电阻炉的设计要求

合集下载

无机非金属材料课程设计-电阻炉设计

无机非金属材料课程设计-电阻炉设计

箱式电阻炉设计说明书1、设计任务设计一箱式电阻炉,要求如下:1)额定温度为1300℃;2)升温速率为20℃/分钟;3)炉膛有效尺寸长×宽×高不超过500×300×300。

.2、设计说明2.1电炉电热材料的选择本次设计要求的额定温度为1300℃,由于一般电热体的温度要比炉膛的温度高50—100℃,因此所选用的电热材料的使用温度应至少为1350℃以上。

满足这一基本要求的常用电热体有钼棒、钨棒、铁铬铝合金、硅碳棒、硅钼棒、石墨和碳棒。

钼棒硬而坚韧具有优异的力学性能,而且其熔点高且在高温下具有较大的持久强度,其在真空炉中使用温度高达1650℃,钼还对无机酸具有突出的耐腐蚀性能;但钼是一种易氧化的金属,在空气中300℃时钼便会被氧化为三氧化钼,600℃时则会形成黑色的氧化层。

由于本次设计的是一个空气电阻炉,因此钼并不很符合本次设计对电热体的要求。

钨棒的熔点较钼来讲更高,在真空炉中的使用温度高达2000—2500℃,而且相较于钼也更为廉价;但钨棒在空气中高温下化学性质也不稳定,会与氧气发生剧烈反应生成三氧化钨,同时高温下钨还会与耐火材料发生反应。

因此钨棒也不适用与本次设计。

铁铬铝合金被加热后其表面生成一层氧化铝起到了保护作用,其在空气中的使用温度为1300—1400℃,且具有电阻系数大,电阻温度系数小,表面容许负荷高,比密度小,高率稳定,价格低廉等诸多优点;但其强度不高,使用寿命相对较短,且过烧后不可回收。

总体来讲铁铬铝合金基本满足本次设计的要求,是备选的电热体之一。

硅碳棒在空气中的使用温度为1350—1450℃,其能承受较高的加热温度且对化学试剂稳定性强,各种酸蒸汽对硅碳棒均不起化学作用,此外硅碳棒的使用寿命也较长间断使用时间可达1000h,其价格也比较低廉;但其易于和一些金属氧化物反应对其结构产生破坏作用。

硅碳棒的综合性能优异且满足本次实际要求也是备选的电热体材料之一。

管式电阻炉设计说明书

管式电阻炉设计说明书

热处理炉课程设计炉型管式电阻炉学院专业材料工程学号学生姓名指导教师日期设计任务书编号02材料冶金学院专业年级班级:材料工程学号:姓名:一、基本条件1.炉型:管式电阻炉2.用途:实验室作化学分析、物理测定及热电偶检定等加热用。

3.额定温度:1000℃4.炉壁外壳温度≤80℃5.炉膛尺寸:φ50×600(㎜)6.功率:5Kw7.电源:220V8.加热元件:高电阻合金二、设计要求1.砌体部分2.电热元件及接线部分、炉盖、炉壳构架3.标定主要技术数据(1)额定功率(2)额定电压(3)额定温度(4)电源相数(5)电热元件接法(6)炉膛有效尺寸(7)炉膛尺寸(8)空炉升温时间(9)外形尺寸4.提交资料(1)纸质和电子版本的《设计计算说明书》,规格:A4(2)纸质和电子版本的炉子总图(AotuCAD绘制),幅面:A1指导教师:前言热处理是现代机械工业的一项重要基础技术,通常像轴、轴承、齿轮、连杆等重要的机械零件和工模具都是要经过热处理的,而且,只要选材合适,热处理得当,就能使机械零件和工模具的使用寿命成倍、甚至十几倍地提高。

配合热处理进行的基本设备就是热处理炉。

我国热处理炉在近些年发展迅速,许多的技术实现了革新与突破,但是不可否认我国与西方国家还存在相当大的差距,许多先进的可控气氛炉还必须要依赖进口,此次的坩埚电阻炉结构比较简单,设计起来容易与书本上的知识联系起来。

管式电阻炉外形呈一横置的圆柱体,它安置于由薄钢板制成的底座上。

炉壳系用薄钢板圈焊制成,工作室为一由石英耐火材料制成的管形炉膛,炉膛外表面制有螺旋形的单丝槽,加热元件铁铬铝合金绕于丝槽内,炉膛两端用耐火材料制成的炉圈固定于炉盖上,炉膛与炉壳之间用硅藻土砖、耐火纤维等砌筑为保温层。

