纳米材料与技术期末考试知识点总结及参考答案
纳米材料科学与技术期末考试题答案
![纳米材料科学与技术期末考试题答案](https://img.taocdn.com/s3/m/b43baabea5e9856a5612609b.png)
催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂
提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化剂科学不可忽视的重
要研究课题。很可能给催化在工业上的应用带来革命性的变革。
(1)零维纳米材料(量子点):空间三个维度上尺寸均为纳米尺度(载流子在三维方向上的
运动都受到限制)——纳米颗粒、原子团簇(富勒烯)
由于电子在三个维度上的运动都受到限制,在k空间中只能存在离散的态(kx, ky, kz),相
当于倒空间中的一个点。最终能带变成类似原子的能态,仅仅存在离散的能级。
与体材料相比,量子点的带隙明显变宽,能量呈现量子化,电子态向高能方向移动。
形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。若控制隧道电流不变,则探针在垂直于样品
方向上的高度变化就能反映样品表面的起伏。因为隧道电流对针尖与样品间的距离十分敏
感。若控制针尖高度不变,通过隧道电流的变化可 得到表面电子态密度的分布。
第4页,共7页
北京大学工学院课程试卷
8. 你觉得纳米材料最有可能在哪个领域获得应用?或举例你看到的纳米材料的应用实例?
TiO2 对紫外光几乎不吸收。这些纳米氧化物对紫外光的吸收主要来源于它们的半导体性质,
即在紫外光照射下,电子被激发,由价带向导带跃迁引起的紫外光吸收。
(2)蓝移和红移现象
蓝移:与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向。
红移: 在一些情况下,粒径减小至纳米级时光吸收带相对粗晶材料呈现“红移”现象。即吸收
7. 什么是量子隧道效应?扫描隧道显微镜的隧道结是怎么形成的?
《纳米材料与技术》期末复习资料.docx
![《纳米材料与技术》期末复习资料.docx](https://img.taocdn.com/s3/m/fac6d9e5a8114431b80dd8cf.png)
一纳米材料的概念1、纳米材料广义:在一维、二维、三维的空间中始终处于1〜lOOnm范围的晶体或非晶体物质。
其性质完全不同于常规材料,而具有特殊性。
狭义:具有纳米结构的材料。
纳米材料与传统材料的主要差别:尺寸差异性能差异强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
2、纳米尺度临界尺寸:当颗粒的大小减小到某一尺寸时,材料的性能突变,与同样组分构成的常规材料性质不同,这个尺寸就是临界尺寸。
同一种纳米材料具有的不同性质所发生突变的临界尺寸不同;而同一种性能的不同纳米材料其临界尺寸也有很大差异。
3、纳米结构基本单元构成纳米结构块体、薄膜、多层膜以及纳米结构材料的基本单元有:团簇,纳米微粒、纳米管、纳米棒、纳米线、纳米纤维、纳米带、纳米环、纳米螺旋和同轴纳米电缆等。
它们至少一维尺寸非常小。
①团簇原子团簇是指几个至几百个原子的聚集体(粒径小于或等于lnm)o如Fen,Cu n S m, C n H m(n 和m都是整数)和碳簇(富勒烯C6o,C70等)等。
它介于单个原子与固体之间。
形状多样化:线状、层状、管状、洋葱状、骨架状、球状等。
原子团簇分类:A 一元原子团簇,如:Nan, Nin,C60, C70B 二元团簇,如:lnnPm,AgnSmC多元团簇,如:Vn(C6H6)mD原子簇化合物,是原子团簇与其它分子以配位键结合形成的化合(例如,某些含Fe-S团簇的蛋白质分子)。
②纳米微粒纳米微粒是指颗粒尺寸为纳米量级的超细微粒,它的尺度大于原子簇,小于通常的微粉。
尺寸一般在1〜lOOnm之间,纳米颗粒所含原子数范围在103-107个,也称它为超微粒子。
上田良二给纳米颗粒的定义是:用电子显微镜才能看到的颗粒称为纳米微粒。
通常,分散性好的纳米粒子在良溶剂中不会沉淀,而且有透光性。
③纳米棒、纳米带和纳米线纳米棒:长径比(长度与直径的比率),J、,截面为圆形。
一般小于20。
纳米线:长径比大,截面为圆形。
纳米技术期末试题及答案
![纳米技术期末试题及答案](https://img.taocdn.com/s3/m/7dbbea6fcec789eb172ded630b1c59eef9c79a50.png)
纳米技术期末试题及答案一、选择题1. 下列哪个选项描述了纳米技术的特点?a) 利用微观尺度材料的特性和行为;b) 利用纳米级制造工艺制造器件;c) 利用高分辨率显微镜观察微小物体;d) 利用计算机模拟纳米级材料的行为。
答案:a) 利用微观尺度材料的特性和行为;2. 纳米技术的应用领域包括以下哪些方面?a) 医疗保健;b) 环境治理;c) 电子设备;d) 灭火器材。
答案:a) 医疗保健;b) 环境治理;c) 电子设备;3. 纳米颗粒的特点是:a) 直径在1-100纳米之间;b) 可以裹挟其他物质进入细胞;c) 不会和细胞发生相互作用;d) 只能应用在制造业领域。
答案:a) 直径在1-100纳米之间;b) 可以裹挟其他物质进入细胞;4. 下列哪个选项描述了纳米技术与传统技术的区别?a) 纳米技术更安全;b) 纳米技术更经济;c) 纳米技术更高效;d) 纳米技术更环保。
答案:c) 纳米技术更高效;5. 纳米材料的优越性体现在哪些方面?a) 机械强度更高;b) 光学性质更佳;c) 磁性能更强;d) 电导率更大。
答案:a) 机械强度更高;b) 光学性质更佳;c) 磁性能更强;d) 电导率更大;二、简答题1. 纳米技术在医疗保健领域的应用有哪些?请简要介绍一种应用,并说明其优势。
答案:纳米技术在医疗保健领域的应用包括药物传递、肿瘤治疗、生物传感器等。
以药物传递为例,纳米材料可以作为药物的载体,通过调整纳米材料的性质,如尺寸、表面性质等,可以实现药物的进一步优化,提高药物的溶解性和生物利用度。
此外,纳米粒子还可以定向输送药物到靶位点,减轻药物对正常组织的损伤,提高治疗效果。
优势:纳米药物传递系统具有高度选择性和生物相容性,可以提高药物的吸收率和药物靶向性,减少给药剂量和副作用,提高患者的生活质量。
