用LMS算法实现自适应均衡器的MATLAB程序
LMS算法自适应滤波器的MATLAB仿真与DSP实现
据存储器,64k字的程序存储器.具有高度并行性.用DSP特有的汇编语言实现以上3种LMS算法自适应滤波器.在TMS320C54X的指令系统中,单周期乘/累加指令MAC和循环寻址方式可使滤波器在一个周期内完成每个样值的计算.在实现LMS自适应算法时,由于要计算两组数对应项乘积的累加和,还有要采用循环寻址方式,因此,本文滤波器程序中采用DSP指令中的RPTZ和MAC结合循环寻址方式实现两累加和的运算.RPTZA,#F1LTERMAC℃OFF_DP+0%,*DATA_DP+0%,A其中,RPTZ指令用于将累加器A清零,将立即数10(本实验中滤波器阶数取11)装入到重复计数器,使下条MAC指令重复执行10+1次.MAC指令实现将两存储区数据的乘积累加到累加器A,使存储器的指针以循环寻址的方式指向下一个存储区.其中,FILTER,COFF_DP,DATA—DP分别为自适应滤波器的阶数,自适应滤波器系数缓冲区指针和输入样值缓冲区指针.为了提高算法效率,程序中使用了TMS320C54X特有的LMS指令,来快速实现本文的几种自适应滤波器.设计中,采用1500Hz的期望信号与312Hz的噪声信号叠加作为11个系数的自适应滤波器的一个输入信号,对于每一个时刻r/,,计算自适应滤波器的输出,误差信号是输出信号与期望信号的差值.固定步长LMS算法,变步长LMS算法和归一化LMS算法在SZ—EPP5416评估板上实现的结果如图3所示.70(d)归一化LMS算法滤波结果图3DSP实现结果Fig.3TherealizationDSP图3中,横坐标为仿真时间,竖坐标为波形幅值,图3(a)为输入含噪声的叠加信号,图3(b)为固定步长LMS算法滤波器实现结果,从图3(b)中可以看出,在滤波初始阶段,滤波结果不明显,输入的叠加信号经过自适应滤波器后在初始阶段噪声没有得到明显抑制,存在较大稳态误差,收敛速度比较慢,收敛速度和稳态误差都有待改善.图3(c)为变步长LMS算法滤波结果,从图3(c)中可以看出,在滤波初始阶段,稳态误差已得到改善,但仍有较小稳态误差浮动,初始收敛速度有所加快,输入的叠加信号经过自适应滤波器后噪声得到较明显抑制,滤波性能优于固定步长LMS算法.图3(a)为归一化LMS算法滤波结果,从图3(d)中可以看出,在滤波初始阶段,稳态误差已经得到明显改善,稳态误差浮动已经得到改善,输入的叠加信号经过自适应滤波器后噪声得到更明显抑制,更好的克服了固定步长存在的矛盾.可见,此滤波器滤波效果最为明显.4结论初始收敛速度与稳态误差是衡量自适应滤波算法性能优劣的两个重要技术指标,本文通过对固定步长,变步长LMS算法和归一化LMS算法自适应滤波器进行MATLAB仿真与DSP实现,比较滤波结果,证明了归一化LMS算法能够保证具有更快的收敛速度与更小的稳态误差,能有效去除不相关的独立噪声的干扰,克服了固定步长在增大初始收敛速度与减小稳态误差之间存在的矛盾,优化了自适应滤波器的性能,滤波效果明显.参考文献:【l】1ShireenW,LiT.ADSP-Nmedactivepowerfilterforlowvoltagedistributionsystems田.F_如2tricPowersyBtel璐Research,2008,78:1561—1567.【2】吕振肃,熊景松.一种改进的变步长LMS自适应算法【刀.信号处理,2008,24(1):144-146.LvzS,XiongJS.Anovdi呻r--ovedvariablestep-sizeLMS妇riⅡ姗田.SigllalProcessing,2008,24(1):144一146.【3】KukrerO.№caniIIA.Frequency-response-shapedLMSadaptivefilter田.Digitalsil}IalPro∞s*ing,2006,16:855—869.【4】叶永生,余容桂.一种新的自适应最小均方算法及其应用研究【刀.电测与仪表,2008,45(7):19—22.YeYS。
LMS算法MatLab实现
LMS算法MatLab实现LMS算法MatLab实现LMS⾃适应滤波器是使滤波器的输出信号与期望响应之间的误差的均⽅值为最⼩,因此称为最⼩均⽅(LMS)⾃适应滤波器。
其原理及推导见function [yn,W,en]=LMS(xn,dn,M,mu,itr)% LMS(Least Mean Squre)算法% 输⼊参数:% xn 输⼊的信号序列 (列向量)% dn 所期望的响应序列 (列向量)% M 滤波器的阶数 (标量)% mu 收敛因⼦(步长) (标量) 要求⼤于0,⼩于xn的相关矩阵最⼤特征值的倒数% itr 迭代次数 (标量) 默认为xn的长度,M<itr<length(xn)% 输出参数:% W 滤波器的权值矩阵 (矩阵)% ⼤⼩为M x itr,% en 误差序列(itr x 1) (列向量)% yn 实际输出序列 (列向量)% 参数个数必须为4个或5个if nargin == 4 % 4个时递归迭代的次数为xn的长度itr = length(xn);elseif nargin == 5 % 5个时满⾜M<itr<length(xn)if itr>length(xn) | itr<Merror('迭代次数过⼤或过⼩!');endelseerror('请检查输⼊参数的个数!');end% 初始化参数en = zeros(itr,1); % 误差序列,en(k)表⽰第k次迭代时预期输出与实际输⼊的误差W = zeros(M,itr); % 每⼀⾏代表⼀个加权参量,每⼀列代表-次迭代,初始为0% 迭代计算for k = M:itr % 第k次迭代x = xn(k:-1:k-M+1); % 滤波器M个抽头的输⼊y = W(:,k-1).' * x; % 滤波器的输出en(k) = dn(k) - y ; % 第k次迭代的误差% 滤波器权值计算的迭代式W(:,k) = W(:,k-1) + 2*mu*en(k)*x;end% 求最优时滤波器的输出序列yn = inf * ones(size(xn));for k = M:length(xn)x = xn(k:-1:k-M+1);yn(k) = W(:,end).'