16机车车辆一系悬挂橡胶弹性元件综述_刘建勋

16机车车辆一系悬挂橡胶弹性元件综述_刘建勋
16机车车辆一系悬挂橡胶弹性元件综述_刘建勋

悬架弹性元件对悬架振动传递特性的影响

悬架弹性元件对悬架振动传递特性的影响 Ξ 张立军 余卓平 (同济大学汽车工程系 上海,200092) 摘要 为了分析研究橡胶元件减振隔振的机理,在线性假设的前提下,用复刚度表示悬架弹性元件的刚度,在车身车轮双质量1 4车振动模型的基础上建立了考虑悬架系统中的橡胶弹性支承元件影响的1 4车振动模型,并利用该模型详细论述了橡胶元件对悬架振动传递特性的总体影响,指出其能减小车身部分固有频率附近的传递系数,增大车轮部分固有频率附近的传递系数,明显改善高频段的隔振性能。 关键词 悬架 橡胶支承元件 驻波效应 隔振中图分类号 U 27011 T P 53 引 言 为了隔离来自路面不平度的冲击,并起到隔声方面的作用,在汽车的悬架系统中采用的橡图1 轿车复合式后悬架总成像胶元件 胶弹性元件主要包括:减振器活塞杆与车身之间的上、下轴承环、螺旋弹簧上端的橡胶衬垫、减振器下端吊耳的橡胶件以及缓冲块。图1所示为某轿车复合式后悬架总成结构及其中使用的橡胶元件。目前,国外不断有新型的橡胶减振元件问世,说明国外已经掌握了这方面的先进技术,并且实用化。而在国内,人们对于轿车悬架减振橡胶元件的选型和设计与国外相比尚存在较大的差距。本文在线性假设的前提下,利用所建立的考虑橡胶元件影响的新型悬架模型,分析研究橡胶元件对悬架振动传递特性的影响机理。这对于深入了解汽车悬架用橡胶元件减振隔振的机理,逐步实现悬架系统橡胶元件的自主开发设计具有重要的理论意义和实用价值。 第22卷第2期2002年6月 振动、测试与诊断Jou rnal of V ib rati on,M easu rem en t &D iagno sis V o l .22N o.2 Jun .2002 Ξ

济南橡胶制品项目建议书

济南橡胶制品项目 建议书 参考模板

报告说明— 聚异戊二烯橡胶简称异戊橡胶,其发展史起源于对天然橡胶的研究,而异戊橡胶的工业化则是在其单体和Ziegler型催化剂有了确实保证之后才实现的。20世纪80年代以后,由于国际环境进一步趋向缓和,天然橡胶生产稳定增长;加之人工合成的聚异戊二烯橡胶的综合性能始终不及天然橡胶,而且受到单体来源、生产成本的制约,因而除前苏联外的其他一些国家纷纷终止了聚异戊二烯橡胶的生产,目前仅有美国、日本少量生产聚异戊二烯橡胶。但从长远和发展的观点看,聚异戊二烯橡胶仍是一个值得关注的合成橡胶品种。 该异戊二烯橡胶项目计划总投资12389.61万元,其中:固定资产投资9137.19万元,占项目总投资的73.75%;流动资金3252.42万元,占项目总投资的26.25%。 达产年营业收入23686.00万元,总成本费用18129.37万元,税金及附加234.98万元,利润总额5556.63万元,利税总额6558.04万元,税后净利润4167.47万元,达产年纳税总额2390.57万元;达产年投资利润率44.85%,投资利税率52.93%,投资回报率33.64%,全部投资回收期4.47年,提供就业职位343个。 在我国,异戊二烯橡胶主要应用于全钢载重子午胎的胎圈钢丝部位。在胎圈钢丝部位使用异戊二烯橡胶,可以改善胶料的加工性能,同时胶料

具有较高的硬度、耐撕裂性和耐疲劳性能,胶料的流动性好,钢丝表面附 胶均匀;斜交胎也使用异戊二烯橡胶,主要是取代天然橡胶,以降低成本。

目录 第一章项目概述 第二章投资单位说明 第三章背景、必要性分析第四章项目市场研究 第五章项目建设方案 第六章选址可行性分析第七章项目工程方案分析第八章工艺技术方案 第九章环境保护可行性第十章生产安全保护 第十一章建设风险评估分析第十二章节能可行性分析第十三章实施进度 第十四章投资方案 第十五章经济评价 第十六章项目总结 第十七章项目招投标方案

橡胶元件的性能指标及损坏形式

1.橡胶的主要性能指标 (1)硬度 表示橡胶抵抗外力压入的能力,也是所有胶料的基本性能。橡胶的硬度在一定程度上与其他一些性能相关。例如,胶料的硬度愈高,相对地说,强度就较大,伸长率较小,耐磨性较好,而耐低温性能就较差。高硬度橡胶能抗高压下挤压破坏。因此应根据零件工作特性选用合适的硬度。 橡胶硬度低则承载能力不高,易产生过大的变形;硬度过高则橡胶缺乏弹性,容易产生塑性变形,寿命短。一般用作弹性元件的橡胶硬度为邵氏30~90。(2)拉伸性能 拉伸性能是所有胶料应首先考虑的性能,包括拉伸强度、定伸应力、伸长率、扯断伸长率和扯断永久变形,以及应力—应变曲线。拉伸强度是试样拉伸至断裂的最大拉伸应力。定伸应力(定伸模量)是在规定伸长时达到的应力(模量)。伸长率是试样受拉伸应力而引起的变形,用伸长增量与原长之比的百分数表示。扯断伸长率则是试样拉断时的伸长率。扯断永久变形是拉伸断裂后标距部分的残余变形。 (3)压缩性能 橡胶密封件通常处于受压缩状态。由于橡胶的粘弹性,橡胶受压缩后,压缩应力会随时间而减小,表现为压缩应力松弛;除去压力后,不能恢复原来的外形,表现为压缩永久变形。在高温油介质中,这些现象更为显著。它们会影响密封件的密封性能,是密封件用胶料的重要性能之一。 (4)耐油性能 橡胶在油介质中(燃油、润滑油、液压油等),特别在较高温度下,会导致膨胀、软化和降低强度、硬度,同时橡胶中的增塑剂或可溶性物质可能被油浸出,导致重量减轻,体积减小,引起泄漏。因此橡胶的耐油性是在油介质中工作胶料的重要性能。一般是在一定温度下在油中浸泡若干时间后测定其重量变化、体积变化以及强度、伸长率和硬度的变化。有时也可用耐油系数表示,即在介质中浸泡后的强度或伸长率与原始强度或伸长率之比。 (5)耐老化性能 橡胶受氧(空气)、臭氧、热、光、水分和机械应力等因素的作用后会引起性能变坏,称为橡胶的老化。橡胶的耐老化性能可通过自然老化和人工加速老化