2. 简要介绍纳米材料在环境治理中的应用。
答案:纳米材料在环境治理中具有广泛的应用,包括重金属污染治理、水处理和空气净化等方面。
高中化学纳米材料知识点归纳总结
![高中化学纳米材料知识点归纳总结](https://img.taocdn.com/s3/m/25ff5201b207e87101f69e3143323968001cf472.png)
高中化学纳米材料知识点归纳总结纳米材料是指尺寸在纳米尺度(1-100纳米)范围内的材料,具有特殊的物理、化学和生物学性质。
近年来,随着纳米技术的快速发展,纳米材料在许多领域中的应用越来越广泛。
本文将对高中化学中与纳米材料相关的知识点进行归纳总结。
一、纳米材料的定义与分类纳米材料是尺寸在纳米尺度范围内的材料,可以按材料种类进行分类,如纳米金属、纳米氧化物、纳米碳材料等;也可以按结构特点进行分类,如核壳结构纳米粒子、纳米线、纳米球等。
二、纳米材料的制备方法1. 物理方法:包括溶剂热法、溶胶凝胶法、气相沉积法等。
2. 化学方法:包括溶胶凝胶法、热分解法、水热法等。
3. 生物合成法:利用生物体外或体内合成纳米材料,如纳米金、纳米银的生物还原法。
三、纳米材料的性质1. 尺寸效应:纳米尺度下材料的性质发生显著变化,如界面增强效应、量子效应等。
2. 表面效应:纳米材料的比表面积大,导致其表面活性增强,与其他物质的相互作用更明显。
3. 光学性质:纳米材料具有特殊的光学性质,如表现出的颜色与粒子尺寸有关的“量子尺寸效应”。
四、纳米材料的应用1. 催化剂:纳米金属颗粒在催化反应中具有较大的比表面积和特殊的表面性质,能够提高催化反应速率。
2. 电子器件:纳米电子材料被广泛应用于电子器件中,如纳米晶体管、纳米电池等。
3. 医学领域:纳米材料在医学领域有广泛应用,如纳米药物传输系统、纳米诊断剂等。
五、纳米材料的安全性纳米材料在应用过程中,其安全性备受关注。
纳米材料对人体健康和环境有潜在的风险,需要进行安全评估和监测。
六、纳米材料的前景与挑战纳米材料在科学研究和应用领域具有巨大的潜力,但同时也面临一些挑战,如制备工艺的复杂性、安全性等问题需要解决。
综上所述,纳米材料是指尺寸在纳米尺度范围内的材料,具有特殊的性质和应用前景。
了解和掌握纳米材料的制备方法、性质和应用对于推动纳米技术的发展具有重要意义。
我们期待纳米材料在各个领域中的应用能够为人类社会带来更多的创新和进步。
纳米知识点与答案(DOC)
![纳米知识点与答案(DOC)](https://img.taocdn.com/s3/m/be6af3f99b89680202d82514.png)
第一章1、纳米科学技术概念纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。
2、纳米材料的定义把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。
即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。
“功能”概念,即“量子尺寸效应”。
3、纳米材料五个类(维度)0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料4、0、1、2维材料定义、例子0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。
富勒烯、胶体微粒、半导体量子点1维材料—线径为1—100 nm的纤维(管)。
纳米线、纳米棒、纳米管、纳米丝2维材料—厚度为1 —100 nm的薄膜。
薄片、材料表面相当薄的单层或多层膜5、纳米材料与传统材料的主要差别尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。
比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。
性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。
比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
6、金属纳米粒子随粒径的减小,能级间隔增大7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比8、纳米材料的四大基本效应尺寸效应,介电限域效应,表(界)面效应,量子效应9、什么是量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。
10、什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
纳米材料与器件期末复习资料
![纳米材料与器件期末复习资料](https://img.taocdn.com/s3/m/da23535de518964bcf847cd4.png)
一、级时,超微颗粒的能级离散化、能隙变宽,当平均能级间距 大于热能、 磁能、 静电能等时, 超微颗粒就会呈现一系列与宏观物体显著不同的反常特性 (声、 光、热、电、磁等) ,称之为量子尺寸效应。 影响:不透明的物质变为透明(Cu);惰性材料变成催化剂(Pt);稳定的材料变得易燃(Al); 在室温下的固体变成液体(Au);绝缘体变成导体(Si);导体变为绝缘体(Ag)。 小尺寸效应:当纳米粒子的尺寸与光波波长、徳布罗意波长、超导态的想干长度或与磁场穿 透深度相当或更小时, 晶体周期性边界条件将被破坏, 非晶态纳米微粒的颗粒表面层附近的 原子密度减小,导致声、光、热、电、磁等特性出现异常的现象,称之为小尺寸效应。 影响: 原有晶体周期性边界条件被破坏,物性也就表现出新的效应,如从磁有序变为磁无序,磁矫 顽力变化,金属熔点下降等。不透明的物质变为透明(Cu);惰性材料变成催化剂(Pt);稳定 的材料变得易燃(Al);在室温下的固体变成液体(Au);绝缘体变成导体(Si)。 1.金属纳米相材料的电阻增大与临界尺寸现象 (电子平均自由程)动量 2.宽频带强吸收性质 (光波波长) 3.激子增强吸收现象 (激子半径) 4.磁有序态向磁无序态的转变(超顺磁性) (各向异性能) 5.