* x;endLMS函数的⼀个实例:%function main()close all% 周期信号的产⽣t=0:99;xs=10*sin(0.5*t);figure;subplot(2,1,1);plot(t,xs);grid;ylabel('幅值');title('it{输⼊周期性信号}');% 噪声信号的产⽣randn('state',sum(100*clock));xn=randn(1,100);subplot(2,1,2);plot(t,xn);grid;ylabel('幅值');xlabel('时间');title('it{随机噪声信号}');% 信号滤波xn = xs+xn;xn = xn.' ; % 输⼊信号序列dn = xs.' ; % 预期结果序列M = 20 ; % 滤波器的阶数rho_max = max(eig(xn*xn.')); % 输⼊信号相关矩阵的最⼤特征值mu = rand()*(1/rho_max) ; % 收敛因⼦ 0 < mu < 1/rho[yn,W,en] = LMS(xn,dn,M,mu);% 绘制滤波器输⼊信号figure;subplot(2,1,1);plot(t,xn);grid;ylabel('幅值');xlabel('时间');title('it{滤波器输⼊信号}');% 绘制⾃适应滤波器输出信号subplot(2,1,2);plot(t,yn);grid;ylabel('幅值');xlabel('时间');title('it{⾃适应滤波器输出信号}');% 绘制⾃适应滤波器输出信号,预期输出信号和两者的误差figureplot(t,yn,'b',t,dn,'g',t,dn-yn,'r');grid;legend('⾃适应滤波器输出','预期输出','误差');ylabel('幅值');xlabel('时间');title('it{⾃适应滤波器}');运⾏后的结果如下:。
MATLAB环境下ISI信道仿真及自适应均衡器设计程序说明书
MATLAB 环境下ISI 信道仿真及自适应均衡器设计程序说明一、系统模型二、ISI 信道仿真及LSM 算法自适应均衡器原理1、发送端和接收端滤波器的级联和在采样瞬间时的信道可用等效的离散时间FIR 信道滤波器来表示,Xn={0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088},n={-5,-4,…,5}。
2、基于MSE 准则的均衡器抽头系数的自适应算法为:^^1k k k k c c e y +=+∆其中^k c 代表抽头系数向量的估值,∆为迭代过程中的步长参数,k e 为误差信号,k y 代表在瞬时k 包含均衡器中2k+1接收信号值的行向量。
误差信号k e 表示为:k k k e a z =-;k z 为均衡器输出,k a 为已知信号序列。
最初用一已知伪随机序列{k a }在信道上将这个自适应均衡器进行训练。
在解调器端,均衡器用这个已知序列去调整它的系数,一旦初始调节完成,自适应均衡器就从一个训练模式切换到直接判决模式,这时:^k k k e a z =-,式中^k a 是检测器的输出。
为了确保收敛和在慢变化信道中好的跟踪能力,选择步长参数的一种经验公式是15(21)R k P ∆=+ 式中R P 代表接收到的信号加噪声的功率,它可以从接收信号中估计出。
三、仿真结果图四、结论分析从结果图中我们可以看出,在信噪比逐渐增大的过程中,未经均衡器均衡的差错率没有明显改善,可知系统中始终存在码间干扰造成的误码;经均衡器均衡后的差错率则有明显改善。
但我们同时也可以看到在信噪比较低情况下,均衡器均衡之后的误码率并没有明显改善,甚至没有未均衡的差错率低,这主要是因为噪声为随机信号,功率大时对源信号影响较大,而且均衡器不易跟踪;当我们把均衡器的步长调低后,跟踪能力增强,差错率降低。
附源程序代码:main_plot.mclear;clc;echo off;close all;N=10000; %指定信号序列长度info=random_binary(N); %产生二进制信号序列SNR_in_dB=8:1:18; %AWGN信道信噪比for j=1:length(SNR_in_dB)[y,len]=channel(info,SNR_in_dB(j)); %通过既有码间干扰又有白噪声信道numoferr=0; %初始误码统计数for i=len+1:N+len, %从第len个码元开始为真实信号码元if (y(i)<0), %判决译码elsedecis=1;end;if (decis~=info(i-5)), %判断是否误码,统计误码码元个数numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; % 未经均衡器均衡,得到的误码率end;semilogy(SNR_in_dB,Pe,'red*-'); %未经均衡器,误码率结果图hold on;delta_1=0.11; %指定自适应均衡器的步长delta_2=0.09; %指定自适应均衡器的步长for j=1:length(SNR_in_dB)y=channel(info,SNR_in_dB(j)); %通过信道z=lms_equalizer(y,info,delta_1); %通过自适应均衡器,并设置步长为0.11 numoferr=0;for i=1:N,if (z(i)<0),decis=-1;elsedecis=1;end;if (decis~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; % 经自适应均衡器均衡后,得到的误码率end;semilogy(SNR_in_dB,Pe,'blacko-'); %自适应均衡器均衡之后,误码率结果图hold on;for j=1:length(SNR_in_dB)y=channel(info,SNR_in_dB(j)); %通过信道z=lms_equalizer(y,info,delta_2); %通过自适应均衡器,并设置步长为0.09 numoferr=0;for i=1:N,if (z(i)<0),decis=-1;elsedecis=1;end;numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; % 经自适应均衡器均衡后,得到的误码率end;semilogy(SNR_in_dB,Pe,'blue.-'); %自适应均衡器均衡之后,误码率结果图hold on;xlabel('SNR in dB');ylabel('Pe');title('ISI信道自适应均衡系统仿真');legend('未经均衡器均衡','经自适应均衡器均衡,步长detla=0.11',...'