橡胶减震资料(内容清晰)

伴随着汽车制造工业高性能技术的高速发展,汽车技术的发展一方面谋求汽车的使用经济性,同时,也正在改善汽车的舒适性、安全性。这就从减振、噪音、舒适性和行使稳定性的角度,对橡胶减振元件提出了更高的要求。 与其他减振制品相比,橡胶减振制品具有以下优点 [1] : (1)形状自由度较大; (2)可在 X、Y、Z 方向上旋转,具有六方向弹簧作用: (3)具有适度的阻尼性能,可在低频~高频的范围内加以利用; (4)同时具有减振、缓冲、隔音等多样性能; (5)冲击刚度大于动刚度,动刚度大于静刚度,有利于减小冲击变形和动态变形。 汽车的振动现象十分复杂,最明显的振动是悬挂弹簧装置支承的簧上质量的固有振动。因此,减振橡胶制品主要用于控制汽车振动和噪声及改善汽车操纵稳定性,一般置于汽车发动机机架、压杆装置、悬挂轴衬、中心轴承托架、颠簸限制器和扭振减振器等部位,以改善汽车的安全性和舒适性。 1.橡胶材料性能要求及发展方向 由于汽车的车轮、车型、车种以及悬挂机构不同,减振橡胶元件的种类也各不相同。用橡胶材料作为减振材料的优点在于 [2] : (1)橡胶是非压缩材料,具有良好的阻尼特性,其泊松比接近 0.5,在弹性范围内的相对滞后值可以达到 10~65%,动、静模数之比为 1.5左右。 (2)橡胶的弹性变形比金属大的多(可达10000 倍以上),而弹性模数比金属的小得多(为1/70 0 到 1/4000); (3)形状能自由选择,可自由选择三个方向的弹簧常数比; (4)容易与金属牢固地粘合成一个整体,可使减振橡胶件体积变小,重量减轻,且支承方法也简单化。 (5)橡胶的声速为 40~200m/s,钢的声速却为 5000m/s。 因此具有良好的减振、隔音和缓冲性能 [3] 。减振所用橡胶的品种很多,主要以天然橡胶和丁苯橡胶为主,为改善减振制品的耐热性,也使用丁腈橡胶(NBR)、氯丁橡胶(CR)、丁基橡胶(I R)、三元乙丙橡胶(EPDM)等。通常针对不同的应用环境和使用要求,选用不同的橡胶材料或将几种橡胶共混以及采用某些改性方法来提高橡胶材料的某一项和几项性能。 1.1 低动倍率、高阻尼性能 理想的橡胶减振制品应具有以下功能 [1] : (1)支撑功能:为支撑要求重量的物体,必须确保足够的静态弹簧常数 Ks; (2)减振功能:相对要求的频率,应具有足够低的动态弹簧常数 Kd; (3)防振功能:为了控制共振(不可避免的)时的传导率增幅,所以应具有足够的高阻尼性。 在所要求频率下的动态弹簧常数 Kd 和静态弹簧常数 Ks 的比值,称之为动态比例因子。这一比值愈小,减振性能愈好,但通常是 Kd/Ks>1。为了减小动态比例因子,从橡胶配合方面或材料方面也可加以探讨。在提高防振功能上,采用高阻尼材料是有效的。对通常的硫化胶来讲,随着 Ks 的增加,Kd 不可避免地会出现增大的倾向。因此,从Kd 和 Ks 两者兼备的观点对橡胶的配合加以探讨是十分必要的。 NR 的特点是动态比例因子比其他橡胶低,所以天然橡胶应用最广泛。在天然橡胶胶料中当增加炭黑用量时就可达到高阻尼化,但同时也会使动倍率上升;而增大硫黄用量时动倍率就会降低,但同时也会使阻尼下降。从橡胶配合方面已有很多探讨工作。有专利介绍,在天然橡胶中配

