闵行区2017学年第一学期期末考试八年级数学试卷
2017-2018学年八年级数学上学期期末考试卷(考试版,附参考答案)
数学试题 第1页(共10页) 数学试题 第2页(共10页)绝密八年级数学(考试时间:120分钟 试卷满分:120分)一、选择题(本大题共15小题,每小题3分,共45分.) 1.数字0.0000036用科学记数法表示为 ( ) A .53.610-⨯B .63.610-⨯C .63610-⨯D .50.3610-⨯2.下列分解因式正确的是 ( ) A .3(1)(1)m m m m m -=-+ B .26(1)6x x x x --=-- C .22(2)a ab a a a b ++=+D .222()x y x y -=-3.下列长度的三条线段能组成三角形的是 ( ) A .1.5 cm ,2 cm ,2.5 cm B .2 cm ,5 cm ,8 cm C .1 cm ,3 cm ,4 cmD .5 cm ,3 cm ,1 cm4.若正多边形的一个外角是40°,则这个正多边形是 ( ) A .正七边形B .正八边形C .正九边形D .正十边形5.若分式2424x x --的值为零,则x 等于 ( )A .2B .2-C .2±D .06.如图,△ABC ≌△DEF ,DF 和AC ,FE 和CB 是对应边,若∠A =100°,∠F =47°,则∠DEF 等于 ( ) A .100°B .53°C .47°D .33°6图 7图 8图7.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SASB .SSSC .AASD .ASA8.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是 ( ) A .BC EC =,B E ∠=∠B .A D ∠=∠,AC DC = C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠9.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交费,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+ 10.如图,∥AB CD ,∥AD BC ,AC 与BD 交于点O ,AE BD ⊥于E ,CF BD ⊥于F ,那么图中全等的三角形有 ( )A .5对B .6对C .7对D .8对10图 11图 12图11.如图,锐角三角形ABC 中,直线l 为BC 的垂直平分线,BM 为∠ABC 的角平分线,l 与BM 相交于P点.若∠A =60°,∠ACP =24°,则∠ABP 的度数为 ( ) A .24°B .30°C .32°D .36°12.如图,在△ABC 中,65CAB ∠=︒,在同一平面内,将△ABC绕点A逆时针旋转到△AB C''的位置,使得C C '∥AB ,则B AB ∠'等于 ( )A .50︒B .60︒C .65︒D .70︒13.“十一”期间,几名同学包租一辆面包车前去某景区旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 ( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=-D .18018032x x -=+ 14.如果分式方程11x mx x =++无解,则m 的值为 ( ) A .-2B .-1C .0D .115.如图△ABC 与△CDE 都是等边三角形,且∠EBD =65°,则∠AEB 的度数是 ( )A .115°B .120°C .125°D .130°数学试题 第3页(共10页) 数学试题 第4页(共10页)二、填空题(本大题共6小题,每小题3分,共18分) 16.计算:22224a b ab c c÷=__________.17.点P (-4,-3)关于x 轴对称的点的坐标是__________. 18.已知35x =,98y =,则23x y -=__________.19.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为__________°.20.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,若BC =5 cm ,则BD +DE =__________.21.如图,点O 为线段AB 上的任意一点(不与A ,B 重合),分别以AO ,BO 为一腰在AB 的同侧作等腰△AOC 和等腰△BOD ,OA =OC ,OB =OD ,∠AOC 与∠BOD 都是锐角,且∠AOC =∠BOD ,AD 与BC 相交于点P ,∠COD =110°,则∠APB =__________°.三、解答题(本大题共7小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)计算与求值:(1)计算:22(2)(2)a a b a b ---;(2)运用乘法公式计算:2201720152019-⨯.23.(本小题满分7分)先化简,再求值:(1)2[(2)(2)(2)8]4x y x y x y xy x -+-++÷,其中142x y =-=;(2)22213÷(1)11x x x x -+--+,其中x =0. 24.(本小题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答下列问题:(1)分别写出点A ,B 两点的坐标;(2)作出△ABC 关于y 轴对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移2个单位长度得到△A 2B 2C 2,写出 点A 2,B 2,C2三点的坐标; (3)请求出△A 2B 2C 2的面积.25.(本小题满分8分)果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.(本小题满分9分)如图,AD 为△ABC 的高,BE 为△ABC 的角平分线,若∠EBA =34°,∠AEB =72°.(1)求∠CAD 和∠BAD 的度数;(2)若点F 为线段BC 上任意一点,当△EFC 为直角三角形时,试求∠BEF 的度数.27.(本小题满分9分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.28.(本小题满分9分)在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上时,若∠BAC =90°,则∠BCE =__________°; (2)设∠BAC =α,∠BCE =β.数学试题 第5页(共10页) 数学试题 第6页(共10页)①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.数学试题第7页(共10页)数学试题第8页(共10页)数学试题 第9页(共10页) 数学试题 第10页(共10页)。
2017-2018学年八年级下期末数学试卷及答案
2017-2018学年八年级下期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.在实数范围内有意义,则x应满足的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣12.关于x的一元一次方程的根是()A.B.C.D.3.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD=5,则AB=()A.9 B.10 C.11 D.124.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形5.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A.5 B.10 C.12 D.136.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.AC=BD,AB∥CD B.AD∥BC,∠A=∠CC.OA=OB=OC=OD,AC⊥BD D.OA=OC,OB=OD,AB=BC7.如图,在△ABC中,DE∥CA,DF∥BA,下列判断中不正确的是()A.四边形AEDF是平行四边形B.如果AD⊥BC,那么四边形AEDF是正方形C.如果∠BAC=90°,那么四边形AEDF是矩形D.如果AD平分∠BAC,那么四边形AEDF是菱形8.如图,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=()A.3 B.4 C.5 D.69.某运动鞋生产厂家在街头随机调查男生的鞋号,并得到一组数据,他们最关注这数据中的()A.平均数B.众数C.中位数D.方差10.已知直线y=kx+b,若kb=﹣2015,那该直线一定经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、四象限11.某种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格打折,因此付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如果所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是()A.0 B.1 C.2 D.312.如图,在四边形ABCD中,∠C=45°,DE⊥BC于点E,若CE=4,四边形ABED为正方形,则四边形ABED的面积为()A.24 B.8C.36 D.48二.填空题(共4小题,满分12分,每小题3分)13.使得等式==成立的x的取值范围是.14.已知+(y+5)2=0,则(x+y)2012=.15.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是.16.一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是18,那么另一条直角边的长有种可能,它的最大值是.三.解答题(共10小题,满分102分)17.(6分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.18.(8分)计算:(1)(2)已知,,求x2+y2的值.19.(10分)如图,点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,四边形BCGF和CDHN都是正方形,求证:△FMH是等腰直角三角形.20.(10分)如图,同底边BC的△ABC与△DBC中,E、F、G、H分别是AB、AC、DB、DC的中点,求证:EH与FG互相平分.21.(10分)甲、乙两车分别从P、Q两地同时同向运动.它们的图象分别如图(a)、(b)所示.两者经过6s相遇,求:(1)甲、乙两车的速度哪个大?(2)P、Q两地的距离是多大.22.(10分)为了从甲、乙两名同学中选拔一个射击比赛,对他们的射击水平进行了测验,两个在相同条件下各射击5次,命中的环数如下:(单位:环)甲:6,8,9,9,8;乙:10,7,7,7,9.(1)求,,s甲2,s乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?(还记得方差公式吗?)23.(10分)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简: +++…++.24.(12分)说出直线y=3x+2与y=x+2的相同之处,y=5x﹣1与y=5x﹣4的位置关系.25.(12分)如图,△ABC是一张直角三角形纸片,其中∠C=90°,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN.(1)求DC的长;(2)求AM的长.26.(14分)如图在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60度角,角的两边分别交AB、AC于E、F两点.连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.在实数范围内有意义,则x应满足的条件是()A.x>1 B.x≥1 C.x>﹣1 D.x≥﹣1【分析】根据二次根式有意义,被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故选D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.关于x的一元一次方程的根是()A.B.C.D.【分析】把四个选项分别代入一元一次方程,从而选出正确的选项.【解答】解:A,把﹣代入一元一次方程,不符合题意,故错误.B,把﹣代入一元一次方程,符合题意,而原方程只有一个解,故正确.C,把代入方程,不符合题意,故错误.D,把代入方程,验证不符合题意,故错误.故答案选B.【点评】本题考查了二次根式的混合运算和解一元一次方程,难度不大,主要掌握二次根式的运算法则.3.在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D,若DC=3,BC=6,AD=5,则AB=()A.9 B.10 C.11 D.12【分析】由AD+DC=AC,把AD及DC的长代入可得出AC的长,又∠C=90°,可得三角形ABC为直角三角形,由AC及BC的长利用勾股定理即可求出AB 的长.【解答】解:∵DC=3,AD=5,∴AC=AD+DC=5+3=8,在Rt△ABC中,∠C=90°,AC=8,BC=6,根据勾股定理得:AB2=AC2+BC2=82+62=100,则AB=10.故选B【点评】此题考查了勾股定理的运用,勾股定理为:在直角三角形中两直角边的平方和等于斜边的平方,熟练掌握勾股定理是解本题的关键.4.在△ABC中,AB=6,AC=8,BC=10,则该三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A.5 B.10 C.12 D.13【分析】根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.