经自适应均衡器均衡,步长detla=0.09');random_binary.m%产生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=-1; % 1/2的概率输出为-1elseinfo(i)=1; % 1/2的概率输出为1endend;channel.m%模拟既有码间干扰又有高斯白噪声的信道function [y,len]=channel(x,snr_in_dB)SNR=exp(snr_in_dB*log(10)/10); %信噪比真值转换sigma=1/sqrt(2*SNR); %高斯白噪声的标准差%指定信道的ISI参数,可以看出此信道质量还是比较差的actual_isi=[0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088];len_actual_isi=(length(actual_isi)-1)/2;len=len_actual_isi;y=conv(actual_isi,x); %信号通过信道,相当于信号序列与信道模型序列作卷积%需要指出,此时码元序列长度变为N+len-1,译码时我们从第len个码元开始到N+len个结束for i=1:2:size(y,2),[noise(i) noise(i+1)]=gngauss(sigma); %产生噪声end;y=y+noise; %叠加噪声gngauss.m%产生高斯白噪声function [gsrv1,gsrv2]=gngauss(m,sgma)if nargin == 0, %如果没有输入实参,则均方为0,标准差为1m=0; sgma=1;elseif nargin == 1, %如果输入实参为1个参数,则标准差为输入实参,均值为0 sgma=m; m=0;end;u=rand;z=sgma*(sqrt(2*log(1/(1-u))));u=rand;gsrv1=m+z*cos(2*pi*u);gsrv2=m+z*sin(2*pi*u);lms_equalizer.m%LSM算法自适应滤波器实现function [z]=lms_equalizer(y,info,delta)estimated_c=[0 0 0 0 0 1 0 0 0 0 0]; %初始抽头系数K=5;for k=1:size(y,2)-2*K,y_k=y(k:k+2*K); %获取码元,一次11个z_k=estimated_c*y_k'; %各抽头系数与码元相乘后求和e_k=info(k)-z_k; %误差估计estimated_c=estimated_c+delta*e_k*y_k; %计算校正抽头系数z(k)=z_k; %均衡后输出的码元序列end;。
基于LMS算法的无线信道自适应均衡器
基于LMS 算法的无线信道自适应均衡器一、 无线衰落信道与码间干扰无线信道容易受到噪声、干扰和其他随时间变化的信道因素的影响。
其中,大尺度传播效应(large-scale propagation effects ),包括路径损耗(path loss )和阴影(shadowing )效应,这类衰落比较容易克服。
而由多径引起的小尺度传播效应(small-scale propagation effects),特别是宽带信道下的频率选择性衰落,将使接收信号产生严重的码间干扰,如果不经处理,将无法得到原始信号的精确还原。
宽带通信系统下,如果信号带宽B 远远大于相干带宽c B ,那么在间隔超过相干带宽的两个频率点上的信道幅度特性近似独立。
根据相干带宽c B 与多径信号时延扩展m T σ 的关系,码元周期1s T B ≈ 远远小于1m T cB σ= 。
因此,信道的频率选择性衰落伴随着接收信号严重的码间干扰。
无线通信系统的设计必须以合适的复杂度解决这一问题。
二、 自适应均衡器大多实用的无线通信系统都采用时域均衡作为对抗ISI 的手段。
由于无线信道是时变的,在设计接收机的时候,通常并不能精确地了解信道的冲激响应,因此,所设计的均衡器应该能根据具体的信道特性进行自适应的调整。
自适应均衡器是由参数可调的数字滤波器和自适应算法两部分组成,如图1所示。
图1:自适应滤波器原理图 由图1可见,输人信号()x n 经过滤波器后输出()y n ,与参考信号()f n 相减,得出误差信号()e n ,然后通过自适应算法调节滤波器系数设置,按照某种算法准则判断误差信号()e n 是否达到最小,重复以上过程,滤波器逐渐掌握了输人信号与噪声规律,通过调节滤波器系数,达到最佳的滤波效果。
参数可调数字滤波器可以是FIR(Finite-duration impulse Response)数字滤波器或IIR(Infinite-duration impulse Response)数字滤波器,也可以是格形数字滤波器。
基于LMS算法的自适应对消器的MATLAB实现
基于LMS算法的自适应对消器的MATLAB实现LMS(Least Mean Squares)算法是一种常用于自适应信号处理领域的算法,用于实现自适应滤波器或者自适应对消器。
本文将介绍基于LMS 算法的自适应对消器的MATLAB实现。
自适应对消器是一种用于消除信号中的干扰或噪声的滤波器,它的系数会随着输入信号的变化而自适应地调整。
LMS算法是一种广泛使用的自适应算法,它通过最小化预测误差的平方来更新滤波器的权值。
该算法适用于非线性系统、时变系统以及参数不确定的系统。
在MATLAB中,我们可以使用以下步骤来实现基于LMS算法的自适应对消器:1.定义输入信号和期望输出信号:```matlabinput_signal = ... % 输入信号desired_output = ... % 期望输出信号```2.初始化自适应对消器的滤波器系数和步长:```matlabfilter_order = ... % 滤波器阶数filter_coefficients = zeros(filter_order, 1); % 滤波器系数初始化为零step_size = ... % 步长```3.对于每个输入样本,计算预测输出和误差,并更新滤波器的系数:```matlabfor k = 1:length(input_signal)%根据当前输入样本计算预测输出predicted_output = filter_coefficients' * input_signal(k,:);%计算当前误差error = desired_output(k) - predicted_output;%更新滤波器系数filter_coefficients = filter_coefficients + step_size * error * input_signal(k,:);end```4.最后```matlabfiltered_signal = filter_coefficients' * new_input_signal;```需要注意的是,LMS算法的性能和收敛速度与步长的选择有很大关系。
基于LMS算法的自适应对消器的MATLAB实现
N = 5; w = ones(N,1); u = 0.0026; y = zeros(length(t),1); for k = N:length(t) y(k) = n1(k-N+1:k)'*w; e(k) = d(k) - y(k); w = w + 2*u*e(k).*n1(k-N+1:k); end
% 滤波器阶数 % 初始பைடு நூலகம்滤波器权值 % 步长因子
% 跟新权值