丁腈橡胶的生产工艺与技术进展

丁腈橡胶的生产工艺与技 术进展 Prepared on 24 November 2020

丁腈橡胶的生产工艺与技术进展 丁腈橡胶的生产工艺 2.1.1 丁腈橡胶的生产工艺 工业上生产丁腈橡胶采用连续或间歇式乳液聚合工艺,按聚合温度不同,分为热法聚合与冷法聚合两类。冷法聚合的反应温度一般控制在5~15℃,热法聚合则为30~50℃。冷法聚合通常采用连续聚合工艺,热法聚合通常采用间歇聚合工艺。目前世界上生产厂家,如朗盛公司、美国Lion Copolymer公司、日本瑞翁公司以及日本合成橡胶公司都采用低温乳聚法。产品类型包括固体丁腈橡胶(固体NBR)、氢化丁腈橡胶(HNBR)、粉末丁腈橡胶(PNBR)、羧基丁腈橡胶(XNBR)以及丁腈橡胶胶乳(NBR胶乳)等。 目前世界各国丁腈橡胶生产工艺流程多采用冷法乳液聚合连续生产,其工艺过程与丁苯橡胶类似。主要包括原料配制、聚合、单体回收、胶乳贮存及掺混、胶乳凝聚、干燥及压块包装等工序。 ①生产时,先将一定比例的丁二烯、丙烯腈混合均匀,制成碳氢相。在乳化剂中加入氢氧化钠、焦磷酸钠、三乙醇胺、软水等制成水相,并配制引发剂等待用。 ②将碳氢相和水相按一定比例混合后送入乳化槽,在搅拌下经充分乳化后送入聚合釜。 ③在聚合釜内直接加入引发剂,进行聚合反应,反应热量由列管内液氨蒸发排出。温度控制在30℃或5℃时,转化率可维持在70%~85%。

④而后分批加入调节剂,以调节橡胶的分子量。聚合反应进行至规定转化率时,加入终止剂终止反应,并将胶浆卸入中间贮槽。 ⑤经过终止后的胶浆,送至脱气塔,经三级闪蒸脱除未反应的丁二烯,然后再借水蒸汽加热真空脱出游离的丙烯腈。 ⑥丁二烯经压缩升压后循环使用,丙烯腈经回收处理后再使用。 ⑦经脱气后的胶浆加入凝聚剂、防老剂及其它助剂后,过滤除去凝胶,用食盐水凝聚成颗粒胶,经水洗后挤压除去水分,再用干燥机干燥,然后包装即得成品橡胶。经干燥后的橡胶含水量应低于1%,成品丁腈橡胶一般每包重25千克。 合成丁腈橡胶使用的主要设备有:聚合釜、闪蒸塔、脱气塔、干燥箱、干燥机等。 2.1.2 丁腈橡胶的生产工艺优缺点 冷法(低温)乳液聚合的丁腈橡胶在加工性能上优于高温乳液聚合的丁腈橡胶。冷法乳液聚合工艺优点: 1、以水为分散介质,价廉安全; 2、聚合体系粘度低,易传热,反应温度易控制; 3、尤其适宜于直接使用乳胶的场合。 工艺缺点: 1、产品中留有乳化剂等,影响产品电性能等; 2、要得到固体产品时,乳液需经过凝聚、洗涤、脱水、干燥等工序,成本较高。

减震用橡胶材料及其应用

减震用橡胶材料及其应用 随着现代工业的飞速发展,震动和噪音已经成为各个领域的严重问题:它会降低操作精度,影响产品质量;缩短产品寿命,使得高精仪器不能正常工作;危及安全性,使设备或构建物早期破坏;污染环境及影响人身健康,诸如地震之类的震动甚至还给人类的生命财产造成极大的损害。因此,研究和掌握震动控制与噪音控制技术已是各国工业发展面临的重大课题。 消除震动和噪音的最根本和最好方法是减少或者消除震动源的震动,但实际上要想完全消除震动源的震动是不可能的,因此必须采取其他控制震动的方法。实际应用中最广泛、最有效的方法是使用各种减震制品,尤其是橡胶减震制品。它能够有效地隔离震动与激发源,还可以缓和震动体的震动,因此被广泛地应用于各种机动车辆、飞机、船舰等的动力机械及风机、水泵等辅助设备和仪器的震动隔离。近年来,一些大型建筑物和桥梁等也采用了隔离地震的层压橡胶垫支撑建筑物。对于结构震动和结构噪音的阻尼处理,也广泛地使用特殊的橡胶材料,称为黏弹性高阻尼材料。 1 橡胶的减震作用及减震橡胶材料 橡胶的特点是既有高弹态又有高黏态,橡胶的弹性是由其卷曲分子构象的变化产生的,橡胶分子间相互作用会妨碍分子链的运动,又表现出黏性特点,以致应力与应变往往处于不平衡状态。橡胶的这种卷曲的长链分子结构及分子间存在的较弱的次级力;使得橡胶材料呈现出独特的黏弹性能,因而具有良好的减震、隔音和缓冲性能。橡胶部件广泛用于隔离震动和吸收冲击,就是因为其具有滞后、阻尼及能进行可逆大变形的特点。 橡胶的滞后和内摩擦特性通常用损耗因子表示,损耗因子越大,橡胶的阻尼和生热越显著,减震效果越明显。橡胶材料损耗因子的大小不仅与橡胶本身的结构有关,而且与温度和频率有关。在常温下,天然橡胶(NR)和顺丁橡胶(BR)的损耗因子较小,丁苯橡胶(SBR)、氯丁橡胶(CR)、乙丙橡胶(EPR)、聚氨酯橡胶(PU)和硅橡胶的损耗因子居中,丁基橡胶(HR)和丁腈橡胶(NBR)的损耗因子最大。 用作减震目的的橡胶材料一般分5种,即NR,SBR,BR为普通橡胶材料;NBR用于耐油硫化胶;CR用于耐天候硫化胶;IIR用于高阻尼硫化胶;EPR用于耐热硫化胶。NR虽然损耗因子较小,但其综合性能最好,具有优异的弹性,耐疲劳性好,生热低,蠕变小,与金属件黏合性能好,耐寒性、电绝缘性和加工性能也好,因此NR被广泛地用作减震目的,要求耐低温或耐天候性能时,可与BR或CR并用或共混改性。Nishiue等采用NR、BR及碳原子数大于4的含有-OH基团有机酸的金属盐制成的减震器具有较好的耐久性能,在70℃×22h和40℃×148h条件下的压缩永久变形分别为17.0%和11.7%。由于EPDM耐天候、耐臭氧老化、电绝缘性、耐热和耐寒等性能优异,近年来受到广泛关注。最近,日本三井化学公司与鬼怒川橡胶公司通过采用高相对分子质量的EPDM与低相对分子质量的EPDM