目录一炉型的选择 1 二确定炉体结构尺寸 12.1、炉膛尺寸 12.2、炉衬材料及厚度 1三炉子散热的计算 1 四炉子空蓄热计算 2五空炉升温时间计算 3六功率的分配 3七电热元件材料选择及计算 37.1、求1000℃时电热元件的电导率 37.2、确定电热元件的表面功率 47.3、每组电热元件的功率 47.4、每组电热元件端电压 47.5、线状电热元件直径 47.6、每组电热元件长度及质量 47.7、校核电热元件表面负荷 47.8、电热元件在炉膛的布置 5八炉子的技术指标 5九参考文献5十设计小结 6设计项目计算内容计算结果一、炉型的选择二、确定炉体结构的尺寸三、炉子散热的计算一、炉型的选择根据设计任务书给的生产特点,拟选用管式电阻炉,并用220V的交流电压。

窑炉设计——设计实验室电阻炉

窑炉设计——设计实验室电阻炉

实验室电阻炉设计一、设计要求设计一座容积为0.001M3,使用温度为1400℃的实验室电阻炉。

二、关于电阻炉1. 电阻炉(马弗炉)概念利用流经元件本身的电流,由于自身的电阻产生的焦耳热,从而使整个封闭炉膛的温度达到需要的温度,制品则放入炉膛中完成升温、烧结的过程,该种烧结炉,我们称之为马弗炉(muffle furnace)或电阻炉。

2. 电热窑炉特点(与火焰窑炉相比)易获得高温;精密控温;易实现真空、气氛、加压等烧结工艺;产品质量好、稳定;传热效率高,污染少;结构简单,劳动强度小,使用寿命长;生产成本较高。

其产量小,规模小,只适合实验室或小型试验、生产。

3. 电热窑炉的结构电热窑炉的结构包括:炉壳、炉衬、电热元件及辅助设备。

对于电热窑炉的炉壳要求气密性良好,而对炉衬的要求是耐高温、低蓄热、热损少、电绝缘性好。

电热元件则需要综合电阻炉的使用温度、升温速率、使用气氛、调压范围、恒温带范围、元件寿命及电器设备安全使用来考虑其材料、布局和连接方式。

辅助设备包括动力机械,电、水、气路系统,控温、调压装置,观察窗,测温孔和防暴器等。

图1.电热窑炉外观及结构4. 电阻炉的选型原则(1)烧成制品工艺要求(温度、气氛、温度均匀性)(2)烧成制品的形状、尺寸、装炉方式(3)生产规模、使用寿命、通用性5. 电阻炉的使用和维护(1)保护加热元件--机械损伤、超载使用、连接方式、安装间距、低熔有害物质的侵蚀等;(2)保护砌炉材料--使用温度、抗热震性、有害物质的侵蚀等;(3)保护热工仪表--防震、可靠接地、正常运行等;(4)保证水路、气路、电路的正常工作、便于维修等。

6. 常用电阻炉合金丝电阻炉、SiC电阻炉、MoSi2 电阻炉三、设计方案1. 确定炉型、炉膛尺寸容积为0.001M3 (1L);炉膛尺寸设计为100mm*100mm*100mm;2. 选择电热元件元件材料t(℃)t max(℃)Ni-Cr合金1000 ~ 1100 1100 ~ 1200Fe-Cr-Al合金1200 ~ 1350 1300 ~ 1450SiC 1350 ~ 1450 1450 ~ 1550MoSi2∥1550 1650MoSi2⊥1600 ~ 1700 1700 ~ 1800Mo 真空1600 ~ 1650 1650Mo H2内绕1650~1750 2000Mo H2外绕1500~1600 2000表1.常用电热元件的最高使用温度(t max)和一般工作温度(t)所要设计的实验室电阻炉的使用温度喂1400℃,因此根据电热元件的使用温度(见表1)选择使用SiC棒加热(如图2)。

65KW高温台车式电阻炉设计

65KW高温台车式电阻炉设计

目录1 前言 (1)1.1 本设计的目的、意义 (1)1.1.1 本设计的目的 (1)1.1.2 本设计的意义 (1)1.2 本设计的技术要求 (1)1.2.1 技术要求 (1)1.3 热处理炉的发展现状 (2)1.3.1 国外热处理行业的能源利用情况 (2)1.3.2 我国热处理行业存在的问题 (2)2 设计说明 (3)2.1 炉型选择 (3)2.2 确定炉体结构和尺寸 (3)2.2.1 根据经验公式法计算炉子的炉膛砌砖体内腔的尺寸L*B*H (3)2.2.2 确定工作室有效尺寸L效B效H效 (3)2.2.3 炉衬材料及厚度的确定 (3)2.2.4 砌体平均表面积计算 (4)2.2.5 炉顶平均面积 (4)2.2.6 炉墙平均面积 (4)2.2.7 炉底平均面积 (4)2.3 计算炉体的热散失 (4)2.3.1 求热流量 (5)2.3.2 验算交界面上的温度T2墙T3墙 (5)2.3.3 验算炉壳温度T4墙 (5)2.4 计算炉墙散热损失Q墙散 (5)2.4.1 计算炉墙散热损失 (5)2.4.2 开启炉门的辐射热损失Q辐 (6)2.4.3 开启炉门溢气热损失Q溢 (6)2.4.4 其它热损失Q它 (6)2.4.5 工件吸收的热量 (7)2.5 炉子生产率的计算 (7)2.5.1 炉子生产率计算 (7)2.5.2 正常工作时的效率 (7)2.5.3 保温阶段关闭炉门时的效率 (7)2.6 炉子空载功率计算 (7)2.7 空炉升温时间计算 (7)2.7.1 炉墙及炉顶蓄热 (7)2.7.2 炉底蓄热计算 (8)2.7.3 炉底板蓄热 (9)2.8 功率的分配与接线 (9)2.9 电热元件材料选择及计算 (9)2.9.1 求950℃时电热元件的电阻率PT (9)2.9.2 确定电热元件表面功率 (9)2.9.3 每组电热元件功率 (9)2.9.4 每组电热元件端电压 (10)2.9.5 电热元件直径 (10)2.9.6 每组电热元件长度和重量 (10)2.9.7 电热元件的总长度和总重量 (10)2.9.8 校核电热元件表面负荷 (10)2.9.9 电热元件在炉膛内的布置 (10)2.10 炉子技术指标 (11)3 附录 (12)3.1 装配图 (12)3.2 电阻丝 (13)3.3 电阻丝接线示意图 (14)4 参考文献 (15)1前言1.1本设计的目的、意义1.1.1本设计的目的设计一台电阻加热炉,额定功率为65KW,使其加热温度在1000℃,周期式成批装料,长时间连续生产。