% 图像化仿真效果 subplot(211),plot(t,x);title('被噪声污染的正弦信号'); subplot(212),plot(t,s,'k',t,e,'g'); % 对消噪声后, 误差信号即为对原始信号的估计 legend('原始正弦信号','自适应滤波后的信号'); axis([0 1 -1 1]);title('滤波效果');
图 1 自适应对消原理图 其中,滤波器的传输函数可以根据某一信号(这里为系统的输出信号)自动 调整,假定 s,n0 , n1 是零均值的平稳随机过程 zj = dj − yj = sj + n0 − yj 输出信号的均方值 E[zj2 ] = E[(dj − yj )2 ] = E[(sj + n0 − yj )2 ] = E sj2 + E[(n0 − yj )2 ] + 2E[sj (n0 − yj )] 由于 s 与n0 ,n1 不相关,因此 s 与yj 也不相关,则 E[zj2 ] = E sj2 + E[(n0 − yj )2 (1-3) (1-2) (1-1)
E sj2 表示信号的功率。由上面的表达式可以看出,要是输出信号只包含有用
基于LMS的自适应滤波器典型应用的MATLAB实现
LM S 算法一般包括滤波过程和自适应过程, 这两个过程一起工作组成一个反馈环。 图 1 中, x ( n) 为输入信号, y ( n ) 为输出信号, d ( n ) 为参 考信号或期望信号 , e( n) 是 d ( n) 与 y ( n) 的误 差信号。 自适 应滤波 器的滤 波系数 受误差 信号 e( n) 控制 , 根据 e( n) 的值和自适应算法自动调 整。 推导如下: 假设 x ( n) 是一长度为 M 的序列, 由图 1 有:
e2 ( n ) =
n= 0
[ d( n) k= 0
h( k ) x ( n
- k ) ] 这个平方误差的和 是这个滤波器系数的 二次函数。 因此 , 对于滤波器系数 { h ( k) } 的 最 小化就会产生一组线性方程。 为了求解这组方程 组, 有很多种算法, L MS 算法是其中的一种。 1. 2 LM S 算法的具体步骤 LM S 算法基本上是一种递推算法, 它用任意
2
选择的{ h( k ) } 的初始值作为开始 , 然后将每一新 的输入样本{ x ( n ) } 输入到这个自适应 FIR 滤波 器, 计算相应的输出 { y ( n ) } , 形成误差信号 e( n) = d ( n) - y ( n ) , 并按方程 h n ( k ) = h n- 1 ( k ) + ! N- 1 更新滤波器系数, 这里 称为步长参数, x ( n - k ) 是输入信号在时间 n 位于滤波器的第 k 个样 本, 而 e( n ) x ( n- k) 是对第 k 个滤波器系数的一 个梯度负值的近似( 估计 ) 。 2 MAT LAB 实现 M AT L AB 有专门的函数 ADAPT L MS 实现自 适应滤波 , ADAP T LM S 函数的用法为 : [ y , e, s ] = ADAPT LM S( x , d , s) 其中 y 为滤波器的输出信号 , x 为滤波器的 输入信号 , d 为期望信号, e 为误差信号, s 为包含 构体 [ y, e, S] = adaptlms( x , d, S) ; % 自适应滤 波 st em ( [ b. ∀ , S. coeffs. ∀ ] ) ; % 画出识 别的 系统和未知系统的参数。 e( n) x ( n - k ) , 0 ! k
lms算法自适应滤波器应用于自适应回声消除matlab基本步骤
lms算法自适应滤波器应用于自适应回声消除matlab基本步骤1.引言1.1 概述LMS算法自适应滤波器应用于自适应回声消除是一种有效的信号处理技术。
在通信系统、音频处理等领域,回声是一个常见的问题,它会导致信号质量下降和通信效果的恶化。
为了解决这个问题,自适应滤波器和LMS算法被广泛采用。
本文旨在介绍LMS算法自适应滤波器在自适应回声消除中的应用,并详细讲解其基本步骤。
首先,我们将对LMS算法和自适应滤波器进行介绍,包括其原理和基本概念。
然后,我们将探讨自适应回声消除的原理,并介绍LMS算法在回声消除中的具体应用。
通过研究本文,读者将了解到LMS算法自适应滤波器的基本原理和应用场景,以及如何利用该算法实现回声消除。
此外,我们还将对LMS算法自适应滤波器的性能进行分析和评价。
最后,我们将对本文进行总结,并展望其在未来的研究和应用中的发展前景。
通过本文的介绍,读者将具备一定的理论基础和实践经验,能够应用LMS算法自适应滤波器解决实际问题,提高信号处理的效果,从而为通信系统和音频处理领域的发展做出贡献。
文章结构部分应该包括对整篇文章的章节和内容进行简要介绍和概述。
以下是文章1.2文章结构部分的一个例子:1.2 文章结构本文主要介绍了LMS算法自适应滤波器在自适应回声消除中的应用,文章共分为以下几个部分:2. 正文2.1 LMS算法在本节中,我们将详细介绍LMS算法的原理和步骤。
我们将解释LMS算法是如何通过迭代过程来逼近系统的输入和输出之间的关系,从而实现滤波器的自适应调整。
2.2 自适应滤波器本节将重点介绍自适应滤波器的原理。
我们将分析自适应滤波器是如何通过反馈机制和参数调整来实现信号滤波的自适应性。
并探讨了自适应滤波器在实际应用中的一些典型场景。
2.3 自适应回声消除在本节中,我们将详细讨论回声消除的原理和技术。
我们将解释回声是如何产生的以及对通信信号产生的影响。
并介绍LMS算法在回声消除中的应用,以解决回声干扰带来的问题。
基于LMS算法的自适应均衡器的MATLAB实现
来的这些通信网络 ,重要的就是要检测对网络高质量运行起神经 控制作用的 No. 7 信令 ,关键技术之一就是要开发出适合中国国情 的信令测试仪 。
参考文献 :
[1 ] 糜正琨 ,陈锡生 1 七号公路信令系统[M]1 北京 :人民邮电出 版社 ,19961162201
[2 ] 杨晋儒 ,吴立贞 1No. 7 信令系统技术手册 [ Z] . 北京 : 人民邮 电出版社 ,20011
Abstract : This paper introduces the principle and structure of automatic adaptive equalizer based on LMS. As it has many dis2 advantages , MATLAB tool can be used to simutate the convergence rate and precision of au kinds of automatic adaptive equaliz2 er Under different informati channel madels. algorithm and the ways to realize it with MATLAB. Key words : automatic adaptive equalizer ; LMS algorithm ; MATLAB