轨道交通用橡胶减振材料及制品的应用

轨道交通用橡胶减振材料及制品的应用 内容摘要:摘要:本文概述了轨道交通用橡胶减振制品的材料技术和产品的应用和发展情况。关键词:轨道交通减振橡胶制品橡胶橡胶材料具有以下特性[1]:(1)橡胶具有良好的阻尼特性,在弹性范围内的相对滞后值可以达到10~65%,动、静模数之比为1.5左右。(2)橡胶的弹性变形比金属大的多(可达10000倍以上),而弹性模数比金属的小得多(为1/700到1/4000)。(3)橡胶的声速为40~200m/s,钢的声速却为5000m/s。 摘要:本文概述了轨道交通用橡胶减振制品的材料技术和产品的应用和发展情况。 关键词:轨道交通减振橡胶制品橡胶 橡胶材料具有以下特性[1]: (1)橡胶具有良好的阻尼特性,在弹性范围内的相对滞后值可以达到10~65%,动、静模数之比为1.5左右; (2)橡胶的弹性变形比金属大的多(可达10000倍以上),而弹性模数比金属的小得多(为1/700到1/4000); (3)橡胶的声速为40~200m/s,钢的声速却为5000m/s。 因此具有良好的减振、隔音和缓冲性能[2]。现代轨道交通为有效减少轮轨作用力和改善系统走行性能,降低高速重载所引起的机车车辆以及线路的系统振动和噪声问题,大量使用各种橡胶弹性元件用于牵引、驱动、连接、支承等,以达到舒适、平稳、快速的更高要求[3]。 1. 橡胶材料 减振所用橡胶的品种很多,用量比较大的有:天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)、丁腈橡胶(NBR)、氯丁橡胶(CR)、丁基橡胶(IR)、乙丙橡胶(EPDM)等。通常针对不同的应用环境和使用要求,选用不同的橡胶材料或将几种橡胶共混以及采用某些改性方法来提高橡胶材料的某一项和几项性能。 1.1 共混技术 NR是橡胶减振领域中用量最大的品种,许多共混的研究都是以其为主体进行的。如Yoshiharu等人[4]采用NR和BR共混制成减振橡胶,在150℃硫化30min后,发现材料具有

丁腈橡胶的基本性能及用途

字体大小:| | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多, 耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、 软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做 绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、 膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: ??羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 ??充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 ??丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 ??丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 ??预交联丁腈(NBR):NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 ??超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

橡胶离型剂(脱模剂)知识与最新产品动向

橡胶离型剂(脱模剂)知识与最新产品动向 一、橡胶离型剂的类型分类: 1、橡胶离型剂:指用于防止橡胶产品与模具表面粘连,并能使之顺利出模而不致撕裂的一类物质。使用时将它喷或涂于模腔表面,以形成一层有效的隔离层。对离型剂的主要要求是:有一定的热稳定性和化学惰性,不腐蚀模腔表面;在模腔表面下残留分解物;不影响产品色泽,但能赋予良好的外观、无毒;易于配制,使用方便。 2、氟系离型剂:氟离型剂继承了含氟材料的特点,能够显著降低固体的表面能,使其产生难浸润和不粘着性,不易与其他物质溶合,很好的解决了成品与模具之间的粘结问题,配制成离型剂时,含氟化合物的用量极小。对热固性树脂、热塑性树脂和各种橡胶制件均适用,模制品表面光洁,二次加工性能优良,特别适合于精细电子零部件的脱模。 3、硅系离型剂:有机硅离型剂是以有机硅氧烷为原料制备而成,其优点是耐热性好,表面张力适中,易成均匀的隔离膜,脱模寿命长。缺点是脱模后制品表面有一层油状面,二次加工签必须进行表面清洗。常用的有硅油,硅橡胶,乳化硅油以及硅脂等。有机硅离型剂是目前橡塑离型剂中档市场的主流产品,在聚氨酯、橡胶、等树脂的加工中均有广泛应用。 4、蜡( 油) 系离型剂蜡油系列离型剂特点是价格低廉, 粘敷性能好, 缺点是污染模具,其主要品种有: ①工业用凡士林, 直接用作离型剂; ②石蜡, 直接用作离型剂; ③磺化植物油, 直接用作离型剂; ④印染油( 土耳其红油、太古油) , 在100 份沸水中加0.9~ 2 份印染油制成的乳液, 比肥皂水脱模效果好; ⑤聚乙二醇( 相对分子质量200~ 1 500) , 直接用于橡胶制品的脱模。 5、表面活性剂系离型剂表面活性剂离型剂特点是隔离性能好, 但对模具有污染。主要有以下几类: ①肥皂水,用肥皂配成一定量浓度的水溶液, 可作模具的润滑剂, 也可作为胶管的脱芯剂; ②油酸钠,将22份油酸与100份水混合,加热至近沸, 再把3份苛性钠慢慢加入, 并搅拌至皂化, 控制pH值为7~ 9,使用时按1:1 的水稀释,用作外胎硫化脱模时, 需在200份上述溶液中加入2份甘油; ③甘油,可直接用作离型剂或水胎润滑剂。 ④脂肪酸铝溶液,将脂肪铝溶于二氯乙烷中配成1%溶液,适用于聚氨酯制品, 涂1次, 可重复用多次, 脱模效果好; ⑤硬脂酸锌是透明塑料制品的离型剂。 6、内加型离型剂 ①硬脂酸锌、硬脂酸铵、石蜡等宜作内加型离型剂; ②模得丽935P 离型剂, 直接加入胶料中使用。 善贞实业(上海)有限公司在橡胶离型剂技术上研究多年,专业生产橡胶内离型剂,橡胶内离型剂:金属皂盐、脂肪酸酯类等环保型产品,具有很好的平滑、分散、隔离脱模性、耐高低温性能,不转移至成品上等优点。 概述:D 985S 高效离型剂及内分散作用,广泛适用于天然橡胶(NR)、异戊橡胶(IR)、丁苯橡胶(SBR)、顺丁橡胶(BR)、丁腈橡胶(NBR)、三元乙丙橡胶(EPDM)、氯磺化聚乙烯(CSM)、氟橡胶(FKM)、丁基橡胶(IIR)以及再生胶,。 用量推荐: 一般生胶:按生胶量添加1.5~2.5 份。 卤化橡胶(氯、溴、氟):按生胶量添加2~4 份。 使用方法: 高效内离型剂 D 985S 在混炼时和小料同时加入。 高效内离型剂 D 985S 用同时与高效分散剂 D 586S 配合使用,能体现更优的的加工性和离模效果。 适合模压、射出、挤出工艺中,建议高效内离型剂 D 985S 使量为1.5~2.5 份,高效内离型剂 D 985S 除离模作用之外还具有加工分散剂功能,可以大幅降低压出螺杆的扭矩,使制品批次指标稳定无波动,可得到更高的产品质量稳定性