【点评】本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB 是等边三角形是解题的关键.6.在四边形ABCD中,点O是对角线的交点,在下列条件中,能判定这个四边形为正方形的是()A.AC=BD,AB∥CD B.AD∥BC,∠A=∠CC.OA=OB=OC=OD,AC⊥BD D.OA=OC,OB=OD,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【解答】解:A、一组对边平行,对角线相等可能是等腰梯形,故本选项错误;B、一组对边平行,一组对角相等的四边形可能是矩形,故本选项错误;C、对角线互相垂直平分且相等的四边形是正方形,故本选项正确;D、对角线互相平分,邻边相等的四边形有可能是菱形.故本选项错误;故选:C.【点评】本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.7.如图,在△ABC中,DE∥CA,DF∥BA,下列判断中不正确的是()A.四边形AEDF是平行四边形B.如果AD⊥BC,那么四边形AEDF是正方形C.如果∠BAC=90°,那么四边形AEDF是矩形D.如果AD平分∠BAC,那么四边形AEDF是菱形【分析】两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.【解答】解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故本选项正确.B、如果AD⊥BC时,∠EDF不一定是直角,且ED不一定等于DF,所以不能判定平行四边形AEDF是正方形.故本选项错误;C、平行四边形AEDF的一内角∠BAC=90°,所以平行四边形AEDF是矩形.故本选项正确.D、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以平行四边形AEDF是菱形.故本选项正确.故选B.【点评】本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.8.如图,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=()A.3 B.4 C.5 D.6【分析】先根据图形翻折变换的性质得出△ADE≌△AFE,进而可知AD=AF=BC=10cm,DE=EF,在Rt△ABF中利用勾股定理求出BF的长,进而可得出CF的长,设CE=x,在Rt△CEF中利用勾股定理即可求出x的值.【解答】解:∵△AFE是Rt△ADE翻折而成,∴△ADE≌△AFE,∴AD=AF=BC=10cm,DE=EF,在Rt△ABF中,BF===6cm,∴CF=BC﹣BF=10﹣6=4cm,设CE=x,则EF=8﹣x,在Rt△CEF中,EF2=CE2+CF2,即(8﹣x)2=x2+42,解得x=3cm.故选A.【点评】本题考查的是翻折变换的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的性质是解答此题的关键.9.某运动鞋生产厂家在街头随机调查男生的鞋号,并得到一组数据,他们最关注这数据中的()A.平均数B.众数C.中位数D.方差【分析】根据众数的定义即:一组数据中出现次数最多的数据叫做众数,直接解答即可.【解答】解:根据题意得:他们最关注这数据中的众数;故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.10.已知直线y=kx+b,若kb=﹣2015,那该直线一定经过的象限是()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、四象限【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【解答】解:∵kb<0,∴k、b异号.①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限.故选:D.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过第一、三象限;k<0时,直线必经过第二、四象限.b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.某种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格打折,因此付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如果所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是()A.0 B.1 C.2 D.3【分析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.【解答】解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150﹣50)÷(50﹣10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30﹣10)=100元,正确;③由于一次购买40千克种子需要:50+2.5×(40﹣10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20﹣10)]=150元,而150﹣125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.【点评】本题主要考查了一次函数的应用,难度适中,解决本题的关键是认真观察图象,求出一次购买种子数量不超过10千克时的销售单价及超过10千克以后,超过的那部分种子的单价.12.如图,在四边形ABCD中,∠C=45°,DE⊥BC于点E,若CE=4,四边形ABED为正方形,则四边形ABED的面积为()A.24 B.8C.36 D.48【分析】由已知条件易证△DEC是等腰直角三角形,所以DE=CE,进而可求出四边形ABED的面积.【解答】解:∵四边形ABED为正方形,∴∠DEB=90°,∴∠DEC=90°,∵∠C=45°,∴∠EDC=45°,∴DE=CE=4,∴四边形ABED的面积=4×4=48.故选D.【点评】本题考查了正方形的性质、等腰直角三角形的判定和性质以及正方形面积公式的运用,求出正方形的边长是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.使得等式==成立的x的取值范围是x≥﹣1.【分析】根据负数没有平方根及分母不为0,即可求出x的范围.【解答】解:根据题意,得,解得:,则使得等式==成立的x的取值范围是x≥﹣1.故答案为:x≥﹣1.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.14.已知+(y+5)2=0,则(x+y)2012=1.【分析】直接利用算术平方根的定义以及偶次方的性质得出x,y的值进而代入求出即可.【解答】解:∵ +(y+5)2=0,∴x﹣4=0,y+5=0,解得:x=4,y=﹣5,则(x+y)2012=(4﹣5)2012=1.故答案为:1.【点评】此题主要考查了算术平方根的定义以及偶次方的性质,得出x,y的值是解题关键.15.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是12米.【分析】由题意可知消防车的云梯长、地面、建筑物高构成一直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出高度.【解答】解:如图所示,AB=13米,BC=5米,由勾股定理可得,AC===12米.故答案为:12米.【点评】此题考查了勾股定理的应用,要求学生善于利用题目信息构成直角三角形,从而运用勾股定理解题.16.一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是18,那么另一条直角边的长有2种可能,它的最大值是80.【分析】一条直角边长为18,则另一条直角边长可能有两种情况,边长为24或者80.最大值为80.【解答】解:设另一直角边长和斜边长分别是Z,X,显然X>Z>0根据直角三角形的边长关系有:182=X2﹣Z2即:182=(X+Z)(X﹣Z)式中X+Z 和X﹣Z 分别是大于零的整数,再来看看182=324这个数的因数:1,2,3,4,6,9,18,36,54,81,108,162,324.由324=(X+Z)(X﹣Z)X﹣Z 和X+Z 这两个数必定取这些因数中的偶数.故X﹣Z=2,X+Z=162,解这个联立方程,得2X=164,X=82,Z=80.X﹣Z=6,X+Z=54,解这个联立方程,得2X=60,X=30,Z=24.所以,共有2个整数解:X=82,Z=80X=30,Z=24所以,另一条直角边的长度只有( 2 )种可能,其中最大值是(80 ).故答案为:2,80.【点评】本题考查了在直角三角形中勾股定理的运用,本题中计算也是整数是解题的关键.三.解答题(共10小题,满分102分)17.(6分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣1)2+()﹣1(2)解不等式:x﹣1≤x﹣.【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:(1)原式=3﹣2+1﹣1+2=3;(2)去分母得:3x﹣6≤4x﹣3,解得:x≥﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)计算:(1)(2)已知,,求x2+y2的值.【分析】(1)求出每一部分的值,代入求出即可;(2)求出xy的值,求出x+y,xy的值,代入x2+y2=(x+y)2﹣2xy求出即可.【解答】解:(1)原式=1+2+﹣5﹣2=3+3﹣5﹣2=﹣2+.(2)x===7﹣4,y==7+4,x+y=7﹣4+7+4=14,xy=(7﹣4)×(7+4)=1,∴x2+y2=(x+y)2﹣2xy=142﹣2×1=194.【点评】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,绝对值的应用,主要考查学生计算能力.19.(10分)如图,点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,四边形BCGF和CDHN都是正方形,求证:△FMH是等腰直角三角形.【分析】BM、DM,如图,FM交AC于P,先利用三角形中位线性质得到BM ∥CE,BM=DE=CD,DM∥BC,DM=AB=CB,则可判断四边形BMDC为平行四边形,利用平行四边形的性质得∠CBM=∠CDM,接着证明∠FBM=∠HDM,MD=BF,DH=BM,于是可判断△BMF≌△DHM,所以MF=MH,∠MFB=∠HMD,然后证明∠FMH=∠FBC=90°,从而得到△FMH是等腰直角三角形.【解答】证明:BM、DM,如图,FM交AC于P,∵点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,∴BM∥CE,BM=DE=CD,DM∥BC,DM=AB=CB,∴四边形BMDC为平行四边形,∴∠CBM=∠CDM,∵∠FBM=∠FBC+∠CBM,∠HDM=∠HDC+∠CDM,∴∠FBM=∠HDM,∵四边形BCGF和CDHN都是正方形,∴BC=BF,DH=CD,∴MD=BF,DH=BM,在△BMF和△DHM中,∴△BMF≌△DHM,∴MF=MH,∠MFB=∠HMD,∵BC∥MD,∴∠BPM=∠PMD,而∠BPM=∠PFB+∠FBP,∠PMD=∠PMH+∠HMD,∴∠FMH=∠FBC=90°,∴△FMH是等腰直角三角形.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了三角形中位线的性质和全等三角形的判定与性质.解决问题的关键是构建△BMF与△DHM全等.20.(10分)如图,同底边BC的△ABC与△DBC中,E、F、G、H分别是AB、AC、DB、DC的中点,求证:EH与FG互相平分.【分析】要证明EF和GH互相平分,只需构造一个平行四边形,运用平行四边形的性质:平行四边形的对角线互相平分即可证明.【解答】证明:连接EG、GF、FH、HE,∵点E、F、G、H分别是AB、CD、AC、BD的中点,∴EF、GH分别是△ABC与△DBC的中位线,∴EF BC,GH BC,∴EF GH.∴四边形EGFH为平行四边形.∴EF与GH互相平分.【点评】本题考查的是综合运用平行四边形的性质和判定定理.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.21.(10分)甲、乙两车分别从P、Q两地同时同向运动.它们的图象分别如图(a)、(b)所示.两者经过6s相遇,求:(1)甲、乙两车的速度哪个大?(2)P、Q两地的距离是多大.【分析】(1)根据函数图象可以求得甲乙两车的速度,从而可以解答本题;(2)根据(1)中甲乙两车的速度,可以求得P、Q两地的距离.【解答】解:(1)由图象可得,甲车的速度为:8÷12=m/s,乙车的速度为:6÷12=0.5m/s,∵,∴甲车的速度大;(2)由题意可得,PQ==4﹣3=1(米),即P、Q两地的距离是1米.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想和函数的思想解答.22.(10分)为了从甲、乙两名同学中选拔一个射击比赛,对他们的射击水平进行了测验,两个在相同条件下各射击5次,命中的环数如下:(单位:环)甲:6,8,9,9,8;乙:10,7,7,7,9.(1)求,,s甲2,s乙2;(2)你认为该选拔哪名同学参加射击比赛?为什么?(还记得方差公式吗?)【分析】根据平均数和方差的公式计算后,再根据方差的意义选择.