(下转第 69 页)
董宏成 ,等 :No. 7 信令在智能网 ( IN) 中的应用
69
5 结束语
通信网的最终目标是实现无论任何人 (Whoever) 、在任何时间 (Whenever) 和任何地方 (Wherever) 、以任何通信方式 (Whatever) 与 世界上的任何人(Whoever) 进行通信 ,即所谓的“5W”,这就是个人 通信。个人通信将各类通信业务与人联系起来 ,通过各种终端设 备随时随地为个人提供各种通信服务 。而实现个人通信的关键技 术之一就是要建立发达的智能网。No. 7 信令是开放式的模块式 结构 ,它在智能网的交换通信中起着非常重要的作用。No. 7 信令 不仅仅在智能网、移动智能网中得到广泛应用 ,而且被应用到 IP 业务、ISDN 业务以及未来的第三代移动通信。要检测和维护好未
MATLAB环境下ISI信道仿真及自适应均衡器设计程序说明
MATLAB环境下ISI信道仿真及自适应均衡器设计程序说明MATLAB是一种广泛用于科学计算和工程领域的高级编程语言和环境。
在MATLAB环境下,可以进行ISI(Inter-Symbol Interference)信道仿真及自适应均衡器设计。
ISI是指传输过程中,当前符号对后续符号产生的干扰,会导致接收端的误码率增加。
自适应均衡器旨在消除ISI,提高信号的传输质量。
下面是一个示例程序,用于说明在MATLAB环境下进行ISI信道仿真及自适应均衡器设计的步骤和方法:1.生成发送信号:首先,定义发送信号的长度和发送符号序列。
可以使用随机数生成器或自定义发送符号序列。
例如,可以使用randi函数生成一个长度为N的随机二进制序列。
2.传输信号:将发送信号通过ISI信道传输。
可以使用MATLAB中的conv函数来模拟信号通过ISI信道,conv函数将发送信号与信道冲激响应进行卷积操作。
信道冲激响应可以根据具体的信道特性进行定义,例如,可以使用瑞利衰落信道或AWGN(Additive White Gaussian Noise)信道。
3.加入噪声:在传输信号的基础上添加噪声。
可以使用MATLAB中的awgn函数来添加高斯白噪声。
awgn函数通过指定信号的信噪比(SNR)来控制噪声的强度。
4.接收信号:接收被噪声污染的信号。
可以使用MATLAB中的corr函数来计算接收信号与发送信号之间的相关性,以便后续均衡器设计。
5.自适应均衡器设计:使用自适应均衡器算法来消除ISI。
在MATLAB环境中,有多种自适应均衡器算法可供选择,包括LMS(Least Mean Squares)、NLMS (Normalized Least Mean Squares)、RLS(Recursive Least Squares)等算法。
6.误码率评估:使用误码率作为性能指标来评估均衡器的性能。
可以通过比较接收信号与发送信号之间的误差来计算误码率。
LMS算法自适应滤波器MATLAB仿真作业
LMS 自适应滤波器仿真作业工程1班220150820 王子豪1. 步骤1)给定滤波器的长度M,步长µ和滤波器初始值h0;2)求数据向量X(n)=[x(n),x(n-1),...,x(n-M-1)]T,其中x(n)为输入信号,M为滤波器抽头系数;3)求输出y(n)=X(n)*h;4)计算误差值e(n)=d(n)-y(n);5)更新滤波器系数h(n+1)=h(n)+µe(n)X(n);6)重复以上步骤,知道h收敛到最优的滤波器系数h opt2. 仿真结果产生均值为0,方差为1的高斯白噪声e(n),经过系统H(z)后输出的x(n) 通过LMS滤波器进行自适应滤波,迭代次数为500次,总共做了100次求平均均方误差e(n)^2。
当u分别取0.002、0.005、0.008、0.01时,LMS自适应滤波器的性能曲线如图1所示:图1 不同u的取值下自适应滤波器的性能曲线对应的滤波器系数a1、a2学习曲线如图2、图3所示:图2 不同u的取值下自适应滤波器系数a1的学习曲线图3 不同u的取值下自适应滤波器系数a2的学习曲线3. 结果分析1.仿真结果得出:步长因子μ与收敛时间成反比,图形的收敛时间随着步长因子μ的增大而减小,这决定了LMS算法学习过程的快慢。
2.当步长因子μ增大时虽然收敛时间减少,但会导致失调增大,例如当μ等于0.01时,图形失调已经很严重,不符合预期要求了。
3.控制失调与加快收敛速度不能兼得。
4. Matlab程序代码clear;clc;N=2048; %信号的取样点数M=2; %滤波器抽头的个数iter=499; %迭代次数%初始化X_A=zeros(M,1); %X数据向量y=zeros(1,N); %预测输出en=zeros(1,iter); %误差向量enp=zeros(1,iter); %平均误差W=zeros(iter,M); %每一行代表一次迭代滤波器的M个抽头参数% 迭代计算u=0.002; %固定步长for j=1:100 %做100次实验取平均ex=randn(1,N); %噪声信号e(n)x=filter(1,[1,-1.6,0.8],ex); %经过系统H(Z)之后输出xd=x; %参考信号for k=M+1:iter %第k次迭代X_A=x(k-1:-1:k-M)';y(k)=W(k,:)* X_A; %滤波器的输出en(k)=d(k)-y(k) ; %第k次迭代的误差W(k+1,:)=W(k,:) + u*en(k)*X_A'; %滤波器权值计算的迭代式endenp=enp+en.^2;endenp=enp/100; %取平均误差figure(1);plot(enp);xlabel('迭代次数');ylabel('均方误差e(n)^2');title('当u=0.008时,连续做100次平均所得到的性能曲线');learn1=W(:,1);learn2=W(:,2);figure(2);subplot(2,1,1);plot(learn1);title('当u=0.008时的学习曲线');xlabel('迭代次数');ylabel('a1的学习曲线');subplot(2,1,2);plot(learn2);xlabel('迭代次数');ylabel('a2的学习曲线');。
基于LMS算法的自适应均衡器的MATLAB实现
基于LMS算法的自适应均衡器的MATLAB实现
尹丽丽;吴跃东
【期刊名称】《重庆理工大学学报(自然科学版)》
【年(卷),期】2004(018)003
【摘要】介绍了基于最小均方算法(LMS算法)的自适应均衡器的原理和结构,针对用硬件实现LMS算法的自适应均衡器存在的诸多缺点,利用MATLAB工具对各种结构形式的自适应均衡器在不同信道模型下的收敛速度和精度进行仿真,并介绍了该仿真程序.