超导相向正常相的转变 (超导相干长度) 6.磁性纳米颗粒的高矫顽力 (单畴临界尺寸) 表面效应: 纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加, 粒 子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化,称之为表面 效应。 1.表面化学反应活性(可参与反应)。 2.催化活性。 3.纳米材料的(不)稳定性。 4.铁磁质的居里温度降低。 5.熔点降低。 6.烧结温度降低。 7.晶化温度降低。 8.纳米材料的超塑性和超延展性。 9.介电材料的高介电常数(界面极化) 。 10.吸收光谱的红移现象。 宏观量子隧道效应: 微观粒子具有贯穿势垒的能力称为隧道效应。微观的量子隧道效应可 以在宏观物理量中例如微粒的磁化强度, 量子相干器件中的磁通量等表现出来, 称为宏观量 子隧道效应。(宏观量子所产生的隧道效应) 库伦阻塞:当导体尺度进入纳米尺度时,充放电过程很难进行,或充、放电过程变得不能连 续进行,即体系变得电荷量子化,这个能量成为库伦堵塞能,充入一个电子所需的能量也称 为库伦堵塞能。通常把小体系中这种单电子运输行为,成为库伦堵塞效应。 磁阻效应:磁电阻(MR)效应是指导体或半导体在磁场作用下其电阻值发生变化的现象。 正常磁电阻效应来源于磁场对电子的洛仑兹力 ,导致载流子运动发生偏转或产生螺旋运动, 使电子碰撞几率增加,电阻增大。 巨磁电阻效应:只有在纳米尺度的薄膜中才能观测到,因此纳米材料以及超薄膜制备技术的
纳米材料与技术期末考试知识点总结及参考答案
![纳米材料与技术期末考试知识点总结及参考答案](https://img.taocdn.com/s3/m/c311cd8bf524ccbff1218432.png)
1.纳米科技的含义、意义。
含义:纳米科技的核心思想是构造纳米尺度的材料或结构,发掘其不同凡响的特性并对此予以研究,以致最终能很好地被人们所应用。
将这种思想和相关方引入到各个领域,便形成形形色色的各类纳米科技研发领域,主要包括:纳米体系物理学;纳米体系化学;纳米材料学;纳米材料学;纳米生物学;纳米机械学;纳米加工制造学;纳米表征测量学;纳米医学等。
意义:纳米技术是20世纪90年代出现的一门新兴技术。
它是在0.10至100纳米(即十亿分之一米)尺度的空间内,研究电子、原子和分子运动规律和特性的崭新技术。
当空间尺度足够小的时候,以分子或者更小的单位排列的时候,就会发现很多比现实世界更为奇异的事情。
这是因为运用纳米技术之后,分子或者原子等粒子的结构会发生很大的改变,当然也就会产生更多的原来不具备的特性。
比如说运用纳米技术之后,衣服脏了只需要用清水洗一下就干净了,比如玻璃杯摔不坏,当然这是普通的日常生活的应用。
对于高端的技术来讲,纳米技术更为重要。
纳米技术在超导的应用方面,集成电路的发展方面都具有重要的地位。
例如后者,大家都知道CPU是一种超大规模的集成电路,现在很普遍的P4技术是运用0.09微米的工艺来书写的;当然CPU的集成度还需要提高,运算速度还需要提高等等,这就要求在电路已经达到极限的情况下更注意电路的宽度的提高了。
未来CPU的发展还需要依靠纳米技术来改进和提高了。
纳米技术是一种新型技术,它是建立在微观的技术基础之上的,所以需要投入的资金和技术都是非常大的,但是一旦达到工业生产之后它所创造的产值往往是异常丰富的。
2.纳米材料的分类、定义、制备路径。
分类:定义:纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。
制备路径:(1)从上到下把大的尺度减小到纳米尺寸:破碎球磨蚀刻光刻煅烧喷雾法(2)从下到上把分子尺寸累积成纳米尺寸:蒸发凝结气相沉积共沉淀法3.几个效应。
(1)量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO)由准连续变为离散能级,同时能隙变宽的现象,称为量子尺寸效应。
纳米材料与技术试卷参考答案
![纳米材料与技术试卷参考答案](https://img.taocdn.com/s3/m/f4810c22aaea998fcc220e58.png)
中 国 海 洋 大 学 命 题 专 用 纸(首页) 06-07学年第2学期 试题名称:纳米材料与技术期末考试题(A卷)答案 共4页 第1页 一、填空:每空1分,总共30分 1. 1~100nm 。
2. 运动和变化。
3. 操纵和加工。
4. 低维材料。
5. 2,1,2。
量子线。
6. 材料的密度偏低。
7. 纳米晶粒容易长大,相变。
8. 晶界、相界、畴界。
9. 水溶液溶胶-凝胶法,醇盐溶胶-凝胶法。
10. |Q| > e/2。
11. 磁性颗粒、表面活性剂,基液。
12. 短波,蓝移。
13. 一定波长光。
荧光。
磷光。
14. 扶手椅型、锯齿型、螺旋型。
15. 恒电流模式,恒高度模式。
二、简答题:每题5分,总共45分 1、 答: 主要有两种技术:Top down (由上而下)的方法和Bottom up (由下而上)的方法(2分); Top down 由上而下的方法是一种采用物理和化学方法对宏观物质的超细化的纳米科技的研究方法。
Bottom up 由下而上的方法,以原子、分子、团簇等为基元组装具有特定功能的器件、材料。
纳米科技的最终目的是以原子、分子为起点,去制造具有特殊功能的产品。
授课 教师 命题教师或命题负责人签字 院系负责人签字 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 装 订 线 * * * * * * * * ** * *中 国 海 洋 大 学 命 题 专 用 纸(附页) 06-07学年第2学期 试题名称:纳米材料与技术期末考试题(A卷 共4页 第2页 2、答:纳米材料通常按照维度进行分类。
超细粒子,团簇 → 0 维材料 纳米线或管 → 1 维纳米材料 纳米膜 → 2 维纳米材料 纳米块体 → 3 维纳米材料 3、答: 1)尺度上:分别为10-9~10-7m, 10-7~10-5m, <10-9m 2)物理与化学性质上: (1)微细颗粒不具有量子效应,纳米颗粒有量子效应; (2)团簇有量子效应和幻术效应,而纳米颗粒不具有幻数效应。