丁腈橡胶的基本性能及用途

丁腈橡胶的基本性能及 用途 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

字体大小: | | 2010-08-28 16:56 - 阅读:135 - :0 ,由丁二烯与丙烯腈共聚而制得的一种合成橡胶。是耐油(尤其是烷烃油)、耐老化性能较好的合成橡胶。丁腈橡胶中丙烯腈含量(%)有42~46、36~41、31~35、25~30、18~24 等五种。丙烯腈含量越多,耐油性越好,但耐寒性则相应下降。它可以在120℃的空气中或在150℃的油中长期使用。此外,它还具有良好的耐水性、气密性及优良的粘结性能。广泛用于制各种耐油橡胶制品、多种耐油垫圈、垫片、套管、软包装、软胶管、印染胶辊、电缆胶材料等,在汽车、航空、石油、复印等行业中成为必不可少的弹性材料。 丁腈橡胶基本性能 主要采用低温乳液聚合法生产,丁腈橡胶具有优良的耐油性,其耐油性仅次于聚硫橡胶和氟橡胶,并且具有的耐磨性和气密性,粘接力强。丁晴橡胶的缺点是不耐臭氧及芳香族、卤代烃、酮及酯类溶剂,不宜做绝缘材料。丁腈橡胶耐低温性差,电性能低劣,弹性稍低。 丁腈橡胶主要用途 丁腈橡胶主要用于制作耐油制品,如耐油管、胶带、橡胶隔膜和大型油囊等,常用于制作各类耐油模压橡胶制品,如O形圈、油封、皮碗、膜片、活门、波纹管等,也用于制作胶板和耐磨零件。

公司代理经销南帝公司的产品有:普通丁腈橡胶、特殊丁腈橡胶、丁腈胶乳、热塑性弹性体(TPV)等。其中镇江南帝主要牌号:NANCAR 1051、1052、1053、1052M30、1043N、2845、2865、2875、3345、3365、4155等。特殊丁腈橡胶有以下: 羧化丁腈(XNBR):NANCAR 1072、1072CG、3245C 具优越耐磨性,适用于下列橡胶制品: a. 高耐磨的输送带、工业制品、纺织胶辊、及特殊鞋底等制品。 b. AB胶系接着剂及丙烯酸酯系接着剂。 c. 环氧树脂改性应用。 d. 软性电路板。 充油丁腈(NBR/DOP):NANCAR 1082 适用于超低硬度(40 Shore A以下) 并兼具耐油特性之橡胶制品,如:工业胶辊、工业制品等。 丁腈/PVC (NBR/PVC):NANCAR 1203D、1203HD、1203L D、具有良好的耐候性、耐油性,适用于下列橡胶制品: a. 耐臭氧的汽车部品(防尘套及胶管)、工业制品(胶板及杂件)、及电缆被 覆等制品。 b. 耐酒精汽油、低萃取燃料油管。 c. 耐溶剂的胶辊(工业胶辊、造纸胶辊、印刷胶辊)及纺织皮圈等制品。 d. 保温材料及运动器材等发泡制品。 丁腈/PVC/DOP (NBR/PVC/DOP):NANCAR 1204D 适用于超低硬度并兼具耐油耐臭氧之橡胶制品,如:印刷胶辊厂、工业制品等。 预交联丁腈(NBR): NANCAR 1022 具良好的尺寸安定性,特别适用于PVC改质,提高橡胶质感。 超低,极高丙烯腈丁腈(NBR):NANCAR 1965、4580