【解答】解:(1)甲=(6+8+9+9+8)÷5=8,乙=(10+7+7+7+9)=8,s甲2= [(6﹣8)2+(8﹣6)2+(9﹣8)2+(9﹣8)2+(8﹣8)2]=1.2,s乙2= [(10﹣8)2+(7﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2]=1.6;(2)选甲同学参加射击比赛.∵甲=乙,s甲2=<s乙2,∴甲射击成绩比乙的稳定,应该选择甲去.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(10分)阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简: +++…++.【分析】(1)观察上面解题过程,得出原式的结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式利用各种分母有理化,计算即可得到结果.【解答】解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9.【点评】此题考查了分母有理化,弄清题中分母有理化法则是解本题的关键.24.(12分)说出直线y=3x+2与y=x+2的相同之处,y=5x﹣1与y=5x﹣4的位置关系.【分析】易得直线y=3x+2和直线y=x+2与y轴的交点相同,利用直线y=5x﹣1与直线y=5x﹣4的一次项系数相同,常数项不相等可判定它们平行.【解答】解:直线y=3x+2与直线y=x+2都经过点(0,2);直线y=5x﹣1与直线y=5x﹣4平行.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.25.(12分)如图,△ABC是一张直角三角形纸片,其中∠C=90°,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN.(1)求DC的长;(2)求AM的长.【分析】(1)根据中点的定义可求得DC的长;(2)在Rt△ACB中,由勾股定理求得求得AC的长,设AM的长为xcm,则CM=6﹣x,由翻折的性质可知AM=MD=x,最后利用勾股定理列方程求解即可.【解答】解:(1)∵D是BC的中点,BC=8cm,∴DC=4cm.(2)在△ABC中,∠C=90°,∴AC2+BC2=AB2.∴82+AC2=102.解得:AC=6.设AM的长为xcm,则CM=6﹣x,由翻折的性质可知AM=MD=x.在Rt△MCD中,由勾股定理得:CM2+DC2=DM2,解得:(6﹣x)2+42=x2,解得;x=.∴AM=.【点评】本题主要考查的是翻折的性质、勾股定理的应用,利用翻折的性质和勾股定理列出关于x的方程是解题的关键.26.(14分)如图在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60度角,角的两边分别交AB、AC于E、F两点.连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.【分析】把△DCF绕点D逆时针旋转120°得到△DBG,根据旋转的性质可得∠1=∠3,∠4=∠C,DG=DF,BG=CF,然后求出∠EDG=∠EDF=60°,再根据∠B+∠C=180°求出点E、B、G共线,然后利用“边角边”证明△EDG和△EDF全等,根据全等三角形对应边相等可得EF=EG,然后整理即可得解.【解答】解:BE+CF=EF.证明如下:如图,把△DCF绕点D逆时针旋转120°得到△DBG,则∠1=∠3,∠4=∠C,DG=DF,BG=CF,∵∠BDC=120°,∠EDF=60°,∴∠1+∠2=120°﹣60°=60°,∴∠3+∠2=60°,即∠EDG=60°,∴∠EDG=∠EDF,∵∠B+∠C=180°,∴∠B+∠4=180°,∴点E、B、G共线,在△EDG和△EDF中,,∴△EDG≌△EDF(SAS),∴EF=EG,∵EG=BE+BG=BE+CF,∴BE+CF=EF.【点评】本题考查了旋转的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键,需要注意,一定要证明点E、B、G三点共线,这也是本题容易忽视而导致出错的地方.。
XXX版2017-2018学年度八年级上学期数学期末试题及答案
XXX版2017-2018学年度八年级上学期数学期末试题及答案2017-2018学年第一学期八年级期末数学试题本试题共4页,满分120分,考试时间90分钟。
请考生在答题卡上填写姓名、座号和准考证号,并在试题规定位置填写考点、姓名、准考证号和座号。
考试结束后,仅交回答题卡。
一、选择题(共15题,每题3分,共45分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.下列实数中是无理数的是()A。
0.38.B。
π。
C。
4.D。
-22/72.以下各组数为三角形的边长,能构成直角三角形的是()A。
8,12,17.B。
1,2,3.C。
6,8,10.D。
5,12,93.在平面直角坐标系中,点P(-2,3)关于x轴的对称点在()A。
第四象限。
B。
第三象限。
C。
第二象限。
D。
第一象限4.等腰三角形一边长等于5,一边长等于9,则它的周长是()A。
14.B。
23.C。
19.D。
19或235.每年的4月23日是“世界读书日”。
某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:册数。
人数3.11.132.163.174.1则这50名学生读书册数的众数、中位数是()A。
3,3.B。
3,2.C。
2,3.D。
2,26.一次函数y=kx+b,y随x增大而增大,且b>0,则该函数的大致图象为()A。
三边垂直平分线的交点。
B。
三条中线的交点C。
三条高的交点。
D。
三条角平分线的交点7.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()8.关于函数y=-2x+1,下列结论正确的是()A。
图象必经过(-2,1)。
B。
y随x的增大而增大C。
图象经过第一、二、三象限。
D。
当x>1/2时,y<09.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()10.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果。
下面的调查数据中,他最关注的是()A。
八年级上册数学期末试卷带答案2017
八年级上册数学期末试卷带答案2017八年级数学期末考试将近,这时候一定要努力复习才能拿高分哦。
店铺为大家整理了2017八年级上册数学期末试卷及答案,欢迎大家阅读!2017八年级上册数学期末试卷一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为边长,能组成直角三角形的是( )A. ,,B.6,8,10C.5,12,17D.9,40,422.在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.1个B.2个C.3个D.4个3.下列计算正确的是( )A. =2B. • =C. ﹣ =D. =﹣34.已知 +(b﹣1)2=0,则(a+b)2015的值是( )A.﹣1B.1C.2015D.﹣20155.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )A.(0,﹣2)B.(﹣2,0)C.(4,0)D.(0,﹣4)6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1A.y1>y2B.y1>y2>0C.y17.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是( )A. B.﹣ C. D.﹣8.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( )A. B. 或 C. 或 D. 或9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数D.加权平均数10.已知一次函数y=kx+b,y随着x的增大而增大,且kb>0,则在直角坐标系内它的大致图象是( )A. B. C. D.二、填空题(共10小题,每小题2分,满分20分)11. =a, =b,则 = .12.一组数据5,7,7,x的中位数与平均数相等,则x的值为.13. ﹣3 + = .14.已知m是的整数部分,n是的小数部分,则m2﹣n2= .15.若x、y都是实数,且y= ,x+y= .16.已知xm﹣1+2yn+1=0是二元一次方程,则m= ,n= .17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= ,b= .18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是.19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于.20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED=度.三、解答题(共7小题,满分50分)21.(1)计算:(2)解下列方程组: .22.m为正整数,已知二元一次方程组有整数解,求m的值.23.如图:24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;(3)图中交点的实际意义是什么?25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.26.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:次数选手甲的成绩(环) 选手乙的成绩(环)1 9.6 9.52 9.7 9.93 10.5 10.34 10.0 9.75 9.7 10.56 9.9 10.37 10.0 10.08 10.6 9.8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.八年级上册数学期末试卷2017参考答案一、选择题(共10小题,每小题3分,满分30分)1.以下列各组数为边长,能组成直角三角形的是( )A. ,,B.6,8,10C.5,12,17D.9,40,42【考点】勾股定理的逆定理.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、( )2+( )2≠( )2,不是直角三角形,故此选项错误;B、62+82=102,是直角三角形,故此选项正确;C、122+52≠172,不是直角三角形,故此选项错误;D、92+402≠422,不是直角三角形,故此选项错误.故选:B.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数是无限不循环小数,由此即可判定无理数的个数.【解答】解:在(﹣ )0,,0,,0.010010001…,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有0.010010001…,两个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列计算正确的是( )A. =2B. • =C. ﹣ =D. =﹣3【考点】二次根式的混合运算.【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.【解答】解:A、 =2 ,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、﹣ =2﹣,故C错误;D、 =|﹣3|=3,故D错误.故选:B.【点评】此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质: =|a|.4.已知 +(b﹣1)2=0,则(a+b)2015的值是( )A.﹣1B.1C.2015D.﹣2015【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,所以,(a+b)2015=(﹣2+1)2015=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )A.(0,﹣2)B.(﹣2,0)C.(4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点的横坐标等于零,可得关于m的方程,根据解方程,可得m的值,根据m的值,可得点的坐标.【解答】解:点P(m+3,m+1)在y轴上,得m+3=0.解得m=﹣3,m+1=﹣2,点P的坐标是(0,﹣2),故选:A.【点评】本题考查了点的坐标,利用y轴上点的横坐标等于零得出关于m的方程是解题关键.6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1A.y1>y2B.y1>y2>0C.y1【考点】一次函数图象上点的坐标特征.【分析】由一次函数y=﹣2x﹣4可知,k=﹣2<0,y随x的增大而减小.【解答】解:由y=﹣2x﹣4可知,k=﹣2<0,y随x的增大而减小,又∵x1∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数y=kx+b(k≠0)中,当k<0时y随x的增大而减小是解答此题的关键.7.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是( )A. B.﹣ C. D.﹣【考点】二元一次方程组的解;二元一次方程的解.【专题】计算题.【分析】将a看做已知数,求出方程组的解得到x与y,代入方程中计算即可求出a的值.【解答】解:依题意知,,由①+②得x=6a,把x=6a代入①得y=﹣3a,把代入2x﹣3y+12=0得2×6a﹣3(﹣3a)+12=0,解得:a=﹣ .故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为( )A. B. 或 C. 或 D. 