中温箱式电阻炉设计说明书

中温箱式电阻炉设计说明书

热处理炉课程设计炉型:中温箱式电阻炉学院:专业班级:材料工程学号:学生姓名:指导教师:日期:中温箱式电阻炉设计任务书编号:03材料冶金学院专业年级班级:材料工程学号:姓名:一、基本条件1. 炉型:中温箱式电阻炉2.用途:中碳钢、低合金钢的中小型毛坯工件的正火、淬火及调质,无定型产品,多品种小批量。

3.最高工作温度:950℃4.炉壁外壳温度≤70℃5. 生产率:80kg/h6.空炉升温时间:≤2.5小时7.生产特点:周期式成批装料,长时间连续生产8.电源:三相二、设计要求1.设计内容1) 砌体部分2)炉门及启闭机构电热元件及外部接线炉壳构架部分2.标定主要技术数据(1)额定功率(2)额定电压(3)额定温度(4)电源相数(5)电热元件接法(6)炉膛有效尺寸(7)炉膛尺寸(8)空炉升温时间(9)外形尺寸3.提交资料(1)纸质和电子版本的《设计计算说明书》,规格:A4(2)纸质和电子版本的炉子总图(AotuCAD绘制),幅面:A1指导教师:前言随着基础工业的不断现代化,即传统的制造技术与计算机技术、信息技术、自动化技术、新材料技术、现代管理技术的紧密结合,市场竞争更趋于白热化,商家们的眼光不仅盯在如何提高产品质量,而且在如何提高效率、效益、保护环境、适应用户需要方面提出了更高的要求。

对热处理行业来说,“优质、高效、低耗、清洁、灵活”是现代热处理技术的标志,着10个字应该成为热处理工作者不断追求的总目标。

要实现热处理技术的现代化,需要靠热处理设备的现代化来保证。

现代热处理设备包括:大型连续热处理生产线、密封箱式多用炉生产线、真空热处理设备、无人化感应加热设备等。

热处理电阻炉的设计是一项综合性的技术工作,除需炉子知识外,还包括热处理工艺、机械设计、电工及温度控制等有关内容,必须密切结合生产实际综合运用有关知识。

一般设计炉子的顺序遵循:1.炉子的生产任务;2.作业制度(一班制、两班制或连续生产);3.加热工件的材料、形状、尺寸、重量;4.工件热处理工艺规程和质量要求;5.电源及车间的厂房条件;6.炉子建造维修能力和投资金额等当然热处理炉的课程设计所包含的内容有所不同,但是一些技术上的要求必须要在设计过程中通过运用所学的知识设计达标。

中温电阻炉设计

中温电阻炉设计

RX-18-9中温箱式电阻炉设计设计者:尹宏林一、箱式电阻炉的工作原理:是利用电流通过电热元件时所产生的热效应,采取热辐射和炉膛内气体对流作用的形式将热量传递到被加热的工件上,使工件加热。

结构及特点:箱式电阻炉由炉体、测温系统和电控系统组成。

二、基本技术条件:1)箱式电阻炉;2)额定功率18kw;3)最高工作温度950℃;4)炉外壁温度小于60℃;设计计算的主要项目:1)确定炉膛尺寸;2)选择炉衬材料及厚度,确定炉体外型尺寸;3)计算炉子主要经济技术指标(热效率,空载功率,空炉升温时间);4)选择和计算电热元件,确定其布置方法;5)写出技术规范三.炉体结构和尺寸确定1、炉体材料及结构炉胆材料:轻质粘土砖电阻丝是内置式,买入炉衬材料中,除了保证其有足够的耐热度外,以为要放加热工件,故还要保证其强度。