丁腈橡胶的详细分析

3.9 丁腈橡胶与改性丁腈橡胶 3.9.1 丁腈橡胶概述 丁二烯-丙烯腈橡胶(acrylonitrile-butadiene rubber)是丁二烯与丙烯腈两种单体经乳液聚合而得的共聚物,简称丁腈橡胶(NBR)。NBR于1930年由德国Konrad和Thchunkur研制成功,1937年由德国I.G. Farben公司首先实现了工业化生产。 NBR的丙烯腈含量为15%~53%,分为低腈、中腈、中高腈、高腈、极高腈五个等级。在市售商品中,丙烯腈含量在31%~37%的NBR占总NBR的40%,尤其是丙烯腈含量为33%的NBR居多数[1]。 NBR的基本特点包括[2]: (1)NBR是非结晶性无定型聚合物,生胶强度较低,须加入补强剂才具有使用价值。丙烯腈 质量分数较高的NBR有助于提高硫化胶的强度和耐磨性,但会使弹性下降。 (2)耐油是NBR最突出的特点,NBR含有极性腈基,对非极性或弱极性的矿物油、动植物油、 液体燃料和溶剂等化学物质有良好的抗耐性。丙烯腈质量分数愈高,耐油性愈好。 (3)耐热性优于NR、SBR和CR,可在120℃的热空气中长期使用。 (4)耐寒性、耐低温性较差,丙烯腈质量分数愈高,耐寒性愈差。 (5)气密性较好,在通用橡胶中仅次于IIR。 (6)耐热氧老化、日光老化性能优于NR。 (7)NBR的介电性能较差,属半导体橡胶。 NBR具有二烯类橡胶的通性,可采用与NR、SBR等通用橡胶相同的方法加工成型,常用的硫化体系为硫磺、过氧化物和树脂硫化体系等。 NBR因其优异的耐油性能,广泛用于制备燃料胶管、耐油胶管、油封、动态和静态用密封件、橡胶隔膜、印刷胶辊、胶板、橡胶制动片、胶粘剂、胶带、安全鞋、贮槽衬里等各种橡胶制品,涉及汽车、航空航天、石油开采、石油化工、纺织、电线电缆、印刷和食品包装等诸多领域[1]。 NBR分子主链上存在不饱和双键,影响了它的耐热、耐天侯等化学稳定性。为了使NBR 性能更符合不同用途制品的要求,国内外相继开发出具有特殊性能的NBR新品种,如氢化丁腈橡胶、羧基丁腈橡胶、粉末丁腈橡胶、液体丁腈橡胶等,以及与不同橡胶共混、橡塑并用等来改善丁腈橡胶的综合性能,使得NBR产品系列化、功能化、高档化。 3.9.2 氢化丁腈橡胶 氢化丁腈橡胶(hydrogenated acrylonitrile-butadiene rubber 简称HNBR)是通过氢化丁腈橡胶主链上所含的不饱和双键而制得,又称为高饱和度丁腈橡胶。由于HNBR具有合理的分子结构,因此不仅继承了NBR的耐油、耐磨等性能,而且还具有更优异的耐热、耐氧化、耐臭氧、耐化学品性能,可以与氟橡胶相媲美,在许多方面可取代氟橡胶、CR、NBR等特种橡胶。 从1984年开始,德国Bayer、日本Zeon、加拿大Polysar等公司相继投产HNBR,目前各厂家均有多种牌号的产品。但是由于工业生产HNBR的方法仍存在诸如流程长、成本高等缺

金属橡胶材料及其应用-北气福田

金属橡胶材料及其应用河北金擘机电科技有限公司

一、金属橡胶制备工艺 我们通过几年的艰苦摸索,掌握了金属橡胶材料制造的核心工艺技术方法,金属橡胶制备基本工艺流程包括: 1、金属丝线牌号选择原则 制造金属橡胶的原材料为金属丝,具体化学成分由工作条件(如温度、湿度、侵蚀性介质、载荷等因素)决定。合理选择丝线的牌号在制造金属橡胶元件的过程中处于重要的地位。作为金属橡胶的最基本单元,丝线的弹性模量与强度同时要求有较大的值。这两个参数直接影响金属橡胶的机械性能,弹性模量决定材料的刚度,强度大但弹性模量低的材料不适合作为结构材料使用,因为对零件施加载荷时,由这种材料制成的结构有很大的残余变形。研究中我们所用丝线主要采用奥氏体不锈钢材料(0Cr18Ni9Ti),既克服了橡胶类有机非金属材料不耐高温、耐腐蚀性差的缺陷,也克服了一般碳素钢及其它金属材料耐腐蚀性差的缺陷。 丝线的直径取决于制品的尺寸及所要求的零件具有的机械性能,对金属橡胶制件的性能有很大的影响。 2、缠绕螺旋卷 选择各种不同规格的细金属丝,可选用0Cr18Ni9Ti或其它不锈钢材质,直径范围为0.10~0.30mm,其原则是要依据所制备金属橡胶构件用于不同的工作环境,构件承载能力要求越高,丝线强度应越大,直径也相应增大,然后在专用缠绕设备上将细金属丝绕制成螺旋线卷,线卷直径控制在金属丝径的5~15倍,这主要是为了使螺旋线卷咬合钩连较好,而后均匀拉伸螺旋线卷,使螺旋螺距等于线卷直径,其主要目的是保持构件成型后的尺寸稳定性。 3、制取毛坯

毛坯的成型主要通过配料和铺砌来实现。金属橡胶零件尺寸、孔隙度和机械性能很大程度上与配料有关。特别值得注意的是配料时应使螺旋卷的根数尽量少,以保证整个制件的拉压强度和阻尼性能。因为根数的增多意味着没有约束的螺旋卷头的增多。考虑到金属橡胶件的参数(体积V、密度ρ),毛坯质量按G=ρV确定。金属橡胶件的密度不同,制造时所用的成型压力也不同,制件的最终性能也不同。 在制作毛坯之前,要通过手工拉伸或使螺旋卷通过校准孔的方法拉伸螺旋卷,使之螺距与螺旋卷直径大致相等,使各丝线间相互啮合状况最好,毛坯体积稳定性最高。经配料和拉伸处理后的螺旋卷,可以用于绕制毛坯。 编织工艺方法要求将拉伸好的螺旋卷编织成网状结构,然后将其缠绕在模具的芯轴上。缠绕时要边绕边压,使毛坯的直径尽可能小(其直径比模具外筒内径大5%-10%左右),使其能够方便的放入模具外筒内。将缠绕好的毛坯放入模具外筒后,把上下两个加压块分别从上方和下方放入模具外筒,然后就可以进行冷冲压成型。 非编织工艺方法则不用将螺旋卷编织成网状,直接将其按某种规则缠绕到芯轴上,放入模具内筒就可以进行冷冲压成型。 铠装工艺方法要求将螺旋卷在芯轴上缠绕一定数量后(此时其直径比弹簧的内径稍大即可),将弹簧套在毛坯上,再将剩下的螺旋卷缠绕在弹簧外径上,并注意保证弹簧内外径之间金属丝螺旋卷的钩连,放入模具内筒待冷冲压成型。 最后需要提到金属橡胶制件成型后的组织不一致性。金属橡胶制件的组织宏观不一致性是制造工艺不合理造成的,主要是缠绕螺旋卷方法不合理,可以被消除;微观不一直性是金属橡胶材料组织本身不能获得分布均匀的孔隙而形成的,取决于样件的孔隙度和螺旋卷直径及金属丝直径。 4、冲冷压成型

