b a r r I a r r K B --⋅=-⋅=∴πμμ3、如图所示,长直导线中通有电流I=5A ,另一矩形线框共1000匝,宽a =10cm ,长L=20cm , 以s m v /2=的速度向右平动,求当cm d 10=线圈中的感应电动势。

解:xIB πμ20=,设绕行方向为顺时针方向,则BLdx BdS d ==φ yay IL x ILdx d ay yay y +===⎰⎰++ln2200πμπμφφ =-=dt d Nφε)(20a y y vaIL N +πμ 当cm d y 10==时 ,mV 21.0)1.01.0(21.021042.0510007=+⨯⨯⨯⨯⨯=-ππε*上题中若线圈不动,而长导线中通有交变电流t i π100sin 5=A, 线圈内的感应电动势为多大? 解:同上有:yay IL x ILdx d ay yay y+===⎰⎰++ln2200πμπμφφ =-=dtd Nφε t y a y t L N πππμ100cos 1.02.0ln 2.010********ln 100cos 25070⨯⨯⨯⨯⨯-=+⨯-=- t π100cos 104.42-⨯-=V*上题中若线圈向右平动,而长导线中仍有交变电流,则线圈内感应电动势又为多大? 线圈在向右平动的同时,电流也在变化,则有=-=dt d Nφεy a y dt Ldi N +-ln 2/0πμ+)(20a y y vaiL N +πμ t π100cos 104.42-⨯-=+t π100sin 100.23-⨯I4、一无限长直导线通有电流I=I o e -3t ,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示。

大学物理复习题(包含小题答案)

大学物理复习题(包含小题答案)

一、 选择题1.已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t z ωβ=-, 则电场强度的方向____, 能流密度的方向为____。

( A )A. x ,zB. -x ,zC. x , -zD. -x , -z2.损耗媒质中的电磁波,其传播速度随媒质电导率σ的增大而 。

( B )A.不变B. 减小C. 增大D.和电导率无关3.如图所示两个载流线圈,所受的电流力使两线圈间的距离 。

( A )A.增大B.缩小C.不变D.和力无关4.在无损耗媒质中,电磁波的相速度与波的频率 。

( C )A .成正比B .成反比C .无关D .线性变化5.电位移表达式D E ε= ( C )A .在各种电介质中适用B .只在各向异性的电介质中适用C .只在各向同性的、线性的均匀的电介质中适用D .真空中适用6.恒定电流场基本方程的微分形式说明它是 ( B )A. 有散无旋场B.无散无旋场C.无散有旋场D.有散有旋场7.已知电场中一闭合面上的电移位 D 的通量不等于零,则意味着该面内 ( D )A .一定存在自由磁荷B .一定不存在自由电荷C .不能确定D .一定存在自由电荷8.下面表述正确的为 ( D )A .矢量场的散度结果为一矢量场B .标量场的梯度结果为一标量场C .矢量场的旋度结果为一标量场D .标量场的梯度结果为一矢量场9.电偶极子是_ __ ( A )A .两个相距很小的等量异号点电荷组成的系统B .两个相距很小的等量同号点电荷组成的系统C .两个相距很大的等量异号点电荷组成的系统D .两个相距很大的等量同号点电荷组成的系统10.亥姆霍兹定理表明,研究一个矢量场,必须研究它的 ,才能确定该矢量场的性质。

( A )A.散度和旋度B.散度和通量C.旋度和环量D.梯度和方向导数11.磁场强度表达式B H μ= ( C )A.在各种磁介质中适用B.只在各向异性的磁介质中适用C.只在各向同性的、线性的均匀的磁介质中适用D.真空中适用12.正弦电磁场 ( 角频率为ω ) 的磁场强度复矢量H 满足的亥姆霍兹方程为 ( A )A.22000H H ωεμ∇+=B.220r r H H ωεμ∇+=C.200r H H ωεμ∇+=D.200r H H ωεμ∇+=13.静电场中电位为零处的电场强度 ( C )A.一定为零B.最大C.不能确定D.最小14.标量场的梯度的方向为 ( B )A.等值面的切线方向B.等值面的法线方向C.标量增加的方向D.标量减小的方向15.下列关于电场(力)线表述正确的是 ( B )A.由正的自由电荷出发,终止于负的自由电荷B.由正电荷出发,终止于负电荷C.正电荷逆着电场线运动D.负电荷顺着电场线运动16.矢量场的散度在直角坐标下的表示形式为 ( A )A.y x z A A A x y z ∂∂∂++∂∂∂B.x y z Ax Ay Az e e e x y z∂∂∂++∂∂∂ C.x y z A A A e e e x y z ∂∂∂++∂∂∂ D.A A A x y z∂∂∂++∂∂∂ 17.已知自由空间一均匀平面波,其电场强度为0cos()x E e E t z ωβ=-, 则能流密度的方向____, 磁场强度的方向为____。