湘潭大学纳米材料期末总结
![湘潭大学纳米材料期末总结](https://img.taocdn.com/s3/m/e6274633cfc789eb172dc844.png)
简答题、简述题1) 为什么扫描探针显微镜被称为纳米科技的“眼”和“手”?所谓“眼”即可利用SPM直接观察原子,分子以及纳米粒子间相互作用与特性,表征纳米器件。
“手”是指SPM可用于移动原子,分子构造纳米结构,有纳米尺度,研究他们之间的相互作用。
2) 纳米微粒表面改性的方法有哪些?常见的表面修饰方法有:①物理修饰法 1、物理包敷法 2、机械球磨法②化学修饰法★化学偶联法★酯化反应法★表面接枝改性3)纳米结构与纳米材料有什么区别与联系?纳米材料(nano-material ),通常是指构成物质的“单元”的三维尺寸中至少有一维是纳米级的(称之为“纳米单元”);纳米结构(Nano-Structure):是指以纳米尺度的物质单元为基元,按一定规律排列,形成一维的、二维的及三维的阵列,这种结构体系就称为“纳米结构”。
4 )如果合成纳米Al O 粉末,将选用哪种合成技术?如何合成纳米Al O 膜?铝铵钒和碳酸氢铵为原料,用化学法合成尺寸均一,颗粒细小分散的碱式碳酸铝铵前驱沉淀物,进而制备纳米氧化铝粉体的工艺,数据表明:反应物的混合方式对前驱沉淀物及粉体的尺寸和形貌都有很大的影响,用先缓慢滴加,在反应物充分混合且过饱和度达到一定程度的基础上,再将沉淀剂雾化加入的工艺有利于得到尺寸均一,细小分散的NH4Al(OH)2CO3胶体,经灼烧最终制得平均粒径为15nm左右的α-Al2O3粉体。
高纯铝箔( 99. 99% 以上) 经退火(N2气, 500°C) 后,依次用三氯乙烯溶液、氢氧化钠溶液、去离子水清洗干净,在氯酸中进行电化学抛光处理后,于1. 2mol/L H2SO4电解液中进行恒电位阳极氧化, 然后用去离子水冲洗,氮气吹干,即得到所需的AAO 模板。
5)什么是超导临界温度?何谓巨磁电阻效应?超导临界温度:超导体从正常态转变为超导态(零电阻)时的温度,实际上也就是把cooper电子对解体开来的温度,对于转变温度范围较宽的超导体,临界温度可分为起始转变温度、中转变温度和零电阻温度。
纳米知识点与答案讲解
![纳米知识点与答案讲解](https://img.taocdn.com/s3/m/1211bc2910661ed9ad51f35a.png)
第一章1、纳米科学技术概念纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。
2、纳米材料的定义把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。
即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。
“功能”概念,即“量子尺寸效应”。
3、纳米材料五个类(维度)0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料4、0、1、2维材料定义、例子0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。
富勒烯、胶体微粒、半导体量子点1维材料—线径为1—100 nm的纤维(管)。
纳米线、纳米棒、纳米管、纳米丝2维材料—厚度为1 —100 nm的薄膜。
薄片、材料表面相当薄的单层或多层膜5、纳米材料与传统材料的主要差别尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。
比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。
性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。
比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
6、金属纳米粒子随粒径的减小,能级间隔增大7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比8、纳米材料的四大基本效应尺寸效应,介电限域效应,表(界)面效应,量子效应9、什么是量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。
10、什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
(完整版)纳米知识点与答案
![(完整版)纳米知识点与答案](https://img.taocdn.com/s3/m/dff71881f18583d048645954.png)
第一章1、纳米科学技术概念纳米科学技术是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。
2、纳米材料的定义把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。
即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。
“功能”概念,即“量子尺寸效应”。
3、纳米材料五个类(维度)0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料4、0、1、2维材料定义、例子0维材料—尺寸为纳米级(100 nm)以下的颗粒状物质。
富勒烯、胶体微粒、半导体量子点1维材料—线径为1—100 nm的纤维(管)。
纳米线、纳米棒、纳米管、纳米丝2维材料—厚度为1 —100 nm的薄膜。
薄片、材料表面相当薄的单层或多层膜5、纳米材料与传统材料的主要差别尺寸:第一、这种材料至少有一个方向是在纳米的数量级上。
比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。
性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。
比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