第十章 高分子化合物与材料

第十章高分子化合物与材料 10.1 高分子化合物概述 10.2 高分子化合物的结构与性能 10.3 重要的高分子材料

10.1 高分子化合物概述 10.1.1 高分子化合物的基本概念 高分子化合物:由许多个结构相同的重复单元以 共价键相连,以长链分子为基础的大分子组成的化合物。又称为聚合物或高聚物。 单体链节聚合度(DP) 10.1.2 高分子化合物的命名 1、根据单体名称命名:是按组成高聚物的单体名称来命名的,具体的就是在单体名称前冠以“聚”字。 由两种单体缩聚而成的聚合物,如果结构比较复杂,则往往在单体名称后对塑料而言加上“树脂”二字;对橡胶则加上“橡胶”二字;对纤维则加上“纶”

2、商品名称及英文缩写符号 以上方法的优点:简明易记。 缺点:不能充分反映聚合物组成和结构特征。有时用不同单体可制出同一种聚合物,这就容易造成混乱。为此国际纯化学与应用化学联合会(IUPAC)制定了系统命名法,这种命名法虽然严谨,但又过于烦琐,在此不予介绍。

10.1.3 高分子化合物的合成 1、加聚反应:由一种或多种单体经过加成反应相互结合生成高分子化合物的反应。生成的聚合物结构单元与其单体相比较,除电子结构有改变外, 其所含原子的种类、数目均未变化。 3COOCH CH C 2CH 3COOCH CH = C 2n CH []n 3 3

2、缩聚反应:由具有两个或两个以上官能团的单体相互缩合形成高分子化合物,同时析出某些低分子化合物(如水、氨、醇氯化氢等)的反应。所生成的聚合物结构单元在组成上比其相应的原单体分子少了一些原子。 4 226262242+2nH O NH(CH ) NHCO(CH ) CO NH (CH ) NH +nHOOC(CH ) COOH []n n

密封圈的材质及应用【详解】

密封圈的材质及应用 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 材质应用 一、NBR丁腈橡胶密封圈: 适合于石油系液压油、甘醇系液压油、二酯系润滑油、汽油、水、硅润滑脂、硅油等介质中使用。是目前用途最广、成本最低的橡胶密封件。不适用于极性溶剂之中,例如酮类、臭氧、硝基烃、MEK 和氯仿。一般使用温度范围为-40~120 ℃。 二、HNBR氢化丁腈橡胶密封圈: 具有极佳的抗腐蚀、抗撕裂和抗压缩变形特性,耐臭氧、耐阳光、耐天候性较好。比丁腈橡胶有更佳的抗磨性。适用于洗涤机械、汽车发动机系统及使用新型环保冷媒R134a 的制冷系统中。不建议使用于醇类、酯类或是芳香族的溶液中。一般使用温度范围为-40~150 ℃。 三、SIL硅橡胶密封圈: 具有极佳的耐热、耐寒、耐臭氧、耐大气老化性能。有很好的绝缘性能。但抗拉强度 密封圈(4张) 较一般橡胶差且不具耐油性。适用于家用电器如电热水器、电熨斗、微波炉等。还适用于各种与人体有接触的用品,如水壶、饮水机等。不建议使用于大部份浓缩溶剂、油品、浓酸及氢氧化钠中。一般使用温度范围为-55~250 ℃。