炉衬材料:耐火材料:轻质粘土砖紧贴炉衬,包裹在其周围保温材料:膨胀珍珠岩炉外壳与保温材料之间支撑材料:轻质粘土砖下方炉体材料,保温层和炉壳之间为膨胀珍珠岩。

必须江保温层支撑起来,故加支撑材料。

炉外壳材料:3mm厚的钢板表炉衬温度与炉衬厚度及结构2、炉衬尺寸因为功率及炉温一定,利用经验计算法计算出炉子的内表面积。

根据其功率以及工作温度,计算其炉膛的内表面积,公式如下:P=cτ-0.5F0.9(t/1000)1.55式中P——炉子功率kwτ——空炉升温时间hF——炉膛内壁面积m2t——炉温℃c——系数(热损失较大的炉子取30~35)要求设计的箱式电阻炉额定功率为为18kw,炉温为950℃,空炉损耗功率≤5已知p=18kw,空炉升温时间≤2h,炉温950℃,系数取30~35算得F=考虑箱式电阻炉装出料方便,同时参考RX3-15-9中温电阻炉的尺寸(热处理手册;机械工业出版社,第三卷、热处理电阻炉,表3-5),取L/B=2 H/B=0.83 得L=600mm,B=300mm,H =250mm验证炉体结构设计的合理性由于炉子结构比较对称,故作统一数据处理。

热处理电阻炉设计

热处理电阻炉设计

热处理电阻炉设计一、设计任务设计一箱式电阻炉,计算和确定主要项目,并绘出草图。

基本技术条件:(1)用途:碳钢、低合金等的淬火、调质以及退火、正火;(2)工作:中小型零件,小批量多品种,最长0.8m;(3)最高工作温度为950℃;(4)炉外壁温度小于60℃.(5)生产率:105Kg/h。

设计计算的主要项目:(1)确定炉膛尺寸;(2)选择炉衬材料及厚度,确定炉体外形尺寸;(3)用热平衡法计算炉子功率;(4)选择和计算电热元件,确定其布置方法;(5)写出技术规范。

二、炉型选择根据设计任务给出的生产的特点,选用中温(650~1000℃)箱式热处理电阻炉,炉膛不通保护气氛,为空气介质。

三、确定炉膛尺寸1.理论确定炉膛尺寸(1)确定炉底总面积炉底总面积的确定方法有两种:实际排料法和加热能力指标法。

本设计用加热能力指标法来确定炉底面积。

已知炉子生产效率P=105Kg/h 。

按教材表5-1选择适用于淬火、正火的一般箱式炉,其单位炉底面积生产率P 0=100~120Kg/(m 2·h )。

因此,炉子的炉底有效面积(即可以摆放工件的实际面积)F 1可按下式计算:2011105105m P P F ===通常炉底有效面积和炉底总面积之比值在0.75~0.85之间选择。

炉子小取值小值;炉子大取值大值。

本设计取中值0.8,则炉底总面积F 为:2125.18.018.0m F F ===(2)确定炉膛的长度和宽度炉底长度和宽度之比B L在3/2~2之间选择。

考虑到炉子使用时装、出料的方便,本设计取2=BL,则炉子炉底长度和宽度分别为:m F L 581.15.025.15.0===m L B 791.02581.12===(3)确定炉膛高度 炉膛高度和宽度之比BH在0.5~0.9之间选择,大炉子取小值,小炉子取大值。

本设计取中值0.7,则炉膛高度为:m B H 554.0791.07.07.0=⨯==2.确定实际炉膛尺寸为方便砌筑炉子,需要根据标准砖尺寸(230×113×65mm ),并考虑砌缝宽度(砌砖时两块砖之间的宽度2mm ),上下砖体应互相错开以及在炉底方面布置电热元件等要求,进一步确定炉膛尺寸。

箱式电阻炉1200℃设计

箱式电阻炉1200℃设计

箱式电阻炉1200℃设计简介箱式电阻炉是一种常用的实验设备,主要用于高温实验和热处理。

本文将介绍设计一个箱式电阻炉,能够达到1200℃的温度。

设计要求为了满足1200℃的工作温度,我们需要考虑以下设计要求:1.炉体材料应具备较高的耐高温性能;2.保温层要能有效减少热量的散失;3.控温系统要精确而稳定;4.安全性能要高,包括过热保护和漏电保护。