6、金属纳米粒子随粒径的减小,能级间隔增大7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比8、纳米材料的四大基本效应尺寸效应,介电限域效应,表(界)面效应,量子效应9、什么是量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO),能隙变宽的现象,均称为量子尺寸效应。
10、什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
2024纳米材料与技术期末考试复习
![2024纳米材料与技术期末考试复习](https://img.taocdn.com/s3/m/74a208bf5122aaea998fcc22bcd126fff7055d24.png)
《纳米材料与技术》期末复习第一章:纳米科学技术的发展历史——1、1959年12月,美国物理学家费曼在加州理工学院召开的美物理学会会议上作了一次富有想象力的演说“最底层大有发展空间”,费曼的幻想点燃纳米科技之火。
2、1981年比尼格与罗勒尔独创了看得见原子的扫描隧道显微镜(STM)。
3、1989年在美国加州的IBM试验内,依格勒博士采纳低温、超高真空条件下的STM操纵着一个个氙原子,实现了人类另一个幻想——干脆操纵单个原子。
4、1991年,日本的饭岛澄男教授在电弧法制备C60时,发觉氩气直流电弧放电后的阴极碳棒上发觉了管状结构的碳原子簇,直径约几纳米,长约几微米碳纳米管。
5、1990年在美国东海岸的巴尔的摩召开其次届国际STM会议的期间,召开了第一届国际纳米科学技术会议,该会议标记纳米科学技术的诞生。
其次章:1、纳米材料的分类:按功能分为半导体纳米材料、光敏型纳米材料、增加型纳米材料和磁性纳米材料;按属性分为金属纳米材料、氧化物纳米材料、硫化物纳米材料、碳(硅)化合物纳米材料、氮(磷)等化合物纳米材料、含氧酸盐纳米材料、复合纳米材料。
按形态分为纳米点、纳米线、纳米纤维和纳米块状材料。
2、纳米材料的四个基本效应:小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应。
1)量子尺寸效应与纳米材料性质a.导电的金属在制成超微粒子时就可以变成半导体或绝缘体;绝缘体氧化物相反。
b.磁化率的大小与颗粒中电子是奇数还是偶数有关。
c.比热亦会发生反常变更,与颗粒中电子是奇数还是偶数有关。
d.光谱线会产生向短波长方向的移动。
e.催化活性与原子数目有奇数的联系,多一个原子活性高,少一个原子活性很低。
2)小尺寸效应的主要影响:a.金属纳米相材料的电阻增大与临界尺寸现象(电子平均自由程)动量b.宽频带强汲取性质(光波波长)c.激子增加汲取现象(激子半径)d.磁有序态向磁无序态的转变(超顺磁性)(各向异性能)e.超导相向正常相的转变(超导相干长度)f.磁性纳米颗粒的高矫顽力(单畴临界尺寸)3)表面效应及其影响:表面化学反应活性(可参加反应)、催化活性、纳米材料的(不)稳定性、铁磁质的居里温度降低、熔点降低、烧结温度降低、晶化温度降低、纳米材料的超塑性和超延展性、介电材料的高介电常数(界面极化)、汲取光谱的红移现象。
纳米材料考试参考答案
![纳米材料考试参考答案](https://img.taocdn.com/s3/m/4db3028783d049649b6658a0.png)
纳米材料考试参考答案1. 纳米科学技术(Nano-ST): 20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术。
2纳米材料•把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料。
•即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料。
•纳米材料有两层含义:其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性。
量子尺寸效应3 巨磁电阻效应: 1988年,法国的费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍,他把这种效应命名为巨磁电阻效应4 “自上而下” (top down) :是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产品微型化。
5 “自下而上” (bottom up) :是指以原子分子为基本单元, 根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求, 降低环境污染。
6 量子器件:利用量子效应而工作的电子器件称为量子器件7 纳米材料与传统材料的主要差别:第一、这种材料至少有一个方向是在纳米的数量级上。
比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内。
第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象。
8 纳米科技的分类纳米科技从研究内容上可以分为三个方面:•纳米材料纳米材料是指材料的几何尺寸达到纳米级尺度, 并且具有特殊性能的材料。
纳米材料与技术基础知识单选题100道及答案解析
![纳米材料与技术基础知识单选题100道及答案解析](https://img.taocdn.com/s3/m/c70683aa0408763231126edb6f1aff00bfd57047.png)
纳米材料与技术基础知识单选题100道及答案解析1. 纳米材料的尺度范围通常是()A. 1-100 纳米B. 1-1000 纳米C. 10-100 纳米D. 10-1000 纳米答案:A解析:纳米材料的尺度范围通常是 1 - 100 纳米。
2. 下列不属于纳米材料特性的是()A. 量子尺寸效应B. 表面效应C. 宏观量子隧道效应D. 超导效应答案:D解析:超导效应不是纳米材料特有的特性。
3. 纳米技术在以下哪个领域应用最广泛()A. 医疗B. 电子C. 能源D. 以上都是答案:D解析:纳米技术在医疗、电子、能源等众多领域都有广泛的应用。
4. 纳米颗粒的制备方法不包括()A. 物理气相沉积法B. 化学气相沉积法C. 溶胶- 凝胶法D. 电解精炼法答案:D解析:电解精炼法通常不是用于制备纳米颗粒的方法。