四、VITON氟素橡胶密封圈: 耐高温性优于硅橡胶,有极佳的耐候性、耐臭氧性和耐化学性,耐寒性则不良。对于大部份油品及溶剂都具有抵抗能力,尤其是酸类、脂族烃、芳香烃及动植物油。适用于柴油发动机、燃料系统及化工厂的密封需求。不建议使用于酮类、低分子量的酯类及含硝的混合物。一般使用温度范围为-20~250 ℃。 五、FLS氟硅橡胶密封圈: 其性能兼有氟素橡胶及硅橡胶的优点,耐油、耐溶剂、耐燃料油及耐高低温性均佳。能抵抗含氧的化合物、含芳香烃的溶剂及含氯的溶剂的侵蚀。一般用于航空、航天及军事用途。不建议暴露于酮类及刹车油中。一般使用温度范围为-50~200 ℃。 六、EPDM三元乙丙橡胶密封圈: 具有很好的耐候性、耐臭氧性、耐水性及耐化学性。可用于醇类及酮类,还可用于高温水蒸气环境之密封。适用于卫浴设备、汽车散热器及汽车刹车系统中。不建议用于食品用途或是暴露于矿物油之中。一般使用温度范围为-55~150 ℃。 七、CR氯丁橡胶密封圈: 耐阳光、耐天候性能特别好。不怕二氯二氟甲烷和氨等制冷剂,耐稀酸、耐硅脂系润滑油, 但在苯胺点低的矿物油中膨胀量大。在低温时易结晶、硬化。适用于各种接触大气、阳光、臭氧的环境及各种耐燃、耐化学腐蚀的密封环境。不建议使用于强酸、硝基烃、酯类、氯仿及酮类的化学物之中。一般使用温度范围为-55~120 ℃。 八、IIR丁基橡胶密封圈: 气密性特别好,耐热、耐阳光、耐臭氧性佳,绝缘性能好;对极性溶剂如醇、酮、酯等有很好的抵抗能力,可暴露于动植物油或可氧化物中。适合于耐化学药品或真空设备。不建议与石油溶剂、煤油或芳烃同时使用。一般使用温度范围为-50~110 ℃。 九、ACM丙烯酸脂橡胶密封圈: 对油品有极佳的抵抗力, 耐高温、耐候性均佳,但机械强度、压缩变形率及耐水性稍差。一般用于汽车传动系统及动力转向系统之中。不适用于热水、刹车油、磷酸酯之中。一般使用温度范围为-25~170 ℃。 十、NR天然橡胶密封圈: 具有很好的耐磨性、弹性、扯断强度及伸长率。但在空气中易老化,遇热变黏,在矿物油或汽油中易膨胀和溶解,耐碱但不耐强酸。适合于在汽车刹车油、乙醇等有氢氧根离子的液体中使用。一般使用温度范围为-20~100 ℃。 十一、PU聚氨脂橡胶密封圈: 聚氨脂橡胶的机械性能非常好,耐磨、耐高压性能均远优于其它橡胶。耐老化性、耐臭氧性、耐油性也相当好, 但高温易水解。一般用于耐高压、耐磨损密封环节,如液压缸。一般使用温度范围为-45~90 ℃。 十二、金属橡胶密封圈:采用不锈钢丝制成,不含任何橡胶成分,具有很强的使用特性。比如:在高真空、高低温、强辐射、及各种腐蚀等环境下保持正常工作。密封圈表皮根据用途不同由不同材质如不锈钢、铜、聚四氟乙烯等材料制作,被包覆的金属橡胶构件作为衬芯,具有密封强度高、效果好、可重复使用等优

车辆悬架中高频振动传递分析与橡胶衬套刚度优化

2011年10月 农业机械学报 第42卷第10期 车辆悬架中高频振动传递分析与橡胶衬套刚度优化 * 陈无畏 李欣冉 陈晓新 王 磊 (合肥工业大学机械与汽车工程学院,合肥230009) 【摘要】利用ADAMS 与NASTRAN 软件建立了某微型轿车整车刚柔耦合动力学模型。通过ADAMS /Vibration 模块建立虚拟激振台,分析悬架在路面中高频段激励下的振动响应与传递特性。从提高悬架隔振性能的角度出发, 分析了底盘/悬架系统中副车架、扭转梁和橡胶衬套对整车振动的影响。采用ADAMS 中的DOE 技术对悬架系统中几个主要连接衬套的刚度进行灵敏度分析,在ADAMS /Insight 中对衬套刚度进行优化,通过改变衬套 刚度提高整车振动性能。仿真结果显示,地板处的垂向加速度均方根值在整个研究频率范围内由477.9mm /s 2 降至454.2mm /s 2 ,降低了5%。 关键词:车辆悬架中高频激励振动传递特性橡胶衬套优化 中图分类号:U461.4;U463.33文献标识码:A 文章编号:1000- 1298(2011)10-0025-05Middle-high Frequency Vibration Transfer Analysis of Vehicle Suspension and Optimization of Rubber Bushings Chen Wuwei Li Xinran Chen Xiaoxin Wang Lei (School of Mechanical and Automobile Engineering ,Hefei University of Technology ,Hefei 230009,China ) Abstract Based on ADAMS and NASTRAN ,a rigid-flexible coupling dynamic full vehicle model was established.A virtual test rig was also built up by using ADAMS /Vibration to analyze the vibration responses and transfer characteristics of the suspension system motivated by middle-high frequency road excitations.To improve the vibration isolation capability of the suspension system ,the effects of the subframe ,twist beam and rubber bushings of the chassis /suspension system with the vehicle vibration was analyzed.Finally ,through adopting the ADAMS /Insight DOE technology ,the researchers proposed the sensitivity analyses of several key rubber bushing stiffness ,and the optimization of the bushing in the environment of ADAMS /Insight.By changing the bushing stiffness ,the vibration performance of the vehicle was improved.Simulation results indicated that the vertical acceleration root mean square (RMS )decreased from 477.9mm /s 2to 454.2mm /s 2,by 5%in the whole research frequency spectrum. Key words Vehicle ,Suspension ,Middle-high frequency excitation ,Vibration transfer characteristics ,Rubber bushings ,Optimization 收稿日期:2010-10-21修回日期:2011-05-25*国家高技术研究发展计划(863计划)资助项目(2006AA110101)和国家自然科学基金资助项目(51075112) 作者简介:陈无畏,教授,博士生导师,主要从事车辆振动与噪声控制、车辆控制技术研究, E-mail :cww@mail.hf.ah.cn 引言 悬架是汽车底盘系统的主要组成部分,作为路面激励通过轮胎传递到车身的过渡环节,能缓冲和吸收来自路面的振动,对整车的噪声、振动与舒适度(NVH )等性能有很大影响。文献[1 2]主要是利 用多体动力学的方法,在ADAMS 中建立整车多刚 体动力学模型,实现了虚拟样车在软件三维路面上的行驶,并且对汽车的平顺性进行仿真与分析。在此基础上,对前、后悬架的弹簧刚度和减振器阻尼等主要参数进行优化匹配,取得了不少成果。 路面不平度和动力总成是汽车NVH 的主要激

相关文档
最新文档