或【考点】坐标与图形性质;待定系数法求一次函数解析式.【专题】计算题.【分析】求出直线解析式后再求与坐标轴交点坐标,进一步求解.【解答】解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:× ×1= ;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:× ×1= .故选C.【点评】主要考查了待定系数法求一次函数的解析式和三角形面积公式的运用,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理和面积公式求解.9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数D.加权平均数【考点】统计量的选择.【分析】根据平均数、中位数、众数、方差的意义进行分析选择.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.已知一次函数y=kx+b,y随着x的增大而增大,且kb>0,则在直角坐标系内它的大致图象是( )A. B. C. D.【考点】一次函数图象与系数的关系.【分析】首先根据反比例函数的增减性确定k的符号,然后根据kb>0确定b的符号,从而根据一次函数的性质确定其图形的位置即可.【解答】解:∵一次函数y=kx+b,y随着x的增大而增大,∴k>0.∵kb>0,∴b>0,∴此函数图象经过一、二、三象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限是解答此题的关键.二、填空题(共10小题,每小题2分,满分20分)11. =a, =b,则 = 0.1b .【考点】算术平方根.【专题】计算题;实数.【分析】根据题意,利用算术平方根定义表示出所求式子即可.【解答】解:∵ =b,∴ = = = =0.1b.故答案为:0.1b.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.一组数据5,7,7,x的中位数与平均数相等,则x的值为5或9 .【考点】中位数;算术平均数.【专题】分类讨论.【分析】根据平均数与中位数的定义就可以解决.中位数可能是7或6.【解答】解:当x≥7时,中位数与平均数相等,则得到:(7+7+5+x)=7,解得x=9;当x≤5时: (7+7+5+x)=6,解得:x=5;当5所以x的值为5或9.故填5或9.【点评】本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.同时运用分类讨论的思想解决问题.13. ﹣3 + = 3 .【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=4 ﹣ +=(4﹣ +1)=3 .故答案为:3 .【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.已知m是的整数部分,n是的小数部分,则m2﹣n2= 6 ﹣10 .【考点】估算无理数的大小.【分析】由于3< <4,由此找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的整数部分,小数部分让原数减去整数部分,代入求值即可.【解答】解:∵3< <4,则m=3;又因为3< <4,故n= ﹣3;则m2﹣n2=6 ﹣10.故答案为:6 ﹣10.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.估算出整数部分后,小数部分=原数﹣整数部分.15.若x、y都是实数,且y= ,x+y= 11 .【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式求出x、y的值,代入代数式计算即可.【解答】解:由题意得,x﹣3≥0,3﹣x≥0,解得,x=3,则y=8,∴x+y=11,故答案为:11.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.16.已知xm﹣1+2yn+1=0是二元一次方程,则m= 2 ,n= 0 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的次数方面考虑,求常数m、n的值.【解答】解:根据二元一次方程两个未知数的次数为1,得,解得m=2,n=0.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= 1 ,b= 1 .【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入已知等式得到关于k与b的方程组,求出方程组的解即可得到k与b的值.【解答】解:把x=0,y=1;x=1,y=2代入得:,解得:k=b=1,故答案为:1;1【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是.【考点】列代数式.【分析】设水流的速度是x千米/时,根据静水的速度=顺流速度﹣水流的速度,静水的速度=逆流速度+水流的速度,列式计算即可.【解答】解:设水流的速度是x千米/时,根据题意得:m﹣x=n+x,解得:x= ,答:水流的速度是千米/时.故答案为: .【点评】此题考查了列代数式;用到的知识点为:逆水速度=静水速度﹣水流速度;顺水速度=静水速度+水流速度.19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于62°.【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形的内角和定理求出∠A,再根据两直线平行,同位角相等可得∠DEC=∠A,从而得解.【解答】解:∵∠B=55°,∠C=63°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣63°=62°,∵DE∥AB,∴∠DEC=∠A=62°.故答案为:62°.【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED=78 度.【考点】平行线的性质.【专题】计算题;压轴题.【分析】首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出.【解答】解:过点E作直线EF∥AB,∵AB∥CD,∴EF∥CD,∵AB∥EF,∴∠1=180°﹣∠ABE=180°﹣130°=50°;∵EF∥CD,∴∠2=180°﹣∠CDE=180°﹣152°=28°;∴∠BED=∠1+∠2=50°+28°=78°.故填78.【点评】解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∠BED的度数.三、解答题(共7小题,满分50分)21.(1)计算:(2)解下列方程组: .【考点】二次根式的加减法;解二元一次方程组.【分析】(1)首先化简二次根式,进而合并同类二次根式即可;(2)利用代入消元法解方程组得出答案.【解答】解:(1)= +2 ﹣10=﹣ ;(2)整理得:,由②得,y=9﹣4x,代入3x+4y=10,故3x+4(9﹣4x)=10,解得:x=2,故y=1,故方程组的解集为: .【点评】此题主要考查了二次根式的加减以及二元一次方程组的解法,正确化简二次根式是解题关键.22.m为正整数,已知二元一次方程组有整数解,求m的值.【考点】二元一次方程组的解.【专题】计算题.【分析】利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.【解答】解:关于x、y的方程组:,①+②得:(3+m)x=10,即x= ③,把③代入②得:y= ④,∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2.故m的值为2.【点评】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.23.如图:【考点】二元一次方程组的应用.【分析】首先设1本笔记本为x元,1支钢笔y元,由题意得等量关系:①1本笔记本+1支钢笔=6元;②1本笔记本+4支钢笔=18元,根据等量关系列出方程组,再解即可.【解答】解:设1本笔记本为x元,1支钢笔y元,由题意得:,解得:,答:1本笔记本为2元,1支钢笔4元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;(3)图中交点的实际意义是什么?【考点】一次函数的应用.【分析】(1)分析图形,得知l1表示先出发的那辆,l2表示两小时后出发的那辆,从而得出结论;(2)设出路程与时间的关系式,分别代入图形中能看出的点,即可得知函数关系式,汽车的速度为函数关系式的斜率;(3)由y轴表示的路程可知,交点表示两车路程相同,即相遇.【解答】解:(1)∵汽车B在汽车A后出发,∴l1表示A车的路程与时间的关系,l2表示B车的路程与时间的关系.(2)设汽车行驶的路程s与时间t的函数关系s=vt+b,①将(0,0),(3,100)代入,得,解得v= ,b=0,∴汽车A行驶的路程s与时间t的函数关系式y= t,汽车A的速度为 km/h.②将(2,0),(3,100)代入,得,解得v=100,b=﹣200,∴汽车B行驶的路程s与时间t的函数关系式y=100t﹣200,汽车B的速度为100km/h.(3)汽车A出发3h(或汽车B出发1h)两车相遇,此时两车行驶路程都是100km.【点评】本题考查的一次函数的运用,解题的关键是熟练利用一次函数的特点,会使用代入法求出函数表达式.25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.【考点】二元一次方程组的应用.【分析】首先设快车速度为xm/s,慢车速度为ym/s,由题意得等量关系:两车速度和×4s=两车长之和;两车速度差×16s=两车长之和,根据等量关系列出方程组,再解即可.【解答】解:设快车速度为xm/s,慢车速度为ym/s,由题意得:,解得:,答:快车速度为55m/s,慢车速度为33m/s.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.26.某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:次数选手甲的成绩(环) 选手乙的成绩(环)1 9.6 9.52 9.7 9.93 10.5 10.34 10.0 9.75 9.7 10.56 9.9 10.37 10.0 10.08 10.6 9.8根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?【考点】方差;算术平均数.【分析】根据平均数的计算公式先分别求出甲和乙的平均数,再根据方差公式进行计算即可得出答案.【解答】解:∵甲的平均数是:(9.6+9.7+…+10.6)=10,乙的平均数是:(9.5+9.9+…+9.8)=10,∴S2甲= [(9.6﹣10)2+(9.7﹣10)2+…+(10.6﹣10)2]=0.12,S2乙= [(9.5﹣10)2+(9.9﹣10)2+…+(9.8﹣10)2]=0.1025,∵S2甲>S2乙,∴派乙选手参加比赛更好.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣ )2+(x2﹣)2+…+(xn﹣ )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.【考点】平行线的性质.【专题】证明题.【分析】过点C作CF∥AB,再由平行线的性质得出∠BCF=∠ABC,∠DCF=∠EDC,进而可得出结论.【解答】证明:过点C作CF∥AB,∵AB∥CF,∴AB∥ED∥CF,∴∠BCF=∠ABC,∠DCF=∠EDC,∴∠ABC+∠CDE=∠BCD.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.。
2017-2018学年八年级(下)期末数学试卷(含答案)
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
上海市-八年级(下)期末数学试卷-(含答案)
2017—2018学年上海市闵行区八年级(下)期末数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共4小题,共12.0分)1. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形,矩形,正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是( )A. (1)(2)(4)B. (2)(3)(4)C. (1)(3)(4) D 。
(1)(2)(3)2. 已知直线y =kx +b 与直线y =—2x +5平行,那么下列结论正确的是( ) A 。
k =−2,b =5 B 。
k ≠−2,b =5 C 。
k =−2,b ≠5 D 。
k ≠−2,b =53. 下列方程没有实数根的是( )A. x 3+2=0B. x 2+2x +2=0 C 。
√x 2−3=x −1D 。
xx−1−2x−1=04. 下列等式正确的是( )A. AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗B 。