设计方案1. 炉体材料选择炉体材料需要具备较高的耐高温性能,一般可以选择使用耐火砖或高温陶瓷材料。

耐火砖具有良好的耐高温和隔热性能,但相对较重;高温陶瓷材料则轻盈且性能稳定。

根据实际需求和预算情况,可以选择适合的炉体材料。

2. 保温层设计保温层的设计可以采用多层结构,以确保热量的有效保持。

常用的保温材料包括氧化铝纤维、硅酸钙纤维、硅酸铝纤维等。

保温材料的厚度和密度需要根据实际情况进行调整,以达到理想的保温效果。

3. 控温系统控温系统是箱式电阻炉的核心组成部分,它决定了炉内温度的精确性和稳定性。

常用的控温系统包括PID控制器和温度传感器。

PID控制器能够根据温度误差自动调整炉内的加热功率,以达到设定的温度值。

温度传感器负责实时监测炉内温度,将数据反馈给PID控制器。

通过合理的参数设置和精确的传感器,可以实现精确控温。

4. 安全性能为了保证使用过程中的安全性,必须配置过热保护和漏电保护装置。

过热保护装置可以设置在温度传感器附近,一旦探测到异常高温,就会自动切断加热源的电源,以防止火灾发生。

漏电保护装置则用于检测漏电情况,一旦检测到漏电,将自动切断电源以保证人身安全。

总结设计一个能够达到1200℃的箱式电阻炉需要考虑炉体材料、保温层设计、控温系统和安全性能等方面的要求。

选择合适的耐火材料、设计适当的保温层、配置精确稳定的控温系统和安全保护装置,可以实现高温实验和热处理的需求,同时确保使用过程的安全性。

希望本文对设计1200℃箱式电阻炉有所帮助。

电阻炉设计手册

电阻炉设计手册

电阻炉设计手册
电阻炉设计手册
1. 引言
电阻炉是一种将电能转化为热能的设备,广泛应用于工业、科研和日
常生活中。

本手册介绍了电阻炉的设计原理、设计步骤和相关注意事项,为电阻炉的设计提供一定的指导。

2. 设计原理
电阻炉利用电能通过导体时所产生的热量来加热物体,其基本原理是
欧姆定律,即电流经过电阻产生热量,利用热量来加热物体。

电阻炉
主要由电路系统、加热室、保护系统和控制系统四部分组成。

3. 设计步骤
电阻炉的设计步骤如下:
(1)根据加热物体的性质和加热需求确定加热室的大小和形状;
(2)根据所需的加热功率和电压确定电路系统的结构和参数;
(3)根据加热室的材料和形状来设计适合的保护系统;
(4)通过控制系统对电路系统进行控制,以达到理想的加热效果。

4. 相关注意事项
在电阻炉的设计过程中,需要注意以下事项:
(1)根据加热需求和材料的特性来选取合适的加热器材料;
(2)合理安排加热室的大小和形状,以充分利用加热器的热能;
(3)电阻炉的电路系统设计要符合安全操作规范,确保操作人员的安全;
(4)加热室和电路系统要进行有效的绝缘和隔离,防止电路漏电和人
身安全事故;
(5)定期对电阻炉进行维护和保养,确保其长期稳定运行。