5. 以下哪种材料不属于纳米复合材料()A. 聚合物/纳米黏土复合材料B. 金属/陶瓷纳米复合材料C. 纯金属材料D. 碳纳米管增强复合材料答案:C解析:纯金属材料一般不属于纳米复合材料的范畴。
6. 纳米材料的光学性质表现为()A. 蓝移现象B. 红移现象C. 不发生移动D. 随机移动答案:A解析:纳米材料的光学性质常表现为蓝移现象。
7. 纳米材料的热学性质主要体现在()A. 比热容降低B. 比热容升高C. 热导率不变D. 热膨胀系数不变答案:A解析:纳米材料的比热容通常降低。
8. 下列哪种仪器常用于纳米材料的表征()A. 扫描电子显微镜B. 红外光谱仪C. 原子吸收光谱仪D. 气相色谱仪答案:A解析:扫描电子显微镜常用于观察和表征纳米材料的形貌和结构。
9. 纳米材料的磁学性能与常规材料相比()A. 相同B. 更弱C. 更强D. 不确定答案:D解析:纳米材料的磁学性能受多种因素影响,不能简单地与常规材料比较确定其强弱。
10. 碳纳米管属于()A. 零维纳米材料B. 一维纳米材料C. 二维纳米材料D. 三维纳米材料答案:B解析:碳纳米管在空间上只有一个维度在纳米尺度,属于一维纳米材料。
材料力学纳米材料知识点总结
![材料力学纳米材料知识点总结](https://img.taocdn.com/s3/m/560f7c27a9114431b90d6c85ec3a87c240288a10.png)
材料力学纳米材料知识点总结纳米材料作为当前材料科学领域的热点之一,以其独特的物理、化学和力学特性,引起了广泛的关注和研究。
本文将对纳米材料的材料力学方面的知识点进行总结。
一、纳米材料的定义及特点纳米材料是指至少在一个尺寸方向上具有1-100纳米尺度的材料。
与宏观材料相比,纳米材料表现出许多不同的特点,包括尺寸效应、表面效应、成分效应等。
其中,尺寸效应是纳米材料最显著的特点之一,即当材料尺寸缩小至纳米尺度时,其物理和化学性质会发生明显的变化。
二、纳米材料的力学性质1. 纳米材料的力学强度增强纳米材料具有较高的力学强度,通常比宏观材料强度高出数倍甚至数十倍。
这是由于纳米材料的晶粒尺寸较小,晶界密度较高,存在较多的位错和缺陷,增强了材料的韧性和强度。
2. 纳米材料的韧性和塑性变形能力尽管纳米材料具有高强度,但其韧性和塑性变形能力相对较低。
这是因为纳米材料受到尺寸效应和表面效应的限制,晶界与界面对其塑性变形起到了限制作用。
3. 纳米材料的疲劳寿命纳米材料呈现出优异的疲劳寿命,其原因在于其晶粒尺寸小,能够有效地阻止位错的传播,减缓材料的疲劳破坏过程。
4. 纳米材料的热机械行为纳米材料在高温下表现出不同于宏观材料的热机械行为,其热膨胀系数和热导率等热学性质也会因尺寸效应而发生变化。
三、纳米材料的应用1. 纳米材料在材料加工中的应用由于纳米材料具有较高的强度和韧性,以及特殊的表面效应,因此可用于提高材料的耐磨损性、防腐蚀性和抗氧化性。
此外,纳米材料还可用于增强复合材料的力学性能。
2. 纳米材料在电子器件中的应用纳米材料的尺寸效应和电子结构使其在电子器件中有广泛的应用前景。
如纳米颗粒可用于制备高性能的纳米电子器件和记忆存储器件,纳米线可用作高性能传感器和光电器件等。
3. 纳米材料在能源领域的应用纳米材料在能源领域具有广泛的应用前景。
如利用纳米材料提高电池和超级电容器的储能密度、提高光伏材料的转换效率、改善催化剂的性能等。
纳米材料参考答案.
![纳米材料参考答案.](https://img.taocdn.com/s3/m/1f3432463b3567ec102d8a9c.png)
纳米材料与纳米结构复习题1.简单论述纳米材料的定义与分类。
答:广义上讲:纳米材料是指在三维空间中至少有一维处于纳米尺度范围,或由他们作为基本单元构成的材料。
按维数,纳米材料可分为三类:零维:指在空间三维尺度均在纳米尺度,如纳米颗粒,原子团簇等。
一维:指在空间有两处处于纳米尺度,如纳米丝,纳米棒,纳米管等。
二维:指在三维空间中有一维处在纳米尺度,如超薄膜,多层膜等。
因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元又分别具有量子点,量子线和量子阱之称2.什么是原子团簇? 谈谈它的分类。
答:原子团簇: 指几个至几百个原子的聚集体(粒径一般等于或小于1nm)例如: C n H m(n与m都是整数);碳簇(C60、C70和富勒烯等)原子团簇的分类:a 一元原子团簇:即同一种原子形成的团簇,如金属团簇,非金属团簇,碳簇等。
b二元原子团簇:即有两种原子构成的团簇,例如Zn n P m, Ag n S m等。
c 多元原子团簇:有多种原子构成的团簇,例如V n(C6H6)m等d原子簇化合物:原子团簇与其它分子以配位键形成的化合物。
例如(Ag)n(NH3)m等。
3.通过Raman 光谱中如何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效观察到单壁纳米管特有谱线,这是鉴定单壁纳米管非常灵敏的方法。
100-400cm-1范围内出现单壁纳米管特征峰,单壁纳米管特有的呼吸振动模式;1609cm-1是定向多壁纳米管的拉曼特征峰。
单臂管的直径d与特征拉曼峰波数成反比,即:d=224/w。
式中的d单壁管的直径,nm;w为特征拉曼峰的波数cm-14.论述碳纳米管的生长机理。
答:采用化学气相沉积(CVD)在衬底上控制生长多壁碳纳米管。
原理:首先,过镀金属(Fe,Co,Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体;随后,碳原子从过饱和的催化剂颗粒中析出;最后,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。
纳米材料期末测试题及答案
![纳米材料期末测试题及答案](https://img.taocdn.com/s3/m/0aa4a859c381e53a580216fc700abb68a882ad6b.png)