AB ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ C. AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗ D. AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =0⃗ 二、填空题(本大题共7小题,共14.0分)5. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.D 、E 分别为边BC 、AC 上一点,将△ADE 沿着直线AD 翻折,点E 落在点F 处,如果DF ⊥BC ,△AEF 是等边三角形,那么AE =______.6. 一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为______.7. 一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x ,那么根据题意,列出的方程为______.8. 已知一次函数y =2(x —2)+b 的图象在y 轴上的截距为5,那么b =______.9. 在梯形ABCD 中,AD ∥BC ,如果AD =4,BC =10,E 、F 分别是边AB 、CD 的中点,那么EF =______. 10. 已知方程x 2+13x-x x 2+1=2,如果设xx 2+1=y ,那么原方程可以变形为关于y 的整式方程是______.11. 已知▱ABCD 的周长为40,如果AB :BC =2:3,那么AB =______. 三、计算题(本大题共1小题,共6.0分)12. 已知直线y =kx +b 经过点A (-20,5)、B (10,20)两点.(1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5.四、解答题(本大题共5小题,共38。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
上海市闵行区2023-2024学年八年级上学期期末数学试题(无答案)
2023学年第一学期期末考试八年级数学试卷(考试时间:90分钟 满分100分)一、选择题(本大题共6题,每题2分,满分12分)1.下列各式中,与3是同类二次根式的是( ) (A )6; (B )12; (C )9; (D )36.2.下列代数式中,m -1的一个有理化因式是( )(A )1m +; (B )1m -; (C )m +1; (D )m -1.3.在△ABC 中,a 、b 、c 分别为∠A ,∠B 和∠C 的对边,在下列条件中,无法判定△ABC 为直角三角形的是( )(A )∠A ∶∠B ∶∠C =3∶4∶5;(B )b 2=a 2-c 2; (C )∠C =∠A -∠B ;(D )a ∶b ∶c =12∶13∶5 4.已知反比例函数5y x =的图像上有两点()()1122,,,A x y B x y ,如果12x x <,那么y 1与y 2的大小关系是( ) (A )y 1>y 2; (B )y 1<y 2; (C )y 1=y 2; (D )不能确定.5.下列说法正确的是( )(A )周长为1的矩形的长与宽成正比例;(B )面积为1的等腰三角形的腰长与底边长成正比例;(C )面积为1的矩形的长与宽成反比例;(D )等边三角形的面积与它的边长成正比例.6.如图,在Rt △ABC 中,∠BCA =90°,CD 是高,BE 平分∠ABC 交CD 于点E ,过E 作EF //AC 交边AB 于点F ,交边BC 于点G ,联结CF .下列结论中,不一定成立的是( )(A )∠EFD =∠BCD ; (B )∠ACF =∠DCF ; (C )BF =BC ; (D )AF =CF .二、填空题(本大题共12题,每题2分,满分24分)7.45= .8.方程x 2=2x 的根是 . 9.计算:2518a b (a >0)= .10.若关于x 的一元二次方程(m -1)x 2+5x +m 2=1的常数项为0,则m = .11.在实数范围内因式分解:x 2-4x -2= .12.函数y =122x x -+的定义域是 . 13.一个直角三角形两条直角边的比是3∶4,斜边长为10,那么这个直角三角形面积为 . 14.如图,在△ABC 中,分别作AB 、AC 的垂直平分线,交BC 于点D 、E ,垂足为F 、G ,若∠BAC =110°,则∠DAE = 度.15.经过定点A 且半径为5的圆的圆心的轨迹是 .16.已知直角坐标平面内两点A (3,1)和B (1,-2),那么A 、B 两点间的距离等于 .17.如图,点B 为第一象限内一点,过点B 分别作x 轴、y 轴的垂线,垂足为点A 、C ,E 为BC 的中点,函数y =k x(x >0)的图像经过点E 且交AB 于F ,已知四边形OEBF 的面积为2,则k 的值为 .18.在△ABC 中,AB =AC ,BC =4,如果将△ABC 折叠,使点B 与点A 重合,且折痕交边AB 于点M ,交边BC 于点N ,如果△CAN 是直角三角形,那么△ABC 的面积是 .三、简答题(本大题共4题,每题6分,满分24分)19计算:201(23)9(32)332+20用配方法解方程:3x2+6x-1=021.如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9(1)求DC的长;(2)求证:△ABC是直角三角形.22.如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,点D,E分别为AB、BC上的点,DE垂直平分AB,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.四、解答题(本大题共5题,第23题6分,第24、25、26题8分,第27题10分,满分40分)23.如图所示,要建设一个面积为90平方米的仓库,仓库的一边靠墙,这堵墙长16米;仓库要求开两扇1.5米宽的小门.已知围建仓库的现有材料可使新建木墙的总长为30米,那么这个仓库设计的长和宽应分别是多少米?24.小李在一网上购物平台购物,恰逢周年庆,平台推出优惠活动,如图广告所示:(1)请写出小李的实付金额y(元)关于购物的商品总价x(元)的函数解析式及其定义域;(2)小李和好朋友小方拼单购物,小李和小方所购商品的总价分别为60元和40元,那么小李和小方应如何分配实付金额?请写出你的理由.25.如图,在△ABC中,点D、E在边BC上,BD=CE,过D作DM⊥AC,,垂足为M,过E作EN⊥AB,垂足为N,DM与EN交于点P,且BN=CM.(1)求证:PD=PE;(2)联结AP,并延长AP交BC点Q,求证:AP垂直平分线段BC.26.如图,直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.已知OA=4,直线OA与y轴的夹角为30°(1)求反比例函数的解析式;(2)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.27.已知点D是等边△ABC边BC的中点,E、F分别为边AB、射线AC上的点,且∠EDF=120°.(1)如图1,当DF⊥AC,AB=4时,求BE的长;(2)如图2,当F在边AC上时,求证:BE+CF=12 AB;(3)如图3,当F在边AC的延长线上时,作DN⊥AC于点N,如果DN=FN,设BE=x,NF=y,求出y关于x的函数关系式.图1图2图3。
2022学年上海市闵行区 八年级上学期期末数学试卷
第4题图ED CBA上海市闵行区2022学年第一学期期终学业质量检测八年级数学试卷(测试时间90分钟,满分100分)考生注意:1.本试卷含三个大题,共26小题.答题时,请考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题3分,满分18分) 1.下列二次根式中,属于最简二次根式的是( ▲ )A 、12B 、22-b aC 、4aD 、3x 2.下列一元二次方程没有实数根的是( ▲ )A 、02-2=x B 、02-2=x x C 、012=++x x D 、()()03-1-=x x3.正比例函数()0≠=m mx y 的图像在第二、四象限内,则点(1--m m ,)在( ▲ ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4.如图,在Rt △ABC 中,∠ACB=90°,CD 与CE 分别是斜边AB 上的高与中线,以下判断正确的个数有( ▲ )(1)∠DCB=∠A ;(2)∠BCE=∠BEC ; (3)∠ACD=∠BCE ;(4)∠DCB=∠ACE. A 、1个 B 、2个C 、3个D 、4个5.下列命题的逆命题是真命题的是( ▲ )A 、全等三角形周长相等B 、全等三角形面积相等C 、全等三角形对应角都相等D 、全等三角形对应边都相等 6.已知下列说法,其中结论正确的个数是( ▲ )①等腰三角形一边上的高就是这条边上的中线;②等腰三角形的对称轴就是底边上的中线; ③若一条直线上的一点P 到线段两端的距离相等,则这条直线是这条线段的垂直平分线; ④若两个直角三角形的一条直角边和斜边分别对应相等,则这两个直角三角形全等. A 、1个 B 、2个 C 、3个 D 、4个 二、填空题(本大题共12题,每题2分,满分24分)7.计算:=+34827____▲_____. 8.使2-x 有意义的x 的取值范围是____▲_____.9.已知函数()xx x f 2+=,那么()=3f ____▲_____. 10.方程0432=+x x 的根是____▲_____.11.在实数范围内分解因式:=+16-32x x ____▲_____.12.若三个点(-2,1y ),(-1,2y ),(2,3y )都在反比例函数xy 6-=的图像上,则1y 、2y 、3y 的大小关系是____▲_____.13.关于x 的一元二次方程01-2-2=x kx 有两个不相等的实数根,则k 的取值范围是____▲_____. 14.在美丽乡村建设中,某村2017年新增绿化面积为20000平方米,计划到2019年新增绿化面积要达到28800平方米.如果每年新增绿化面积的增长率相同,那么这个增长率是____▲_____.15.已知直角坐标平面内的Rt △ABC 三个顶点的坐标分别为A (4,3)、B (1,2)、C (3,-4),则直角顶点是____▲_____.16.如图,在边长为32的等边三角形ABC 中,过点C 作垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为____▲_____.17.如图,△ABC 中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是____▲_____.18.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至△A 'B 'C 的位置,再沿CB 向左平移使点B '落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为__▲___.(结果保留根号)三、简答题(本大题共4题,每题6分,满分24分)19,计算:()86-33211+++; 20.解方程:()()2-55-2=+x x x第18题图B 'A 'CBA第17题图OFEDCBA第16题图PCBA21.如图所示,要建设一个面积为90平方米的仓库,仓库的一边靠墙,这堵墙长16米;仓库如图要求开两扇1.5米宽的小门.已知围建仓库的现有材料可使新建木墙的总长为30米,那么这个仓库设计的长和宽应分别是多少米?第21题图22.如图,这是一个水池存水量y(万吨)与注水或排水时间x(小时)之间的函数关系图像.(1)水池原有水____▲_____;(2)向水池内注水____▲_____小时;每小时注水____▲_____万吨;(3)____▲_____小时把水排空;每小时排水____▲_____万吨.x(时间)第22题图四、解答题(本大题共4题,第23、24、25题每题8分,第26题10分,满分34分)23.如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 为BC 的中点,CE ⊥AD ,垂足为点E ,BF ∥AC 交CE 的延长线于点F ,联结DF.求证:(1)△ACD ≌△CBF ;(2)AB 垂直平分DF.24.如图,在长方形OABC 中,OA=8,OC=4,沿对角线OB 折叠后,点A 与点D 重合,OD 与BC 交于点E. (1)求点E 的坐标及过点E 的反比例函数的解析式; (2)求点D 的坐标.第23题图FED CBAx25.如图,已知四边形ABCD中,AB=24,AD=15,BC=20,CD=7,∠ADB+∠CBD=90°.(1)在BD的上方作△A'BD,使△A'BD≌△ADB(点A与点A'不重合)(不写作法,保留作图痕迹);(2)求四边形ABCD的面积.第25题图D CBA26.如图,在四边形ABCD 中,∠ADC=∠ABC=90°,CB=CD ,点E 、F 分别在AB 、AD 上,AE=AF.联结CE 、CF. (1)求证:CE=CF ;(2)如果∠BAD=60°,CD=32.①当AF=x 时,设y S EFC =∆,求y 与x 的函数关系式;(不需要写定义域) ②当AF=2时,求△CEF 的边CE 上的高.第26题图FEDBA。
2020-2021学年上海闵行区八年级上学期期末考试数学试卷及答案