大学物理复习题(下)

大学物理复习题(下)

大学物理复习题(下册)第八章 振 动一.单项选择题1、一个轻质弹簧竖直悬挂,弹簧系数为k ,簧的下端悬挂一质量为m 的物体。

则此系统作简谐振动时振动的固有角频率为( )A .k m =ωB .k m =ωC .m k =ωD .mk =ω 2、一质点作简谐振动,其振动表达式为x=0.02cos(4)2t π+π(SI),则其周期和t=0.5s 时的相位分别为( )A .2s 2πB .2s π25C .0.5s 2πD .0.5s π25 3、一弹簧振子作简谐振动,初始时具有动能0.6J ,势能0.2J 。

1.5个周期后,弹簧振子振动的总能量E=( )A .0.2JB .0.4JC .0.6JD .0.8J4、简谐振动的运动方程为x=Acos (ωt+ϕ),相应的x 一t曲线如图所示,则其初相ϕ为( )A.2π-B.0C.2πD.π 5、质点作简谐振动,振动方程x=0.06cos(3πt-2π)(SI)。

质点在t=2s 时的相位为( ) A .61π B .31π C .21π D .65π 6、简谐振动的位移曲线x —t ,速度曲线V 一t ,加速度曲线a-t 在图中依次表示为( )A .曲线I 、II 、IIIB .曲线II 、I 、IIIC .曲线III 、II 、ID .曲线I 、III 、II7、两个同方向简谐振动的运动学方程分别为x 1=2×10-2cos ⎪⎭⎫ ⎝⎛π+3t 10(SI) x 2=2×10-2cos ⎪⎭⎫ ⎝⎛π-3t 10(SI) 则合振动的运动学方程为( )A .x=4×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) B .x=4×10-2cos10t(SI) C .x=2×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) D .x=2×10-2cos10t(SI) 8、一个单摆,其摆长为l ,悬挂物体的质量为m ,则该振动系统的周期为( )。

大学物理(下)期末复习题

大学物理(下)期末复习题

练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。

4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。

2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。

则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。

南京大学物理化学下册(第五版)复习题解答:最新整理

南京大学物理化学下册(第五版)复习题解答:最新整理

物理化学下册课后复习题答案第八章电解质溶液第九章可逆电池电动势及其应用第十章电解与极化作用第十一章化学动力学(一)第十二章化学动力学基础(二)第十三章1.比表面有哪能几种表示方法?表面张力与表面Gibbs自由能有哪些异同点?答:A0= As/m或A0= As/V;表面张力又可称为表面Gibbs自由能,二者数值一样。

但一个是从能量角度研究表面现象,另一个是从力的角度研究表面现象;故二者物理意义不同;单位不同。

2.为什么气泡、小液滴、肥皂泡等都呈圆形?玻璃管口加热后会变得光滑并缩小(俗称圆口),这些现象的本是什么?用同一滴管滴出相同体积的苯。

水和NaCl 溶液,所得的液滴数是否相同弯曲液面有附加压力,其最终会将不规则的液面变为圆形或球形;球形表面积最小,表面自由能最低,最稳定;不相同。

3.用学到的关于界面现角的知识解释以下几种做法或现象的基体原理:①人工降雨;②有机蒸馏中加沸石;③多孔固体吸附蒸气时的毛细凝聚;④过饱和溶液,过饱和蒸气,过冷液体等过饱和现象;⑤重量分析中的“陈化”过程;⑥喷洒农药时,为何常常在农药中加入少量表面活性剂这些现象都可以用开尔文公式说明,①、②、④、⑤是新相刚形面时的体积小,曲率半径小,对与之平衡的旧相有更加苛刻的条件要求。