【总页数】3页(P61-62,69)
【作者】尹丽丽;吴跃东
【作者单位】江苏省淮安信息职业技术学院,电子信息工程系,江苏,淮安,223001;江苏省淮安信息职业技术学院,电子信息工程系,江苏,淮安,223001
【正文语种】中文
【中图分类】TN914
【相关文献】
1.采用FPGA实现基于LMS算法的自适应均衡器的设计研究 [J], 金健;陈涛
2.基于归一化LMS算法自适应均衡器的Simulink实现 [J], 顾海燕;陈黎平
3.基于归一化LMS算法自适应均衡器的Simulink实现 [J], 顾海燕;陈黎平
4.自适应均衡器的LMS算法实现及其仿真 [J], 张雅彬;王融丽;刘昕
5.Normalzed LMS算法自适应均衡器设计与仿真实现 [J], 黄波
因版权原因,仅展示原文概要,查看原文内容请购买。
在Matlab中实现自适应滤波算法的实践指南
在Matlab中实现自适应滤波算法的实践指南引言:自适应滤波算法是一种重要的信号处理技术,在许多领域都得到了广泛的应用。
它通过实时调整滤波器参数来适应信号的变化,从而提高信号去噪和信号恢复的效果。
本文将介绍如何使用Matlab实现自适应滤波算法,并给出一些实践指导。
一、自适应滤波的原理自适应滤波算法的核心思想是根据信号的统计特性来调整滤波器的参数。
常见的自适应滤波算法包括LMS(最小均方)算法和RLS(递推最小二乘)算法。
LMS算法通过不断地调整滤波器的权值来使预测误差最小化;RLS算法则通过递推最小化滤波器的误差代价函数来更新权值。
这两种算法都可以实现自适应滤波的目的,但是在不同的应用场景中可能有差异。
二、Matlab中的自适应滤波函数在Matlab中,提供了一些方便实现自适应滤波算法的函数。
其中最常用的是`nlms`函数和`rls`函数。
`nlms`函数实现了LMS算法,可以用于实时的自适应滤波;`rls`函数实现了RLS算法,适用于更复杂的信号恢复任务。
三、使用`nlms`函数实现自适应滤波下面以一个简单的例子来说明如何使用`nlms`函数实现自适应滤波。
假设我们有一个带噪声的正弦信号,我们可以通过自适应滤波来去除噪声。
首先,我们生成一个1000个采样点的正弦信号,并添加高斯白噪声。
```matlabt = 0:0.1:100;x = sin(t);noise = 0.5*randn(size(t));y = x + noise;```接下来,我们使用`nlms`函数进行自适应滤波。
首先,我们需要初始化滤波器权重。
通常可以将初始权重设置为0或者一个很小的值。
然后,我们使用一个循环来逐步更新滤波器权重,直到达到滤波的要求。
```matlaborder = 10; % 滤波器阶数mu = 0.1; % 步长参数w = zeros(order+1, 1); % 初始化滤波器权重for i = order+1:length(y)input = y(i:-1:i-order); % 输入信号output = input' * w; % 滤波输出error = x(i) - output; % 预测误差w = w + mu * input * error; % 权重更新end```最后,我们可以将滤波器的输出与原始信号进行对比,评估滤波效果。
LMS算法实验报告(word文档良心出品)
基于LMS算法的自适应均衡器设计及MATLAB实现一.实验目的1.了解LMS算法的基本原理;2.掌握MATLAB的使用方法;3.初步体会分析问题、研究问题的基本步骤和方法,为以后科研积累经验。
二.实验原理1. LMS算法简介在移动通信环境中,多径传播效应和频率选择性衰落会导致传输信号失真。
失真主要表现为码间干扰,码间干扰是降低数字通信系统性能的一个主要因素。
在这样的信道条件下设计实际的数字通信系统以高速传输数据时,往往不能获得足够准确的信道频率响应用于调制和解调器的最佳滤波器的设计。
这是因为在每次通信时信道的路由不同,对于这样的信道,要设计最佳固定解调滤波器是不可能的。
在这样的情况下,应该采取信道均衡的方式以减小失真。
信道均衡是通信技术和信号处理的基本问题之一,其目的在于克服传送的符号码和符号码之间的相互干扰,这种干扰是因为信道的非理想特性造成的。
由于通信信道可能是未知和变化的,就需要自适应的调整均衡器,使得整个传输系统输出的符号码和符号码之间的干扰被消除。
信道均衡可以利用发送的训练信号来开始,这称为自动均衡。
在设计自适应均衡器的多种方法中,最小均方自适应算法(LMS)采用梯度搜索法,这使收敛到最优解远比其他算法快,而且该算法原理简单,实施容易,所以目前这一算法已广泛用于计算自适应滤波器的权系数。
2.LMS算法的原理(1)自适应滤波原理自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。
一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。
自适应滤波器的结构采用FIR或IIR结构均可,由于IIR滤波器存在稳定性问题,因此一般采用FIR滤波器作为自适应滤波器的结构。
图1给出了自适应滤波器的一般结构。
图1为自适应滤波器结构的一般形式,图中x(n)为输入信号,通过参数可调的数字滤波器后产生输出信号y(n),将输出信号y(n)与标准信号(或者为期望信号)d(n)进行比较,得到误差信号e(n)。
自适应均衡器的LMS实现
自适应均衡器的LMS实现为了对非理想信道进行补偿,通信系统中广泛采用信道均衡技术,以降低信道对信号的畸变,提升传输的可靠性。
本文介绍了基于最小均方算法(LMS算法)的自适应均衡器原理和结构,并利用MATLAB对其算法进行了仿真。
标签:自适应均衡器;LMS;MATLAB0 引言随着现代通信技术的快速发展,通讯环境越来越复杂,如何快速有效地解调信号是通信系统面临的一个新的课题。
在通信领域,自适应算法已经在信道均衡、频率跟踪与检测方面有了广泛的应用[1]。
研究表明,借助自适应滤波器的信号跟踪能力和抗干扰能力,能够使得基带信息的提取更加方便,获得比相干解调更好的性能。
1 自适应均衡器均衡器可以分为两种:时域均衡和频域均衡。
由于通信系统是复杂多变的,信道特性是不可预知的。
为了能够在接收端达到更好的接收效果,均衡器就需要具有良好的自适应性能,以满足信道的多变性。
如果在均衡器的设计中加入信号处理的自适应算法,则这一类均衡器即为自适应均衡器。