8182020 学年第一学期八年级期终考试数 学 试 卷(考试时间 90 分钟,满分 100 分)考生注意:1. 本试卷含三个大题,共 26 题.2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4. 本次考试可使用科学计算器.一、选择题(本大题共 6 题,每题 3 分,满分 18 分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂 在答题纸的相应位置上】1. 下列各式中与 是同类二次根式的是(A ) ; (B ;(C ; (D ) .2. 下列关于 x 的方程中,一定有实数根的是(A ) x 2 − x + 2 = 0 ; (B ) x 2 − mx − 1 = 0 ;(C ) 2x 2 − 2x +1 = 0 ;(D ) x 2 + x − m = 0 . 3. 函数 y = (2m − 1) x 是正比例函数,且 y 随着 x 的增大而减小,那么 m 的取值范围是(A ) m < 1 ; (B ) m > 1;2 2 (C ) m ≤ 1 ; (D ) m ≥ 1.2 24. 已知 a ,b ,c 分别是△ABC 的三边,下列条件中能判定△ABC 为直角三角形的是 (A ) a = 8 , b = 13 , c = 11 ; (B ) a = 6 , b = 10 , c = 12 ;(C )a = 40 ,b = 41,c = 9 ; (D ) a = 24 , b = 9 , c = 25 . 5. 已知点 A ( x 1 , y 1) , B (x 2 , y 2) , C ( x 3 , y 3 ) 都在反比例函数 y =(k < 0) 的图像上,且 x 1 < x 2 < 0 < x 3 ,则 y 1 , y 2 , y 3 的大小关系是(A ) y 2 > y 1 > y 3 ;(B ) y 3 > y 2 > y 1 ;(C ) y 1 > y 2 > y 3 ;(D ) y 3 > y 1 > y 2 .6. 下列命题中,真命题是(A ) 有两组边相等的两个直角三角形全等;(B ) 有两边及第三边上的高对应相等的两个三角形全等; (C ) 有两边及其中一边所对的角对应相等的两个三角形全等;3(D)有两边及其中一边上的中线对应相等的两个三角形全等.23 + 1二、填空题(本大题共 12 题,每题 2 分,满分 24 分)7.8. 函数y (x > 0) = ▲.的定义域为 ▲ .9. 方程 2x 2 = x 的根是 ▲.10.已知函数 f (x ) =2x −1,那么 f (0) = ▲ . x + 111. 在实数范围内分解因式: 2x 2 − x − 2 = ▲ . 12. 到点 A 的距离等于 3cm 的点的轨迹是 ▲ .13. 在 Rt △ABC 中, ∠C = 90°,AC = 2,BC = 4,点 D 为斜边 AB 的中点,那么 CD = ▲ .14.国家统计局统计数据显示,我国快递业务收入逐年增加.2018 年至 2020 年的 2 年 间,我国快递业务收入由 5000 亿元增加到 7500 亿元.设我国 2018 年至 2020 年快递业务收入的年平均增长率为 x .则可列方程为 ▲ .15.如图,小明画线段 AB 的垂直平分线 l ,垂足为点 C ,然后以点 B 为圆心,线段 AB 为半径画弧,与直线 l 相交于点 D ,联结 BD , 那么∠CDB 的度数是 ▲ .16.在函数 y = 3x 上有两点分别为 A (−1, 间的距离等于 ▲ .m ) , B (n , − 6) ,A 、B 两点17.在平面直角坐标系中,点 A (−2, 1) , B (3, 2) , C (−6, m ) 分别在三个不同的象限.如果反比例函数 y = k(k ≠ 0) 的图象经过其中 x(第 15 题图)两点,那么 m 的值为 ▲ .18. 在△ABC 中,AB=AC ,BC =2,如果将△ABC 折叠,使点 B 与点 A 重合,且折痕交边 AB 于点 M ,交边 BC 于点 N .如果△CAN 是直角三角形,那么△ABC 的面积是 ▲ .三、解答题(本大题共 8 题,满分 58 分) 19.(本题满分 6 分)计算: 2( − 6) − ( 3 −1) 2 +.20.(本题满分 6 分)解方程: 2x (x − 3) = x 2 − 5 .2EFC21.(本题共 2 小题,第(1)小题 4 分,第(2)小题 2 分,满分 6 分)已知关于 x 的方程 x 2 + 2kx + (k − 2)2 = 2x .(1) 此方程有一个根为 0 时,求 k 的值和此方程的另一个根; (2) 此方程有实数根时,求 k 的取值范围.22.(本题共 2 小题,每小题 3 分,满分 6 分)A 如图,在△ABC 中,∠C = 90°,AC = 3,BC = 4, 点 D 在边 AC 上,且点 D 到边 AB 和边 BC 的距离相等.(1) 作图:在 AC 上求作点 D (保留作图痕迹不写作法);(2) 求 CD 的长.CB(第 22 题图)23.(本题共 2 小题,每小题 4 分,满分 8 分)如图,是甲、乙两种机器人根据电脑程序工作时各自工作量 y 关于工作时间 t 的函数图像,线段 OA 表示甲机器人的工作量 y 1 (吨)关于时间 x (时)的函数图像,线段 BC 表示乙机器人的工作量 y 2 (吨)关于时间 x (时)的函数图像.根据图像信息回答下列填空题. (1) 甲种机器人比乙种机器人早开始工作▲ 小时;甲种机器人每小时的工作量是 ▲y (吨;(2) 直线 OA 的表达式为 ▲ ;当乙种机器人工作 5 小时后,它完成的 工作量是 ▲ 吨.(第 23 题图)(时)24.(本题共 2 小题,每小题 4 分,满分 8 分)如图,已知在△ABC 中, ∠ABC = 90° ,点 E 是 AC 的中点,联结 BE ,过点 C 作CD // BE ,且ADC = 90° . A (1)求证:DE = BE ;(2)如果在 DC 上取点 F ,DF=BE ,联结 BD , D求证:BD 是线段 EF 的垂直平分线.B(第 24 题图)AO(第 25 题图)25.(本题共 3 小题,每满分 8 分,其中第(1)小题 2 分,第(2)小题 3 分,第(3)小题 3 分)如图,在直角坐标系 xOy 中,反比例函数 y 图像与直线 y = 2x 相交于点 A ,且点 A 的横坐标为 2.点 B 在该反比例函数的图像上,且点 B 的纵坐标为 1,联结 AB .(1) 求反比例函数的解析式; (2) 求∠OAB 的度数;(3) 联结 OB ,求点 A 到直线 OB 的距离.x26.(本题共 3 小题,满分 10 分,其中第(1)小题 4 分,第(2)小题 3 分,第(3)小题 3 分)如图,在 Rt △ABC 中, ∠C = 90° , AC = BC = 2,点 D 在边 CA 的延长线上,点 E 在边 BC 上(不与点 C 重合),且 BE = AD ,连结 DE ,交边 AB 于点 N ,过点 E 作 EM 平行于 CA ,交边 AB 于点 M .(1) 如图 1,求证:EN = DN ;(2) 如图 2,过点 N 作 NP 垂直于 DE ,交边 AC 于点 P ,设 BE = x ,PC =y . 求 y 关于 x 的函数解析式,并写出该函数的定义域; (3) 在(2)的条件下,当 CP = PN 时,求 x 的值.BBEEC ADC (第 26 题图 1)P A D(第 26 题图 2)MNMN2020学年第一学期八年级期末试卷参考答案及评分标准一、选择题(本大题共6题,每题3分,满分18分) 1.B ; 2.C ; 3.A ; 4.C ; 5.A ; 6.D . 二、填空题(本大题共12题,每题2分,满分24分):7.3x ; 8.3x ≥; 9.0x =或12x =; 10.1; 11.2x x ⎛ ⎝⎭⎝⎭;12.以a 为圆心,3cm 为半径的圆; 13.;14.25000(1)7500x +=; 15.30︒;16 17.13或1− ; 18.119.解:()241−−−+−原式=,………………………………………(2分)2431,………………………………………………………(2分)3=−.………………………………………………………………(2分) 20.解:22265x x x −=−, …………………………………………………………(1分) 2650x x −+=,………………………………………………………………(1分)()()150x x −−=,…………………………………………………………(2分) 11x =或25x =,………………………………………………………………(1分) 所以,原方程组的解为11x =或25x =.……………………………………(1分)21.解:(1)()()222120x k x k +−+−=,…………………………………………(1分)当0x =时,2k =,……………………………………………………(1分)230x x +=,……………………………………………………………(1分) 另一个根为3x =−.……………………………………………………(1分)(2)()()2221420k k ∆=−−−≥,…………………………………………(1分)54k ≥所以.……………………………………………………………(1分) 22.解:(1)作图略,作图正确2分,结论正确1分.……………………………(3分)(2)CD t =设.在Rt ADH 中,()2213t t +=−,…………………………(1分)43t =,……………………………………………………………………(1分) 43CD =.…………………………………………………………………(1分)23.解:(1)3;5.………………………………………………………………(2+2分)(2)5y x =;50.…………………………………………………………(2+2分)24.(1)在△,90,,ABC ABC E AC ∠=︒中是中点12BE AC ∴=.………………………………………………………………(2分)同理:12DE AC =.…………………………………………………………(1分)DE BE ∴=.…………………………………………………………………(1分)(2)联结BD ,交EF 于点O .DF BE =,DE BE =,∴DE DF =.…………………………………(1分)//BE FD ,EBO FDO ∴∠=∠.…………………………………………(1分) 又EOB FOD ∠=∠,∴△EBO ≌△FDO .∴EO = FO …………………(1分) ∴DO EF ⊥.∴BD 是线段EF 的垂直平分线.…………………………(1分)25.证明:(1)()2,4A .………………………………………………………………(1分)8y x∴=.………………………………………………………………(1分) (2)()()8,18,1B x y B x=∴点在图像上,,()()()2,4,0,0,8,1A O B ,AO BO AB ∴======. (1分) 222AO AB OB ∴+=.………………………………………………(1分) 即90OAB ∠=︒.……………………………………………………(1分)(3)由(2),OA AB ==,……………………………………(1分)1122OABSAO AB OB h =⋅=⋅,OA AB h OB ⋅==2分) 26.解:(1)在Rt △ABC 中,90C ∠=︒,AC = BC ,∴45B BAC ∠=∠=︒.∵//EM AD ,∴45BME BAC ∠=∠=︒,∴BE EM =.∵BE AD =,∴EM AD =.…………………………………………(1分) ∵//EM AD ,∴MEN ADN ∠=∠……………………………………(1分) 又∵MNE AND ∠=∠,∴△MNE ≌△AND ……………………………(1分)∴EN DN =.……………………………………………………………(1分) (2)联结EP ;,,EN DN PN ED PE PD =⊥∴=;……………………………………(1分)在Rt △ABC 中 2,,2,EC x CP y EP y x =−==−+ ()()22222x y y x ∴−+=−+. ()42022x y x x−=<<+.………………………………………………(1+1分)(3)CP PN =,∴RT △PCE ≌RT △PNE .CEP NEP D ∴∠=∠=∠.30D ∴∠=︒.…………………………………………………………(1分))22CE x x CD ∴=−=+.……………………………………(1分)4x ∴=−.…………………………………………………………(1分)2020学年第一学期八年级期终考试数 学 答题纸请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效 20.解方程:.21.解:(1)(2)22.解:(1)作图:在AC 上求作点D (保留作图痕迹,不写作法); 解:(2)请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效23.(1)甲种机器人比乙种机器人早开始工作小时;甲种机器人每小时的工作量是 吨;(2)直线OA 的表达式为 ;当乙种机器人工作5小时后,它完成的工作量是 吨.24.证明:(1)(2)请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效 一、选择题 1 2 3 456请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题的答题区域内作答,超出黑色矩形边框限定区域的答案无效二、填空题7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.三、解答题 19.计算: 222(26)(31)31−−−++.填 涂 样 例1.答题前,考生先将自已的姓名、报名号、准考证号填写清楚,并认真核对条形码上的信息。
(完整word版)上海市闵行区九校联考2016-2017学年八年级(上)期末数学试卷(解析版)