纳米材料期末测试题及答案第一节:选择题1. 纳米材料是指尺寸在多少纳米范围内的材料?A. 1 nm以上B. 100 nm以上C. 1000 nm以上D. 10 nm以下答案:D2. 下列哪个不是纳米材料的特征?A. 具有较大的比表面积B. 具有尺寸效应C. 具有显著的量子效应D. 具有无限可延伸的形状变化能力答案:D3. 纳米材料的表面效应与体效应相比,具有什么特点?A. 表面效应主要体现在光学性质上B. 表面效应主要体现在电学性质上C. 表面效应主要体现在力学性质上D. 表面效应主要体现在化学性质上答案:D4. 下列哪种方法不适合纳米材料的制备?A. 气相沉积法B. 溶胶-凝胶法C. 机械合金化法D. 铸造法答案:D5. 纳米材料在哪个领域应用最为广泛?A. 医学领域B. 环境保护领域C. 能源领域D. 信息技术领域答案:D第二节:简答题1. 请简述纳米材料的尺寸效应和量子效应,并说明它们的主要区别。
答案:纳米材料的尺寸效应是指材料尺寸减小到纳米级别后,由于表面积增大,表面原子和分子之间的相互作用增强,导致材料性能发生变化的现象。
量子效应是指纳米尺寸范围内的材料由于尺寸接近电子波长,电子在材料中的行为受到量子力学规律的支配,展现出与宏观材料截然不同的特性。
尺寸效应主要来源于表面效应,而量子效应主要来源于尺寸和结构对电子的限制和调控效应。
2. 简述纳米材料的应用领域及其优势。
答案:纳米材料广泛应用于信息技术、能源领域、医学领域和环境保护领域等。
在信息技术领域,纳米材料可以用于制造高性能的传感器、存储介质和显示器件,具有小尺寸、高灵敏度和低功耗的优势。
在能源领域,纳米材料可以用于制造高效的太阳能电池、储能材料和催化剂,具有提高能源转化效率和降低成本的优势。
在医学领域,纳米材料可以应用于疾病的早期诊断、治疗和药物传输等方面,具有靶向性、控释性和生物相容性的优势。
在环境保护领域,纳米材料可以用于净化水和空气,降解有害物质,具有高效、环保的优势。
纳米材料知识点总结
![纳米材料知识点总结](https://img.taocdn.com/s3/m/8383246f182e453610661ed9ad51f01dc28157a0.png)
纳米材料知识点总结第一章:纳米材料的概念纳米材料是指在纳米尺度下制备或具有特定尺寸、结构、形貌和表面性质的材料,通常是指至少在一个维度上尺寸在1-100纳米之间的材料。
纳米材料因其独特的尺寸效应、表面效应和量子效应而表现出与传统材料不同的特性,因此在材料科学领域具有重要的研究和应用价值。
第二章:纳米材料的制备方法1. 物理法:包括溅射法、热蒸发法、溶液淀积法等,主要通过能量的传递和物质的转移来制备纳米材料,制备过程不易受到污染,可以得到高纯度的纳米材料。
2. 化学法:包括溶胶-凝胶法、水热法、溶剂热法等,主要通过溶液中的化学反应来制备纳米材料,制备过程相对简单,可以控制材料的尺寸和形貌。
3. 生物法:包括微生物法、植物法等,主要通过生物体内的生物合成过程来制备纳米材料,制备过程环保、资源可再生并且对材料的结构和性能有一定的控制性。
第三章:纳米材料的性质1. 尺寸效应:纳米材料的尺寸与其性能之间存在着显著的相关性,纳米材料由于其尺寸的特殊性,表现出许多传统材料所不具备的新颖性能,如光电性能、磁性能、机械性能等。
2. 表面效应:纳米材料由于其表面积较大,表面原子数量较少,因此表现出与传统材料不同的表面性能,如表面能增加、化学反应活性提高等。
3. 量子效应:纳米材料中的电子、光子等粒子因为其尺寸与材料能级之间的相互作用而呈现出量子效应,例如量子尺寸效应、量子限域效应等,在光电器件和量子点材料等领域有广泛应用。
第四章:纳米材料的应用1. 纳米材料在电子器件中的应用:纳米材料在电子器件领域中具有诸多优势,如在导电性、场发射性、存储性等方面的突出表现。
目前已经有纳米材料应用于场发射显示器、磁性存储器、无机发光二极管等领域。
2. 纳米材料在能源领域中的应用:纳米材料在能源领域中具有广阔的应用前景,如在太阳能电池、锂离子电池、超级电容器等领域已经得到了应用。
3. 纳米材料在生物医学领域中的应用:纳米材料在生物医学领域中可以应用于药物传输、诊断影像、生物标记和生物传感等方面,具有广阔的发展前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.纳米科技的含义、意义。
含义:纳米科技的核心思想是构造纳米尺度的材料或结构,发掘其不同凡响的特性并对此予以研究,以致最终能很好地被人们所应用。
将这种思想和相关方引入到各个领域,便形成形形色色的各类纳米科技研发领域,主要包括:纳米体系物理学;纳米体系化学;纳米材料学;纳米材料学;纳米生物学;纳米机械学;纳米加工制造学;纳米表征测量学;纳米医学等。
意义:纳米技术是20世纪90年代出现的一门新兴技术。
它是在0.10至100纳米(即十亿分之一米)尺度的空间内,研究电子、原子和分子运动规律和特性的崭新技术。
当空间尺度足够小的时候,以分子或者更小的单位排列的时候,就会发现很多比现实世界更为奇异的事情。
这是因为运用纳米技术之后,分子或者原子等粒子的结构会发生很大的改变,当然也就会产生更多的原来不具备的特性。
比如说运用纳米技术之后,衣服脏了只需要用清水洗一下就干净了,比如玻璃杯摔不坏,当然这是普通的日常生活的应用。
对于高端的技术来讲,纳米技术更为重要。
纳米技术在超导的应用方面,集成电路的发展方面都具有重要的地位。
例如后者,大家都知道CPU是一种超大规模的集成电路,现在很普遍的P4技术是运用0.09微米的工艺来书写的;当然CPU的集成度还需要提高,运算速度还需要提高等等,这就要求在电路已经达到极限的情况下更注意电路的宽度的提高了。
未来CPU的发展还需要依靠纳米技术来改进和提高了。
纳米技术是一种新型技术,它是建立在微观的技术基础之上的,所以需要投入的资金和技术都是非常大的,但是一旦达到工业生产之后它所创造的产值往往是异常丰富的。
2.纳米材料的分类、定义、制备路径。
分类:
定义:纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。
制备路径:
(1)从上到下把大的尺度减小到纳米尺寸:破碎球磨蚀刻光刻煅烧喷雾法
(2)从下到上把分子尺寸累积成纳米尺寸:蒸发凝结气相沉积共沉淀法
3.几个效应。
(1)量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体的最高被占据分子轨道(HOMO)和最低未被占据分子轨道能级(LUMO)由准连续变为离散能级,同时能隙变宽的现象,称为量子尺寸效应。