③多孔固体吸附蒸气时,被吸附的气体的液相对毛细管是润湿的,其曲率半径小零,当气体的分压小于其饱和蒸气压时,就可以发生凝聚。

⑥喷洒农药时,在农药中加入少量表面活性剂,可以降低药液的表面张力,使药液在叶面上铺展。

4.在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡,然后关闭左端,在右端吹一个小泡,最后让左右两端相通。

试问当将两管接通后,两泡的大小有何变化?到何时达到平衡?讲出变化的原因及平衡时两泡的曲率半径的比值。

小球更小,大球更大;最后小泡变成一个与大泡曲率半径相同的弧;由于小泡的附加压力大,所以大泡变大,小泡变小,最后使两泡的曲率半径相同5.因系统的Gibbs自由能越低,系统越稳定,所以物体总有降低本身表面Giibs自由能的趋势。

大学物理下 复习题.doc

大学物理下 复习题.doc

又根据十得社討4x10-X0.15X10-To=0.6/jm【9-2】用白光入射到d=0.25 mm的双缝,距缝50 cm处放置屏幕,问观察到第一级明纹彩色带有多宽?第五级彩色带有多宽?分析:白光入射双缝产生的干涉条纹中央是白光,其余处出现彩色带,每个彩色带由同一级次不同波长的明纹依次排列而成。

第一级彩色带是指入射光中最小波长(取2min= 400nm)和最大波长(取入远=760run)的第一级明纹在屏上的间距。

要注意的是, 较高级次的彩色带会出现交错重叠,这种说法不严密。

解:双缝干涉明纹中心的位置x = k——d彩色带宽度心=丘如空—玄如亘=*卩乂d d d.. “川口八宀化A DA2 0.5x360x10—9所以,第一级明纹衫色甲觅度Ax = ---------- = --------------------- - ——=0.72mm「 d 0.25x10」“ 丁如口口八"々卅宀盘A7 DA2 5X0.5X360X10~9第五级明纹衫色带宽度= k --------- = -------------- -- = 3.6mmd 0.25x10-3【9-3】一双缝实验中两缝间距为0.15 mm,在1.0 m远处测得第1级和第10级的暗纹之间的距离为36 mm,求所用单色光的波长。

分析:双缝干涉在屏上形成的条纹是上下对称且等间距的。

如果设两暗纹间距为Ax ,r\Q则第1级和第10级的暗纹间距为9 Ax, «Ax = ——可求出光波长。

解:依题意9= 36mm ,则Ax = 4mm【9-21】用一束波长为2 = 632.8 nm的激光垂直照射一双缝,在缝后2.0 m处的墙上观察到中央明纹和第1级明纹的间隔为14 cm。

(1)求两缝的间距;(2)在中央条纹以上还能看到几条明纹?分析:在双缝干涉中,屏幕上各级明纹中心在通常可观测(&很小)范围内,近似为等间距分布,相邻明纹间距心=—可求得两两缝间距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由最大位移到二分之一最大位移处所需要的时间为 。
11. 两个同频率简谐交流电 i1(t)和 i2(t)的振动曲线如图所示,则位相差

12. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为:A=10 cm,

13. 一质量为 m 的质点在力
的作用下沿 x 轴运动(如图所示),其运动周期为
【C】
2. 一沿 X 轴作简谐振动的弹簧振子,振幅为 A,周期为 T,振动方程用余弦函数表示,如果该振子
的初相为 ,则 t=0 时,质点的位置在:
【D】
(A) 过
处,向负方向运动; (B) 过
处,向正方向运动;
Created by XCH
Page 1
1/7/2016
《大学物理习题集》(下册) 习题参考解答 共 75 页