以上是关于电阻炉的设计手册,详细介绍了电阻炉的设计原理、
步骤和注意事项。

在实际设计中,需要根据具体情况进行调整和改进,以达到更好的加热效果。

热处理炉设计

热处理炉设计

热处理炉设计热处理炉(箱式电阻炉)是用于加热金属材料并进行热处理的设备。

箱式电阻炉通常由一个外壳、绝缘层、电炉线圈、控制系统和加热室组成。

在设计热处理炉时,需要考虑到温度控制、加热均匀性、安全性和能源效率等因素。

首先,温度控制是热处理炉设计的一个重要因素。

热处理过程中需要精确控制加热室内的温度,以确保金属材料达到所需的热处理温度。

在设计过程中,需要选择合适的温度传感器并将其安置在加热室内。

控制系统会根据传感器读数自动调整电炉线圈的电流,以控制加热室内的温度。

其次,加热均匀性也是设计热处理炉时需要考虑的因素之一、金属材料在加热过程中需要保持均匀加热,以确保整个材料的性能都能得到改善。

为了实现加热均匀性,可以在电炉线圈周围安装多个加热元件。

此外,还可以通过控制电炉线圈内部的绝缘材料的厚度,来调整加热室内的温度分布。

第三,热处理炉设计时需要考虑到安全性。

由于炉内温度较高,设计时必须采取安全措施以防止人员或设备受伤。

例如,可以在加热室上安装传感器和报警设备,以监控温度。

如果温度超过设定范围,报警装置会发出警报并停止加热。

最后,热处理炉设计还需要关注能源效率。

为了提高能源利用率,可以采用节能型电炉线圈,如高效电炉线圈或感应加热技术。

此外,还可以将炉体进行隔热处理,以减少能量散失。

总体而言,热处理炉(箱式电阻炉)设计需要考虑温度控制、加热均匀性、安全性和能源效率等因素。

通过合理的设计和选择合适的技术,可以确保热处理炉的稳定运行,提高金属材料的质量和生产效率。

箱式电阻炉及温控系统结构设计

箱式电阻炉及温控系统结构设计

箱式电阻炉及温控系统结构设计1.炉体结构设计:箱式电阻炉的炉体一般由钢板焊接而成,具有良好的耐高温性能和结构强度。

炉体需要具备良好的隔热性能,以减少能量损失。

为此,可以在炉体内外分别设置隔热材料层,如石棉、硅酸铝纤维、陶瓷纤维等,同时在隔热材料层外再设置一层不锈钢金属材料,以增加炉体的稳定性。

2.加热元件设计:箱式电阻炉的加热元件主要有电阻丝和加热管两种形式。

电阻丝是通过通电使其发热来加热炉体,常用的电阻丝材料有镍铬合金、铬铝合金等。

加热管是通过通过加热管内的导热介质来实现加热,加热管一般为不锈钢管内填充密度较高的酸钠玻璃丝,加热管具有更高的加热效率和更均匀的温度分布。

3.温控系统设计:温控系统是箱式电阻炉的重要组成部分,其主要功能是实时监测和控制炉内温度。

温控系统一般由控制器、温度传感器、继电器等组成。

控制器负责接收温度传感器的信号,并通过继电器控制加热元件的通断,以达到设定温度的目的。

在温控系统设计中,需要考虑控制精度、稳定性和可靠性等因素。

在箱式电阻炉及温控系统的结构设计过程中,需要注意以下几点:1.炉体结构紧凑合理,并具备良好的隔热性能;2.加热元件设计要考虑加热效率、温度均匀性等因素;3.温控系统的设计要考虑控制精度、稳定性和可靠性;4.安全性是设计中重要的考虑因素,需要考虑炉体的绝缘性能、过温保护等措施;5.设备维护方便,易于清洁和更换损坏的零部件。

总之,箱式电阻炉及温控系统的结构设计需要综合考虑炉体结构、加热元件和温控系统三个方面,以实现高效、稳定的加热和温度控制效果。

同时,设计中还要注意安全性和维护性,以确保设备的正常运行和使用寿命。

箱式电阻炉设计说明书

箱式电阻炉设计说明书

热处理设备设计说明书设计题目750℃80kg/h的箱式电阻炉设计学院年级专业金属材料工程学生姓名学号指导教师目录1 前言 (1)1.1本设计的目的 (1)1.2本设计的技术要求 (1)2 设计说明 (2)2.1确定炉体结构和尺寸 (2)2.1.1 炉底面积的确定 (2)2.1.2 确定炉膛尺寸 (2)2.1.3 炉衬材料及厚度的确定 (3)2.2砌体平均表面积计算 (3)2.2.1 炉顶平均面积 (3)2.2.2 炉墙平均面积 (3)2.2.3 炉底平均面积 (4)2.3根据热平衡计算炉子功率 (4)2.3.1 加热工件所需的热量Q件 (4)2.3.2 通过炉衬的散热损失Q散 (4)2.3.3 开启炉门的辐射热损失 (6)2.3.4 开启炉门溢气热损失 (6)2.3.5 其它热损失 (6)2.3.6 热量总支出 (7)2.3.7 炉子安装功率 (7)2.4炉子热效率计算 (7)2.4.1 正常工作时的效率 (7)2.4.2 在保温阶段,关闭时的效率 (7)2.5炉子空载功率计算 (7)2.6空炉升温时间计算 (7)2.6.1 炉墙及炉顶蓄热 (7)2.6.2 炉底蓄热计算 (8)2.6.3 炉底板蓄热 (9)2.7功率的分配与接线 (9)2.8电热元件材料选择及计算 (9)2.8.1 图表法 (9)2.8.2 理论计算法 (10)2.9炉子技术指标(标牌) (11)1前言1.1本设计的目的设计750℃80kg/h的箱式电阻炉设计1.2本设计的技术要求设计一台高温电阻炉,其技术条件为:(1).用途:中碳钢、低合金钢毛坯或零件的淬火、正火、调质处理及回火。

(2).工件:中小型零件,无定型产品,处理批量为多品种,小批量;(3).最高工作温度:750;(4).生产率:80kg/h;(5).生产特点:周期式成批装料,长时间连续生产。