在通信系统当中,基带信号的复包络包含多种信号信息。
均衡器可以根据基带信号来实现对信道冲击响应的估计,而在接收端的信号解调过程当中则可以使用自适应算法。
2 LMS自适应均衡器信道均衡器可以使通信系统在通带外的增益近似为零,故附加了均衡器的信道在通带内的振幅是均匀的,而其它部分基本为零,而相位响应在通带内则为频率的线性函数。
最小均方(Least Mean Square,LMS)算法由Widrow于1960年提出[2]。
LMS算法的原理是使实际输出和期望输出的均方误差取得最小,而在整个逼近过程中需要不断地用输入信号估计梯度矢量,并调整系统的各个加权。
(1)其中,为输入信号,为输出信号,为权系数。
由Wiener滤波理论可知,滤波器的最优抽头系数矢量可表示为(2)式中是输入信号矢量的互相关函数,为与期望信号矢量的互相关函数。
当滤波器的抽头系数比较多时,直接求解式(1)是非常困难的。
将LMS算法应用到均衡器的设计当中,可以很好的简化设计流程,提高均衡器对信道特性的自适应性。
lms自适应滤波算法matlab
lms自适应滤波算法matlab
自适应滤波算法matlab
自适应滤波是指根据信号的变化情况来调整滤波器的参数,使滤波器适应不同信号环境,以最佳的抑制信号中噪声和其他干扰的能力。
自适应滤波在现实中有着广泛的应用,其中最常用的就是LMS(Least Mean Square, 最小均方误差)算法,它是一种收敛算法,可以快速、稳定地收敛,目前已经被广泛应用在信号处理、智能控制等领域。
LMS算法包含的组件有信号贡献函数、模型函数、误差更新函数和滤波函数。
信号贡献函数是用来计算信号当前帧和计算当前帧的贡献值的
函数,也就是当前信号的权重,这个参数的计算方法是通过积分或者是求和的方法来计算的。
模型函数是计算模型参数的函数,这个函数的输入是信号贡献函数的输出,也就是贡献值,输出就是系数矩阵,我们就是根据系数矩阵来计算出最优的参数,也就是滤波器的参数。
误差更新函数是计算模型误差的函数,也就是根据当前模型的输出和实际数据的误差来更新模型参数的函数,一般来说我们计算本次误差则可以估计新的模型参数和新的数据矩阵。
滤波函数就是使用模型参数来实现数据的滤波处理,它的目的是为了抑制信号的噪声,达到更好的信号质量。
- 1 -。
基于LMS自适应均衡器matlab仿真
毕业设计(2014届)题目一种基于OpenCV的摄像机标定方法学院物理电气信息学院专业电子信息工程年级2010学生学号12010245348学生姓名李鑫指导教师车进2014年5月6日摘要摄像机标定是在机器视觉和工业测量等领域中的一个基本步骤,也是从二维图像获取三维信息必不可少的。
为了提高传统摄像机标定方法的效率,在VC ++6.0平台下调用OpenCV1. 0库函数实现摄像机的标定。
此方法的简易性主要体现在不需要很多的优化算法,仅仅利用库函数中已有的标定函数便可实现。
并通过实验证明了此方法的可行性与有效性。
关键词:机器视觉;摄像机标定;传统标定; OpenCVAbstractIn the field of machine vision and industrial measurement,camera calibration is anelementary step which is also essential to obtain three dimensional information from a two dimensionalimage.In order to improve the efficiency of traditional camera calibration methods,under the VC ++ 6.0platform,this article actualized the camera calibration through calling the OpenCV1. 0 functions.Thissimplicity of the method is mainly reflected in that it does not need many optimaization algorithms and justuses the calibration functions in library to carry out experiments.And it proved the feasibility andeffectiveness of this method by doing the experiments.Key words: machine vision; camera calibration; traditional calibration; OpenCV目录第一章绪论 (1)1.1 研究背景和研究意义 (1)1.2 计算机立体视觉的研究现状 (3)1.3 摄像机标定概述及分类 (3)1.4 本文的研究内容 (4)第二章摄像机标定原理 (9)2.1 常用坐标系及变换 (9)2.2 摄像机模型 (11)2.3 非线性失真 (13)2.4 参数的求取 (14)第三章软件设计 (13)3.1 横向滤波器的选择 (27)3.2 算法迭代公式的推导 (28)3.3 计算机仿真 (29)3.3.1 LMS算法的算法流程 (29)3.3.2 LMS算法及其应用 (30)总结与结论 (36)参考文献 (37)致谢 (38)第一章绪论1.1 研究背景和研究意义计算机视觉研究的主要目的是使计算机系统具有类似于人类的视觉能力,获取三维场景的几何信息是其最基础的研究内容。
离散余弦变换最小均方算法(DCT-LMS)的自适应均衡MATLAB
离散余弦变换最小均方算法(DCT-LMS)的自适应均衡MATLAB(一)摘要均衡技术最早应用于无线电通信领域,主要用于消除由于信道响应引起的码间干扰(ISI )。
二十世纪六十年代后期,基于最小均方误差(LMS )算法的自适应均衡就已经得到了描述。
最小均方算法即LMS 算法由于实现简单且对信道统计特性变化具有稳健性,LMS 算法获得了极为广泛的应用。
LMS 算法是基于最小均方误差准则(MMSE )的维纳滤波器和最陡下降法提出的。
本次实训主要研究的是酋变换基于离散余弦变换[(DCT )的频域自适应算法-离散余弦变换最小均方算法(DCT-LMS ),在不增加算法计算的复杂度情况下,来改善自适应均衡滤波器的性能。
关键字:自适应均衡、LMS 、DCT-LMS(二)DCT-LMS 算法原理图1给出了变换域自适应滤波器的结构。