17. 两个同方向同频率的简谐振动,振动表达式分别为:
的合振动的振幅为
,初位相为

,它们
18. 一质点同时参与了三个简谐振动,它们的振动方程分别为:
其合成运动的运动方程为

二、 计算题
1. 一物体沿 x 轴作简谐振动,振幅为 10.0cm,周期为 2.0 s。在 t=0 时坐标为 5.0cm,且向 x 轴 负方向运动,求在 x=-6.0cm 处,向 x 轴负方向运动时,物体的速度和加速度。
【A】
Created by XCH
Page 2
1/7/2016
《大学物理习题集》(下册) 习题参考解答 共 75 页
(C) 当振子为有阻尼振动时,位移振幅的极大值在固有频率处; (D) 共振不是受迫振动。
9. 下列几个方程,表示质点振动为“拍”现象的是:
【B】
10. 一质点作简谐振动,周期为 T,质点由平衡位置到二分之一最大位移处所需要的时间为 ;
《大学物理习题集》(下册) 习题参考解答 共 75 页
me=9.1×10-31kg R=8.31J/mol·k b=2.898×10-3m·k k=1.38×10-23J/K
单元一 简谐振动
e=1.6×10-19C
1atm=1.013×105Pa
NA=6.022×1023/mol
1atm=760mmhg
处走时准确,移到另一地点后每天快 10s,该地点的重力加速度为

16. 有两个弹簧,质量忽略不计,原长都是 10cm,第一个弹簧上端固定,下挂一个质量为 m 的物
体后,长 11cm,两第二个弹簧上端固定,下挂一质量为 m 的物体后,长 13cm,现将两弹簧串联,
上端固定,下面仍挂一质量为 m 的物体,则两弹簧的总长为
σ=5.67×10-8w/m2·k4
h=6.62×10-34J·S
c=3×108m/s
λC=2.426×10-12m
1) 试题总分为 100 分,光学部分 40%左右,热学部分 40%左右,近代物理基础部分 20% 左右。
2) 以下内容不作考试要求 光学部分: 第 16 章 几何光学基础; 第 17 章第 2 节分波面干涉中菲涅耳双面镜实验和洛埃镜实验;第 5 节 光波的空间 相干性和时间相干性; 第 18 章第 2 节中振幅矢量法推导光强公式;第 3 节中多缝夫琅和费衍射的光强分布; 第 4 节中光栅的色散、分辨本领;第 7 节 全息照相 及第 8 节光学信息处理; 第 19 章 第 4 节至第 8 节
(a)、(b)、(c)三个振动系统的 (为固有圆频率)值之比为:
【B】
(A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2
5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上
如置可作简谐振动,放在光滑斜面上不能作简谐振动;

14. 试在图中画出谐振子的动能,振动势能和机械能随时间而变的三条曲线。(设 t=0 时物体经过平
衡位置)
Created by XCH
Page 3
1/7/2016
《大学物理习题集》(下册) 习题参考解答 共 75 页
15. 当重力加速度 g 改变 dg 时,单摆周期 T 的变化
,一只摆钟,在 g=9.80 m/s2
(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动;
(C) 两种情况都可作简谐振动;
(D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为 A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为:
【C】
7. 如果外力按简谐振动的规律变化,但不等于振子的固有频率。那么,关于受迫振动,下列说法正
近代物理基础: 第 24 章 3.3 节;第 25 章第 3 节至第 6 节;第 26 章至第 28 章
一、 选择、填空题
1. 对一个作简谐振动的物体,下面哪种说法是正确的?
(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。
确的是:
【B】
(A) 在稳定状态下,受迫振动的频率等于固有频率;
(B) 在稳定状态下,受迫振动的频率等于外力的频率;
(C) 在稳定状态下,受迫振动的振幅与固有频率无关;
(D) 在稳定状态下,外力所作的功大于阻尼损耗的功。
8. 关于共振,下列说法正确的是:
(A) 当振子为无阻尼自由振子时,共振的速度振幅为无限大; (B) 当振子为无阻尼自由振子时,共振的速度振幅很大,但不会无限大;
(C) 过
处,向负方向运动;(D) 过
处,向正方向运动。
3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度,然后由静止释放任其振动,从放手
开始计时,若用余弦函数表示运动方程,则该单摆的初相为:
【B】
(A) ;
(B) 0;
(C)/2;
(D) -
4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,
热学部分: 第 20 章第 8 节速度分布律 玻尔兹曼分布律;第 10 节范德瓦尔斯方程;第 11 节气 体的输运现象及其宏观规律;20.9 在考试范围内(平均自由程) 第 21 章第 2 节中固体的热容;第 4 节理想气体的绝热过程中,绝热过程的功的计算; 节流过程; 第 22 章第 3 节两种表述一致性证明、第 7 节不可逆过程中的熵增 熵增加原理;第 8 节 热力学第二定律的统计意义
相关文档
最新文档