2 设计说明2.1 确定炉体结构和尺寸 2.1.1 炉底面积的确定因无定型产品,故不能使用实际排料法确定炉底面积,只能用加热能力指标法。

箱式电阻炉的设计

箱式电阻炉的设计

箱式电阻炉的设计一、设计要求:1.加热效率高:箱式电阻炉使用电阻丝作为加热元件,电能会通过电阻丝发生热量的转化。

要提高加热效率,可以通过设计合理的加热元件布局来增大加热面积,增强传热效果。

2.均匀加热:为确保工件在电阻炉中能够得到均匀加热,应根据工件的尺寸及形状设计合适的加热元件布局。

同时,可在炉内配备风扇系统以提高空气循环,增强热量传递,使温度分布更加均匀。

3.温度控制精准:箱式电阻炉需要配备一套准确可靠的温度控制系统,可以使用PID控制器来实现温度的调控。

此外,还可设置多个温度探头来对不同位置进行实时监测,以确保整个炉腔温度的精确控制。

二、设计步骤:1.炉腔设计:根据工件的大小及数量确定炉腔的尺寸。

为了便于加热元件的安装和维护,炉腔应设计为可拆卸式,并合理考虑工件的进出口位置。

2.电阻丝布局:根据工件的形状及数量,设计合适的电阻丝布局。

可以将电阻丝分为多个相互独立的加热区域,每个区域的电阻丝布局应尽可能均匀且紧密,以实现加热效果的均匀性。

3.加热源设计:电阻炉的加热源主要是电阻丝。

要选择合适的电阻丝材料和规格,以及布局和连接方式。

电阻丝的连接点需要考虑其安全性和易于维护。

4.温度控制系统设计:设计合理的温度控制系统,可以选择PID控制器、温度传感器和放大器等元器件,根据工件的加热要求进行精确控制。

5.绝热材料选择:电阻炉为了减少热量损失,应选用具有良好绝热性能的材料。

常用的绝热材料有陶瓷纤维、耐高温板材等。

绝热材料的选择要考虑其耐高温性能、绝热效果以及工艺要求。

6.风扇系统设计:根据需要,可以设计风扇系统或风冷系统,以提高炉腔内空气的循环,增强热量传递,实现均匀加热。

7.安全性设计:设计时要考虑到设备的安全性,保证炉体结构牢固,防止温度逃逸或泄漏引发安全事故。

同时,在设备设计中应设置过温、漏电等保护装置,确保操作人员的安全。

8.操作人性化设计:对于箱式电阻炉的操作人员来说,易于操作和维护是一项重要的考虑因素。

中温箱式电阻炉设计

中温箱式电阻炉设计

中温箱式电阻炉设计一、中温箱式电阻炉的设计要求1.温度控制精度高,能够稳定地控制在所设定的中温范围内;2.炉内空气流动均匀,确保加热温度的匀性;3.适应不同尺寸的加热物体,在炉膛内有足够的容量;4.安全可靠,能够防止高温下的温度波动和过热问题;5.外壳采用绝缘功能,避免人员触电;6.设备结构紧凑,体积小,易于使用和维修。