当采用DCT 变换酋矩阵对输入信号矢量进行酋变换[9][23],得到)()(n n Sx u = 其中S 是一M M ?的DCT 变换酋矩阵,即ISSHβ=式中,β 是一个大于0的标量,上标H 表示矩阵的共轭转置。
变换后的输入数据变为)(n u 。
对应地,酋变换后的权向量w 变为Sw w β1=它就是我们需要更新估计的离散余弦变换域自适应滤波器的权向量。
因此原预测误差)()()(?)()(n n d n yn d n e H x w -=-=可以改用变换后的输入数据向量)(n u 和滤波器权向量w写为)()()(n n d n e H u w-=将变换前后的输入数据向量)(n x 和)(n u 比较知,原信号向量的元素是)1(+-i n x 的移位形式,它们的相关性强,而TM n u n u n u n )](,),(),([)(21 =u 的元素则相当于M 信道的信号,可以期望,它们具有比原信号)(n x 更弱的相关性。
换言之,通过DCT酋变换,在变换域实现了某种程度的解相关。
)1+图1 变换域FIR横式滤波器从滤波器的角度讲,原来的单信道M阶FIR横向滤波器被变换成了一等价M信道滤波器,而原来的输入信号)(nx则相当于通过一含有M个滤波器的滤波器组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用LMS算法实现自适应均衡器的MATLAB程序用LMS算法实现自适应均衡器
考虑一个线性自适应均衡器的原理方框图如《现代数字信号处理导论》p.275
自适应均衡器应用示意图。
随机数据产生双极性的随机序列x[n],它随机地取+1
和-1。
随机信号通过一个信道传输,信道性质可由一个三系数FIR滤波器刻画,滤波器系数分别是0.3,0.9,0.3。
在信道输出加入方差为σ平方高斯白噪声,设计一个有11个权系数的FIR结构的自适应均衡器,令均衡器的期望响应为x[n-7],选择几个合理的白噪声方差σ平方(不同信噪比),进行实验。
用LMS算法实现这个自适应均衡器,画出一次实验的误差平方的收敛曲线,给出最后设计滤波器系数。
一次实验的训练序列长度为500。
进行20次独立实验,
画出误差平方的收敛曲线。
给出3个步长值的比较。
1. 仿真结果:
1
2
3
4
用LMS算法设计的自适应均衡器系数
1 2 3 4 5 6 7 8 9 10 11 序
号
0.0383 -0.0480 0.0565 -0.1058 0.2208 -0.5487 1.4546 -0.5681 0.2238 -0.0997 0.0367 20
次
-0.0037 0.0074 -0.0010 -0.0517 0.1667 -0.5112 1.4216 -0.5244 0.1668 -0.0597 0.0164 1
次
结果分析:
观察三个不同步长情况下的平均误差曲线不难看出,步长越小,平均误差越小,但收敛速度越慢,为了好的精度,必然牺牲收敛速度;当降低信噪比时,尽管20次平均仍有好的结果,但单次实验的误差曲线明显增加,这是更大的噪声功率对随机梯度的影响。
5
附程序:
1. LMS法1次实验
% written in 2005.1.13 % written by li**** clear; N=500;
db=20;
sh1=sqrt(10^(-db/10)); u=1;
error_s=zeros(1,N); for loop=1:1
w=0.05*ones(1,11)';
V=sh1*randn(1,N );
K=randn(1,N)-0.5;
x=sign(K);
for n=3:N;
M(n)=0.3*x(n)+0.9*x(n-1)+0.3*x(n-2);
end
z=M+V;
for n=8:N;
d(n)=x(n-7);
end
a(1)=z(1)^2;
for n=2:11;
a(n)=z(n).^2+a(n-1); end
for n=12:N;
a(n)=z(n).^2-z(n-11)^2+a(n-1);
end
for n=11:N;
z1=[z(n) z(n-1) z(n-2) z(n-3) z(n-4) z(n-5) z(n-6) z(n-7) z(n-8) z(n-9) z(n-10)]';
y(n)=w'*z1;
e(n)=d(n)-y(n);
w=w+u./(eps+a(n)).*z1.*conj(e(n));
end
error_s=error_s+e.^2; end
w
error_s=error_s./1; n=1:N;
plot(n,error_s);
xlabel('n (当u=1;DB=20时)');
ylabel('e(n)^2');
title('LMS法1次实验误差平方的均值曲线');
6
2.LMS法20次实验
% written in 2005.1.13 % written by li**** clear;
N=500;
db=20;
sh1=sqrt(10^(-db/10)); u=1;
error_s=zeros(1,N); for loop=1:20
w=0.05*ones(1,11)';
V=sh1*randn(1,N );
K=randn(1,N)-0.5;
x=sign(K);
for n=3:N;
M(n)=0.3*x(n)+0.9*x(n-1)+0.3*x(n-2);
end
z=M+V;
for n=8:N;
d(n)=x(n-7);
end
a(1)=z(1)^2;
for n=2:11;
a(n)=z(n).^2+a(n-1); end
for n=12:N;
a(n)=z(n).^2-z(n-11)^2+a(n-1);
end
for n=11:N;
z1=[z(n) z(n-1) z(n-2) z(n-3) z(n-4) z(n-5) z(n-6) z(n-7) z(n-8) z(n-9) z(n-10)]';
y(n)=w'*z1;
e(n)=d(n)-y(n);
w=w+u./(eps+a(n)).*z1.*conj(e(n));
end
error_s=error_s+e.^2; end
w
error_s=error_s./20; n=1:N;
plot(n,error_s);
xlabel('n (当u=1;DB=20时)');
ylabel('e(n)^2');
title('LMS法20次实验误差平方的均值曲线');
7。