2016-2017学年上海市闵行区九校联考八年级(上)期末数学试 、选择题(每小题3分,共18 分)F 列二次根式中与.一;是同类二次根式的是()A. X 2+4=4X B . x 2 - x-仁0 C . 2x 2+4x+3=0 D. 3x - 8=03•已知函数 气(护)中,在每个象限内,y 随X 的增大而增大,那么它和函直角三角形有( ) A. 1个B. 2个C. 3个D. 4个5•下列命题中,其逆否命题是真命题的命题个数有( )(1) 线段垂直平分线上的任意一点到这条线段两个端点的距离相等;(2) 对顶角相等; (3) 在三角形中,相等的角所对的边也相等;(4) 到角的两边距离相等的点在这个角的平分线上.A . 1个B. 2个C. 3个D . 4个6.等腰△ ABC 中,过A 作BC 的垂线,垂足为D ,且AD<BC,则厶ABC 底角的 度数为( )A . 45°B . 45°或 75°A. V12| B. C.2. F 列方程中,没有实数根的是( )数y=kx (k M 0)在同一直角坐标平面内的大致图象是(4.三角形三边长分别为①3, 4, 5②5, 12,13③17, 8,C. 45°或15°或75° D . 45°或60、填空题(每小题2分,共24 分)已知x=3是方程x 2 - 6x+k=0的一个根,贝U k= 在实数范围内因式分解:2x 2- 4x -仁 .「,那么 f (7) =_.11.某企业的年产值在两年内从100万元增加到121万元,设平均每年增长的百 分率为x ,则可以列出的方程是12.如图,P 为反比例函数尸一的图象上的点,过P 分别向x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面积为 2,这个反比例函数解析式为直角三角形中两边长分别为4和5,那么第三边长为 ______.若平面内点A (- 1,- 3)、B (5,b ),且AB=10,则b 的值为17.如图,点P 是/ AOB 的角平分线上的一点,过点 P 作PC// OA 交OB 于点C,18 .如图,有一块直角三角形纸片,两直角边 AC=6cm BC=8cm 点D 在BC 边 上,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则AD=7. 8.9. 10.已知函数f (x ) (x ) =kx(k v 0),用匕““符号连接:f (2) ________ f(3).以线段AB 为底边的等腰三角形的顶点的轨迹是15. 16. 14.OC=6, J 则PD=cm.简答题(共26)已知y=y i +y 2, y i 与x 成正比例,y 2与x 成反比例,且当x=- 1时,y=-4,22. 某校计划修建一个长方形花坛,要求花坛的长与宽的比为 2: 1,如图所示 花坛中间为花卉种植区域,花卉种植区域前侧留有2米宽的空地,其它三侧各保 留1米宽的通道,如果要求花卉种植区域的面积是 55平方米,那么整个花坛的长与宽应为多少米?四、解答题(共26)23. 如图,在四边形ABCD 中,AD// BC, BD 丄AD ,点E ,F 分别是边AB , CD 的24. 已知:如图,在厶ABC 中,BC=BA BE 平分/ CBA 交边CA 于点E ,/ ABC=45, CD 丄AB ,垂足为D ,F 为BC 中点,BE 与DF 、DC 分别交于点G 、H .19. 计算: 20.解方程:2y (y - 2) 3. 21.当x=3时,y= .求y 与x 的函数关系式.A=/ C.(1)求证:BH=CA(2) 求证:BG=GE?+EA2・\ KA脅C EA25. 如图,在平面直角坐标系xoy内,点P在直线尸亠工上(点P在第一象限), 过点P作PA± x轴,垂足为点人,且工=“(1)求点P的坐标;(2)如果点M和点P都在反比例函数产严(k泸0)图象上,过点M作MN丄x轴, 垂足为点N,如果△ MNA和厶OAP全等(点M、N、A分别和点0、A、P对应),求点M的坐标.126. 如图,在△ ABC中,/ ACB=90, / A=30°, D是边AC上不与点A、C重合的任意一点,DE丄AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC= 一;,设AD=x, CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,/ MCE的大小是否发生变化?如果不变,求出/MCE 的大小;如果发生变化,说明如何变化.2016-2017学年上海市闵行区九校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1 •下列二次根式中与.一;是同类二次根式的是()A、 B.」C. . 一D. ■:【考点】同类二次根式.【分析】根据同类二次根式的概念,需要把各个选项化成最简二次根式,被开方数是3的即和.二是同类二次根式.【解答】解:A、原式=2一 >B、原式=..;C、原式=..一;D、原式=3. ■:.故选A.2•下列方程中,没有实数根的是()A、X2+4=4X B. x2- x-仁0 C. 2x2+4x+3=0 D. 3x- 8=0【考点】根的判别式.【分析】分别根据求出各选项一元二次方程的根的判别式,进而作出判断.【解答】解:A、X2+4=4X,A = (- 4)2- 4X1 X 4=0,方程有实数根,此选项不符合题意;B、X2- X-仁0,4 = (- 1)2-4 X 1X(- 1)=5> 0,方程有实数根,此选项不符合题意;C、2X2+4X+3=0,A =42- 4X 2X 3=- 8v 0,方程没有实数根,此选项符合题意;8 、D、3X- 8=0, x=—,方程有实数根,此选项不符合题意;故选c .3. 已知函数 尸吕(k#0)中,在每个象限内,y 随x 的增大而增大,那么它和函【分析】首先根据反比例函数图象的性质判断出 k 的范围,在确定其所在象限, 进而确定正比例函数图象所在象限,即可得到答案.【解答】解:•••函数 产丄6=0)中,在每个象限内,y 随x 的增大而增大,二 k v 0,•••双曲线在第二、四象限, •••函数y=kx 的图象经过第二、四象限,故选:B.4. 三角形三边长分别为①3, 4, 5②5, 12,13③17, 8,15④1,3, 2二.其中 直角三角形有( )A . 1个B. 2个C. 3个D. 4个【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①32+42=52,符合勾股定理的逆定理,能构成直角三角形;② 52+122=132,符合勾股定理的逆定理,能构成直角三角形;③ 82+152=172,符合勾股定理的逆定理,能构成直角三角形;④ 12+ (2. ■:)2=32,符合勾股定理的逆定理,能构成直角三角形.故选:D .5.下列命题中,其逆否命题是真命题的命题个数有()数y=kx ( k M 0)在同一直角坐标平面内的大致图象是( 【考点】反比例函数的图象;正比例函数的图象.(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等;(2)对顶角相等;(3)在三角形中,相等的角所对的边也相等;(4)到角的两边距离相等的点在这个角的平分线上.A. 1个B. 2个C. 3个D. 4个【考点】线段垂直平分线的性质;对顶角、邻补角;角平分线的性质;等腰三角形的性质;命题与定理.【分析】根据原命题、逆命题、否命题、逆否命题四者之间的关系,原命题与逆否命题的真假性一致,然后根据线段垂直平分线上的点到线段两端点的距离相等的性质,对顶角相等的性质,等腰三角形的性质对各小题判断后即可进行解答.【解答】解:(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等,正确,故逆否命题正确;(2)对顶角相等,正确,故逆否命题正确;(3)在同一个三角形中,相等的角所对的边也相等,错误,故逆否命题错误;(4)到角的两边距离相等的点在这个角的平分线上,正确,故逆否命题正确. 所以(1) (2) (4)正确.故选C.6. 等腰△ ABC中,过A作BC的垂线,垂足为D,且AD^BC,则厶ABC底角的度数为( )A. 45°B. 45°或75°C. 45°或15°或75°D. 45°或60°【考点】等腰三角形的性质.【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD从而得出厶ABC底角的度数;当AB=BC时,先求出/ ABD 的度数,再根据AB=BC求出底角的度数;当AB=BC时,根据A D A B C, AB=BC 得出/ DBA=30,从而得出底角的度数.【解答】解:①如图1,当AB=AC时,••• AD 丄BC,••• BD=CD••• AD=-BC,2••• AD=BD=CD•••底角为45°②如图2,当AB=BC时,••• AD=-BC,2••• AD=-AB,•••/ ABD=30,•••/ BACK BCA=75,•••底角为75°③如图3,当AB=BC时,••• AD=-BC, AB=BCz••• AD丄AB,•••/ DBA=30,•••/ BACK BCA=15;•••△ ABC底角的度数为45°或75°或15°故选C.、填空题(每小题2分,共24 分)7 •计算•:』:宀=4 -n .【考点】二次根式的性质与化简.【分析】首先判断n- 4的符号,然后根据绝对值的性质即可化简.【解答】解::n< 4,• °•冗-4< 0,•••原式=4 - n故答案是:4- n8 .已知x=3是方程x2- 6x+k=0的一个根,贝U k= 9 .【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=3代入方程x2- 6x+k=0,可得9 - 18+k=0,解得k=9.故答案为:9.9.在实数范围内因式分解:2x2- 4x-仁(x-」)(X- - _丄【考点】实数范围内分解因式.【分析】令原式为0求出x的值,即可确定出因式分解的结果.【解答】解:令2x2- 4x-仁0,这里a=2,b=- 4,c=- 1,•/△ =16+8=24,x =_2则原式=(x-一-)),故答案为:【分析】根据自变量与函数值的对应关系,可得答案. 【解答】解:由题意,得 f (7)「丄 ()7-1 3, 故答案为:」. 11.某企业的年产值在两年内从100万元增加到121万元,设平均每年增长的百 分率为x ,则可以列出的方程是 100 (1+x ) 2=121 . 【考点】由实际问题抽象出一元二次方程. 【分析】设平均每年增长的百分率为x,则在第一年该企业的年产值是100( 1+x ) 元,第二年是100 (1+x ) 2元,即可列方程. 【解答】解:设平均每年增长的百分率是x . 根据题意,得100 (1+x ) 2=121, 故答案为 100 (1+x ) 2=121. 12.如图,P 为反比例函数 尸;;的图象上的点,过P 分别向x 轴和y 轴引垂线, 它们与两条坐标轴围成的矩形面积为 2,这个反比例函数解析式为 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值, 即 S= k| . 【解答】解:•••过P 分别向x 轴和y 轴引垂线,它们与两条坐标轴围成的矩形面 积为2, •••I k| =2,10.已知函数f (x ) 【考点】函数值. ,那么 f (7) =_ ..二反比例函数y=£的图象在第二象限,k v0,• k=- 2,•此反比例函数的解析式为y=-二.13•已知正比例函数y=f (x) =kx (k v0),用V ““符号连接:f (2) > f (3).【考点】一次函数图象上点的坐标特征.【分析】根据k的正负可得出函数的增减性,然后结合题目所给的自变量的大小可得出函数值的大小关系.【解答】解::k v0,•y=f (x) =kx是减函数,又•••自变量2v3,•f (2)>f (3).故答案为:〉.14.以线段AB为底边的等腰三角形的顶点的轨迹是线段AB的垂直平分线(与AB的交点除外) .【考点】轨迹;等腰三角形的性质.【分析】满足△ ABC以线段AB为底边且CA=CB根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件). 【解答】解:•••△ ABC以线段AB为底边,CA=CB•点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件), •以线段AB为底边的等腰三角形的顶点C的轨迹是线段AB的垂直平分线,不包括AB的中点.故答案为线段AB的垂直平分线,不包括AB的中点.15•直角三角形中两边长分别为4和5,那么第三边长为3或.:【考点】勾股定理.【分析】考虑两种情况:4和5都是直角边或5是斜边,根据勾股定理进行求解. 【解答】解:当5是斜边时,贝U第三边是「:丁'=3,当4和5都是直角边时,则第三边是故答案为:3或.:.16.若平面内点A(- 1, - 3 )、B (5, b),且AB=10,则b的值为-11或5 【考点】两点间的距离公式.【分析】根据题意和两点间的距离公式可以求得b的值,本题得以解决.【解答】解:由题意可得,M ) ?+ (_3吒)二]0,解得,b=- 11 或b=5,故答案为:-11或5.17•如图,点P是/ AOB的角平分线上的一点,过点P作PC// OA交0B于点C, j则PD己.【分析】过点P作PE丄0B于E,根据角平分线上的点到角的两边距离相等可得PE=PD根据角平分线的定义可得/ AOP=Z BOP,再根据两直线平行,内错角相等可得/ OPC h AOP,然后求出/ BOP=/ OPC根据等角对等边可得PC=OC然后通过解直角△ PCE求得PE的长度即可.【解答】解:如图,过点P作PE±OB于E,v OP是/ AOB的角平分线,PD丄OA••• PE=PDv OP是/ AOB的角平分线,/ AOB=60 ,•••/ AOP=Z BOP=30,v PC// OA,:丄 OPC=/ AOP,:丄 BOP=/ OPC=30,••• PC=OC=6 / PCE=60.••• PE=OC?si n60 =3.••• PE=PD=318 .如图,有一块直角三角形纸片,两直角边AC=6cm BC=8cm点D在BC边上,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD= 3八cm.【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6 CD=DE设CD=DE=x在Rt A DEB中利用勾股定理解决.【解答】解:在Rt A ABC中,v AC=6, BC=8,••• AB=… :甘-=「;=10 ,•••△ADE是由△ ACD翻折,• AC=AE=6 EB=AB- AE=10- 6=4,设CD=DE=x在Rt A DEB中DE+E吐DB2,••• X2+42= (8-x) 2••• x=3,• CD=3在Rt A ACD中,AD= ;'「=上•=3:故答案为3.二19.、简答题(共26)【考点】二次根式的混合运算.【分析】首先化简二次根式,进而合并,再利用二次根式除法运算法则求出答案.20.解方程:2y (y- 2) =y2- 3.【考点】解一元二次方程-因式分解法.【分析】整理成一般式后,利用因式分解法求解可得.【解答】解:原方程整理可得:y2-4y+3=0,•••(y- 1) (y-3) =0,• y- 1=0或y- 3=0,解得:y=1或y=3. 21 .已知y=y i +y 2, y i 与x 成正比例,y 2与x 成反比例,且当x=- 1时,y=-4, 当x=3时,y=&?.