(2)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
(3)表面效应:微粒的表面积增大和所包含的表面原子数增多现象,称为表面效应。
(4)宏观量子隧道效应:电子具有粒子性又具有波动性,因此存在隧道效应。
近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效
应,称之为宏观量子隧道效应。
(5)量子限域效应:当半导体纳米粒子的粒径r<aB时,电子的平均自由程受小粒径的限制,局限在很小的范围。
因此空穴约束电子形成激子的概率比常规材料高得多,颗粒尺寸越小,形成激子的概率越大,激子浓度就越高。
这种效应称为量子限域。
(6)库仑阻塞能:库仑阻塞与单电子隧穿效应:当颗粒的尺寸很小时(金属为几个nm,半导体为几十nm),其充放电过程是不连续的。
充入一个电子所需的能量为EC=e2/2C,(C 为体系的电容)。
体系越小,C,EC。
该能量称为库仑阻塞能。
(7)库仑堵塞效应:库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输.通常把小体系这种单电子输运行为称库仑堵塞效应。
(8)激子:在价带自由运动的空穴和在导带自由运动的电子通过库仑作用束缚的电子-空穴对,电子和空穴复合时便发光,以光子的形式释放能量。
4.纳米材料(颗粒、纳米晶构成的块体)。
电阻温度系数变化行为及其原因。
块体:纳米固体材料,又称纳米结构材料,是由纳米微粒或纳米晶粒凝聚而成的三维块体。
按照结构状态,纳米固体材料可分为纳米晶体、纳米非晶体和纳米准晶材料;按照相构成,纳米固体材料可分为纳米单相材料(由单相微粒构成的固体)和纳米复相材料(由两种或两种以上的相微粒构成的固体)。
电阻与温度:
(1)纳米晶材料存在大量的晶界,使得界面对电子散射非常强,导致电阻升高。
晶界原子排列越混乱,晶界厚度越大,对电子散射能力就越强,电阻增大-----归因于小尺寸效应。
(2)当大于电子平均自由程时,晶内散射贡献占优势。
电阻温度系数接近常规粗晶材料。
当小于电子平均自由程时,界面散射起主导作用,这时电阻温度系数的变化都明显地偏离粗晶情况,甚至出现反常现象。
例如,电阻温度系数变负值-----归因于小尺寸效应
5.纳米颗粒的发光及光吸收性能及其原因。
发光:
(1)光致发光:指在一定波长光照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程。
(2)荧光:仅在激发过程中发射的光。
(3)磷光:在激发停止后还继续发射一定时间的光。
光吸收:
光在固体中传播时,其强度一般要发生衰减,出现光的吸收现象。
a.纳米颗粒光吸收增强原因之量子效应:纳米粒子的电子能级分裂,且分裂能级刚好在微波的能量范围(10~10-4eV)内,这为纳米材料的吸收创造了新的吸收通道;在微波场的辐射下,原子和电子运动加剧,促使电子能转化为热能,从而增加了对电磁波的吸收。
b.纳米颗粒光吸收增强原因之表面等离子激元:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离子激元现象。
c.纳米颗粒光吸收增强原因之表面效应:纳米颗粒表面原子比例高,悬挂的化学键多,大量悬挂键的存在使截面极化,高的比表面积造成多重散射,增强吸收。
6.纳米尺寸的评价方法(STM、AFM的工作原理及操作模式)。
STM工作原理:扫描隧道显微镜是一种利用量子力学的隧道效应的非光学显微镜它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持恒定的电流,依此来观测物体表面的形貌.
操作模式:恒流模式、恒高模式。
AFM工作原理:AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质(如铝)以增强其反射通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏.
操作模式:接触模式、非接触模式、轻敲模式、侧向力模式。
根据样品表面不同的结构特征和材料的特性以及不同的研究需要,选择合适的操作模式。
7.分子自组装,举例说明。
8.纳米颗粒的顺磁性及其原因。
原因:在小尺寸小,当各向异性能减小到热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向无规律的变化,导致超顺磁性的出现.
9.纳米材料溶液中双电子层结构、Zeta电位的定义及作用。
微粒的双电层结构:在微粒分散体系的溶液中,微粒表面的离子与靠近表面的反离子构成了微粒的吸附层;同时由于扩散作用,反离子在微粒周围呈现距微粒表面越远则浓度越稀的梯度分布形成微粒的扩散层,吸附层与扩散层所带电荷相反。
微粒的吸附层与相邻的扩散层共同构成微粒的双电层结构。
Zeta电位的定义:Zeta电位,又叫电动电位或电动电势,是指剪切面(Shear Plane)的电位,是表征胶体分散系稳定性的重要指标。
由于分散粒子表面带有电荷而吸引周围的反号离子,这些反号离子在两相界面呈扩散状态分布而形成扩散双电层。
根据Stern双电层理论可将双电层分为两部分,即Stern层和扩散层。
Stern层定义为吸附在电极表面的一层离子电荷中心组成的一个平面层,此平面层相对远离界面的流体中的某点的电位称为stern电位。
Stationary layer稳定层与扩散层内dispersion medium分散介质发生相对移动时的界面是滑动面,该处对远离界面的流体中的某点的电位称为Zeta电位.
Zeta电位的作用:
(1)Zeta电位的重要意义在于它的数值与胶态分散的稳定性相关。
(2)Zeta电位的主要用途之一就是研究胶体与电解质的相互作用。
(3)Zeta电位的测量使我们能够详细了解分散机理,它对静电分散控制至关重要。
对于酿造、陶瓷、制药、药品、矿物处理和水处理等各个行业,Zeta电位是极其重要的参数.
10.储能材料中的纳米效应分析。
储能材料:有序介孔材料具有宽敞的孔道,可以在其孔道中原位制造出含碳或Pd等储能材料,增加这些储能材料的易处理性和表面积,达到传递储能的效果。