求y 与x 的函数关系式. 【考点】待定系数法求反比例函数解析式. 【分析】根据正比例函数和反比例函数定义可得 y i =k i x , y i =k i x ,进而可得 y=k i x+",再把x=- i 时,y=-4,当x=3时,y=6二代入可得关于k i 、k 2的方程 组,解方程组可得k i 、k 2的值,进而可得y 与x 的函数关系式. 【解答】解:t y i 与x 成正比例, •••设 y i =k i x , ••• y 2与x 成反比例, y i =k i x t y=y i +y 2, k 2 • y=k i x+ , I x=- i 时,y=-4,当 x=3时,y=6二. 2 • y 与x 的函数关系式为y=2x 叶. 22.某校计划修建一个长方形花坛,要求花坛的长与宽的比为 2: i ,如图所示 花坛中间为花卉种植区域,花卉种植区域前侧留有2米宽的空地,其它三侧各保 留i 米宽的通道,如果要求花卉种植区域的面积是 55平方米,那么整个花坛的 长与宽应为多少2 碍二 3k]米?【考点】一元二次方程的应用.【分析】根据题意设花坛的宽为X米,则可以表示出长为2x,然后用空地的面积+花卉种植区域的面积=花坛的面积,列出的方程,从而可以解答本题.【解答】解:设花坛的宽为X米,2x?x=2x+2 (2x- 2)X 1+ (x- 2)X 1+55,解得,x i=- 3.5 (舍去),x2=7,••• 2x=14,答:整个花坛的长为14米,宽为7米.四、解答题(共26)A=/ C.23•如图,在四边形ABCD中,AD// BC, BD丄AD,点E,F分别是边AB, CD的【考点】全等三角形的判定与性质.【分析】首先根据平行线的性质可得/ DBC=/ BDA=90,再根据直角三角形的性质可得DE=-AB, BF=-DC,然后可得AB=CD再证明Rt A ADB^ Rt A CBD可得/A=/ C.【解答】证明:T AD// BC, BD丄AD,•••/ DBC=/ BDA=90,•••在Rt A ADB中,E是AB的中线,1;••• DE=.-AB,同理:BF丄DC,••• DE=BF••• AB=CD在Rt A ADB和Rt A CBD中,二CD\DB-BL'••• Rt A ADB^ Rt A CBD ( HL),•••/ A=Z C.24. 已知:如图,在厶ABC中,BC=BA BE平分/ CBA交边CA于点E, / ABC=45 , CD丄AB,垂足为D, F为BC中点,BE与DF、DC分别交于点G、H.(1)求证:BH=CA(2)求证:B G^G E+EA L/dC E【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理.【分析】(1)由等腰三角形的性质知/ BEA=90,根据直角三角形的性质即余角的性质得DB=DC / ABE=Z DCA 利用ASA证出△ DBH^A DCA即可;(2)证BE垂直平分AC,则由垂直平分线上任意一点,到线段两端点的距离相等”推知AG=CG易证DF垂直平分BC,则BG=CG所以依据等量代换证得AG=BG 在Rt A AGE中,由勾股定理即可推出答案.【解答】解:(1)v BC=BA BE平分/ CBA••• BH 丄CA,•••/ BEA=90 ,又CD 丄AB,/ ABC=45 ,•••/ BDC=/ CDA=90 ,•••/BCD=/ABC=45 , / BAG/DCA=90 , / BAO Z ABE=90 ,••• DB=DC / ABE=/ DCA•:在△ DBH与^ DCA中,r ZDBH=ZBCA••• NBDH=ZCDL[BD=CD•••△DBH^A DCA(AAS), ••• BH=AC(2)如图,连接CG.••• AB=BC BE±AC,••• BE垂直平分AC,AG=CG又••• F点是BC的中点,DB=DC.DF垂直平分BC,.BG=CG.AG=BG BG=GE+EA2.在Rt A AGE中AG=G W+EA2,.B G^G^+EA?.25. 如图,在平面直角坐标系xoy内,点P 在直线尸亠工上(点P在第一象限),过点P作PA!x轴,垂足为点A,且-•■.(1)求点P的坐标;(2)如果点M和点P都在反比例函数产吕(k泸0)图象上,过点M作MN丄x 轴, 垂足为点N,如果△ MNA和厶OAP全等(点M、N、A分别和点0、A、P对应),求点M的坐标.【分析】(1)根据P点在直线产丄X上,可设P (2x, x),其中x> 0,再根据勾股定理可得AO2+AF2=O巴即3 f 二(2屈?,解得x=2即可计算出P点坐标.(2)根据F点坐标计算出反比例函数解析式,当△ MNA和厶AFO全等时,分以下两种情况:①点N在点A的左侧时,②点N在点A的右侧时,分别计算出M 点坐标,再讨论是否在反比例函数图象上即可.【解答】解:(1)v PALx轴,垂足为点A.•••/ PAO=90,•••点P在直线■."'^7 ■:上(点P在第一象限),•••设P (2x,x),其中x>0,••• AO=2x, PA=xv人升人宀。
2016-2017学年第二学期八年级数学期末考试试卷(含答案)
浦东新区2016-2017学年度第二学期期末质量抽测初二数学试卷(考试时间:90分钟;满分:100分)一、选择题:(本大题共6题,每题2分,满分12分)1.下列四个函数中,一次函数是……………………………………………………………( ) (A)x x y 22-=; (B)2-=x y ; (C)11+=xy ; (D)1+=x y . 2.在平面直角坐标系中,直线1y x =-经过…………………………………………( ) (A )第一、二、三象限; (B )第一、二、四象限; (C )第一、三、四象限;(D )第二、三、四象限.3.下列四个命题中真命题是 ……………………………………………………………( ) (A)矩形的对角线平分对角; (B)菱形的对角线互相垂直平分;(C) 梯形的对角线互相垂直;(D)平行四边形的对角线相等.4.如果点C 是线段AB 的中点,那么下列结论中正确的是………………………………( ) (A )0=+BC AC (B )0=-BC AC (C )0=+BC AC (D )0=-BC AC5.从2,3,4,5,6中任取一个数,是合数的概率是…………………………………( ) (A )51; (B )52; (C )53; (D )54. 6.下列事件是必然事件的是 ……………………………………………………………( ) (A)方程34-=+x 有实数根; (B)方程0222=-+-xxx 的解是2=x ; (C)方程410x -=有实数根; (D)方程23x x =只有一个实数根.二、填空题:(本大题共12题,每题3分,满分36分) 7.一次函数23+=x y 的截距是_______________. 8.已知函数()31f x x =-,则(2)f =__________.9.已知一次函数4)2(+-=x k y ,y 随x 的增大而减小,那么k 的取值范围是_________. 10.已知一次函数123y x =+,当2y >-时,自变量x 的取值范围是_________.OADBC(第17题图)11.已知一次函数的图像与x 轴交于点(3,0),且平行于直线32--=x y ,则它的函数解析式为_______________________.12.方程04324=--x x 的根是 . 13.用换元法解分式方程23202x xx x ---=-时,如果设2x y x -=,则原方程可化为关于y 的整式方程是_________________________.14.十二边形内角和为 度.15.如果等腰梯形的一条底边长8cm ,中位线长10 cm ,那么它的另一条底边长是 cm .16.一个可以自由转动的转盘被等分成六个扇形区域,并涂上了相应的颜色,如图所示.随意转动转盘,转盘停止后,指针指向蓝色区域的概率是 .17.如图,在平行四边形ABCD 中,已知AB=5 cm , AC=12㎝,BD=6㎝,则△AOB 的周长为 ㎝.18.平行四边形ABCD 中,3,4==BC AB ,∠B =60°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AFE ,那么△AFE 与四边形AECD 重叠部分的面积是 .三、解答题:(本大题共7题,满分52分)19.(本题满分6分) 20.(本题满分6分)解方程: 011=-+-x x 解方程组:⎩⎨⎧=+=--320222y x y xy x(第16题图)蓝 蓝黄黄 红红。
2017-2018学年八年级(下)期末数学试卷含答案解析
2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
闵行区2017学年度第一学期初一年级数学学科
期末教学质量监控测试题
一、 选择题:(本大题共5题,每题2分,满分10分) 1、下列等式一定成立的是( )
A =
B =
C 3=±
D 、=9 2、下列一元二次方程有两个相等实数根的是( ) A .x 2
+3=0 B .x 2
+2x=0 C .(x+1)2
=0 D .(x+3)(x ﹣1)=0
3、下列四组点中,可以在同一个正比例函数图象上的一组点是( )
A .(2.-3),(-4,6)
B .(-2,3),(4,6)
C .(-2,-3),(4,-6)
D .(2,3),(-4,6)
4、下列函数中,自变量x 的取值范围是x ≥3的是( ) A .3
1
-=
x y B. 3
1-=x y C. 3-=x y D. 3-=x y
5、已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=
2
1
BC ,则△ABC 底角的度数为( ) A .45o
B .75o
C .15o
D .前述均可
二、填空题:(本大题共15题,每题2分,满分30分) 6、1-b a (0≠a )的有理化因式可以是____________.
7、计算:82
1
4
- = . 8、已知x=3是方程x 2
﹣6x+k=0的一个根,则k= .
9、关于x 的一元二次方程x 2
﹣2x+2+m 2
=0的根的情况是 . 10、在实数范围内分解因式x 2
+2x-4 .
11、已知矩形的长比宽长2米,要使矩形面积为55.25米2
,则宽应为多少米?设宽为x 米,
可列方程为 .
12、正比例函数x y 2-=图象上的两上点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则y 1 和y 2的大小关
系是______________.
13、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系及定义域是______________.
14、已知正比例函数y=mx 的图象经过(3,4),则它一定经过______________象限. 15、函数y
=
1
x
__________________象限. 16如图,在△ABC 中,∠B =47°,三角形的外角∠DAC 和∠ACF 于点E ,则∠ABE =______°.
17、若△ABC 的三条边分别为5、12、13,则△ABC 之最大边上的中线
长为 .
18、A 、B 为线段AB 的两个端点,则满足PA-PB=AB 的动点P 的轨迹是_____________________________.
19、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的
三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5, 1,2.则最大的正方形E 的面积是 .
20、如图,△ABC 中,AB=AC ,∠BAC=56°,∠BAC 的平分线与AB 的
垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠, 点C 与点O 恰好重合,则∠OEC 为 度.
三、(本大题共8题,第21--24题每题6分;第25--27题每题8分.第28题每题12分.满分60分)
21、计算:18)2
1
(|322|2+----.
22、解方程:0142
=+-x
x .
B
23、已知关于x 的一元二次方程0322
=+-m x x 没有实数根,求m 的最小整数值.
24、到三角形三条边距离相等的点,叫做此三角形的内心,由此我们引入 如下定义:到三角形的两条边距离相等的点,叫做此三角形的准内心. 举例:如图若AD 平分∠CAB ,则AD 上的点E 为△ABC 的准内心. 应用:(1)如图AD 为等边三角形ABC 的高,准内心P 在高AD 上,
且 PD =
AB 2
1
,则∠BPC 的度数为_____________度. (2)如图已知直角△ABC 中斜边AB=5,BC=3,准内心P 在BC 边上,求CP 的长.
25、前阶段国际金价大幅波动,在黄金价格涨至每克360元时,大批被戏称为“中国大妈”的非专业人士凭满腔热情纷纷入场买进黄金,但十分遗憾的是国际金价从此下跌,在经历了二轮大幅下跌后,日前黄金价格已跌至每克291.60元,大批 “中国大妈”被套,这件事说明光有热情但不专业也是难办成事的;同学们:你们现在14、15岁,正值学习岁月,务必努力学习。
下面请你用你已学的知识计算一下这二轮下跌的平均跌幅和反弹回买进价所需的涨幅。
(精确到1%)
26、如图,在坐标系中,正比例函数y=﹣x的图象与反比例函数的图象交于A、B两点.
①试根据图象求k的值;
②P为y轴上一点,若以点A、B、P为顶点的三角形是直角三角形,试直接写出满足条件的点P所有可能的坐标.
27、如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,
∠A=30°,BC=4,求图中阴影部分的面积。
28.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时直接写出AE与BF的位置关系和QE与QF的数量关系;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系并证明之;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.。