二、中温箱式电阻炉的结构设计1.炉箱:炉箱通常采用不锈钢制作,具有较好的耐高温性能和防腐蚀性能。

炉箱内部应采用平整的设计,以确保炉内空气的流动均匀,并能够容纳加热物体。

2.加热元件:中温箱式电阻炉通常使用电阻丝作为加热元件。

电阻丝应选用耐高温、导电性能好的材料,如镍铬合金电阻丝。

电阻丝应以螺旋形或线圈形式布置在炉箱内,以实现均匀加热。

3.温度控制系统:温度控制系统应采用先进的温度控制仪,如PID控制器。

控制仪能够实时检测炉内温度,并通过调节加热功率来实现温度精确控制。

同时,应在炉箱内安装温度传感器,以反馈实际温度并实现控制闭环。

4.安全保护系统:中温箱式电阻炉应具备过热保护功能,当炉内温度超过设定值时,能够自动断开电源或启动冷却装置。

此外,炉箱应具备良好的隔热性能,避免外壳温度过高。

5.外观设计:外壳应具备绝缘性能,避免人员触电。

同时,外壳也应具备耐高温、耐腐蚀、易清洗等特性。

外壳的设计应紧凑,体积小,易于使用和维修。

三、中温箱式电阻炉的工作原理中温箱式电阻炉工作时,先将加热元件通电加热,使炉腔内的空气温度升高。

温度控制系统实时检测炉内温度,并通过调节加热元件功率来控制温度。

当炉内温度达到设定值时,控制系统会自动调整加热功率以保持温度稳定。

同时,安全保护系统也会监测炉内温度,当温度超过设定值时,会断开电源或启动冷却装置,以防止温度过高。

四、总结中温箱式电阻炉的设计要求包括温度控制精度高、炉内空气流动均匀、适应不同尺寸的加热物体、安全可靠等。

设计中需要考虑炉箱材料的耐温性能和防腐蚀性能,加热元件的布置方式和材料选择,温度控制系统的温度传感器和控制仪的选用,以及安全保护系统的设计。

箱式电阻炉设计

箱式电阻炉设计

箱式电阻炉设计首先,外形结构设计是箱式电阻炉设计的重要环节。

箱式电阻炉通常由箱体、保温层、加热元件和控制面板等组成。

箱体一般采用钢板焊接成型,以保证炉腔的密封性。

保温层采用高温保温材料,如陶瓷纤维棉或高铝石棉板,以减少能量损耗和热传导。

加热元件一般采用电阻丝或电加热器,根据需求选择合适的功率和数量。

控制面板安装在箱体外侧,用于控制炉温和其他参数。

其次,加热系统设计是箱式电阻炉设计的关键。

加热系统一般由电源供应单元、电阻丝或电加热器、接线盒和温度控制器等组成。

电源供应单元通过电源电缆将电能输入到电阻丝或电加热器中,产生高温加热。

接线盒将电源供应单元和加热元件连接起来,同时起到保护线缆作用。

温度控制器通过温度传感器感知炉腔内温度,并根据设定值调节电源供应单元输出功率,以实现精确控温功能。

同时,加热系统还应考虑通风系统,以确保炉内的温度均匀分布和热量传递。

最后,控制系统设计是箱式电阻炉设计的关键环节。

控制系统应具备可靠性、精准性和安全性。

一般情况下,控制系统包含温度控制器、报警系统、时间控制器和运行状态显示器等。

温度控制器可根据设定的温度自动调节炉内的功率输出,以实现精确控温。

报警系统能够在温度异常或其他故障发生时发出警报以及停止加热,保障设备和操作人员的安全。

时间控制器能够设定加热时间和持续时间,以满足不同工艺的需求。

运行状态显示器能够实时显示炉内温度、加热功率和工作状态等参数,方便操作和监控。

综上所述,箱式电阻炉的设计涉及到外形结构设计、加热系统设计和控制系统设计等方面。

合理的设计能够提高设备的效率和安全性,满足各种工业加热处理需求。

箱式电阻炉的设计

箱式电阻炉的设计

长春理工大学热工课程设计说明书题目箱式电阻炉的设计学院材料科学与工程学院专业无机非金属材料(建筑材料)班级0706121姓名向仕君学号182009 年7 月5 日设计任务书一、题目:箱式电阻炉的设计二、原始数据:电路形势:箱式电阻炉炉膛尺寸:120⨯mm260⨯170使用温度:1000℃表面温度:60℃电源电压:220V三、设计要求:1、设计认真,积极思考,独立完成,有所创新。

2、设计说明书:一份思路清晰,论述充分;设计参数选择合理,设计计算步骤完整,结果准确;著名参考文献。

3、设计图纸:2#图纸1—3张图画布置合理,比例适当,图画清洁;绘图线条类型正确,位置准确;尺寸标注正确、齐全。

摘要本说明书重点阐述箱式电阻炉的具体设计过程。

设计过程包括高温炉的简介,炉膛尺寸的确定,材料选择,电阻炉尺寸和结构设计,功率计算,供电电路的选择,电热提的尺寸确定及安装,以及热电偶使用,涉及到热量计算,功率计算,电热元件规格计算。

本设计说明书可供实验电阻和工业电阻炉的维修和设计提供理论参考导和指导。

引言陶瓷工业在社会主义建设,国防科学和人民生活都占重要的地位,它不仅与人类的日常生活存在密切的关系,而且随着科学技术的发展,已经超越了日用,建筑及一般的工业用途的范围,而应用与电子,原子能等尖端材料中。

生产陶瓷中一个重要的过程就是烧结,烧成时在热工设备中进行的,这里的热工设备指的是窑炉及其附属设备。

窑炉从生产方式上分为间歇式和连续式,按电能转化为热能形式分为:电阻炉,感应炉,电弧炉,等离子炉等,在使用热源上又分为火焰式和电热式。

目前,电子陶瓷,高温陶瓷及其他特种陶瓷的生产和科研处于火热期。

在实验中,使用较多的是间歇式的电阻炉。

本设计结合我们所学的《硅酸盐工业热工基础》中的传热学,材料学等方面的只是进行了电阻炉的设计,通过设计使我们学会了查阅资料,熟悉知识,锻炼了设计和绘图等能力,提高了我们的设计思维水平。

目录第一章:高温炉的简介§1.1电热窑炉的简介§1.2电阻炉的简介§1.3选用箱式电阻炉的原因第二章:炉膛尺寸的确定§2.1炉膛容积的初步认识§2.2炉膛尺寸的确定第三章:材料的选择§3.1耐火材料的选择§3.2隔热材料的选择第四章:电阻炉尺寸及结构§4.1炉膛结构尺寸§4.2炉门结构和尺寸第五章:功率的计算§5.1电阻炉理论功率的确定§5.2时机功率的确定§5.3功率的校核第六章:供电电路及功率调节§6.1供电电路§6.2功率的调节第七章:电热元件的选择和确定§7.1电热元件材料的选择§7.2电热元件尺寸的计算§7.3电热元件的安装第八章:热电偶材料选择§8.1热电偶材料简介§8.2热电偶材料的确定设计心得参考文献第一章高温炉的简介随着科学技术的发展,原有的材料在很多情况下都不能适应,需要特种加工。

热处理电阻炉的设计

热处理电阻炉的设计
常见的隔热材料有石棉、硅酸铝纤维 等,根据炉膛保温要求和工艺特点进 行选择。
04 热处理电阻炉的节能与环 保设计
节材料
采用先进的保温材料,如 硅酸铝纤维毡、纳米陶瓷 纤维等,减少热量损失, 提高热效率。
智能控制系统
采用智能温度控制系统, 实现温度的精确控制,避 免过热和能源浪费。
炉膛材料
选择耐高温、耐腐蚀、保温性能好的材料。
通风设计
合理设计通风口的位置和大小,保证炉内温 度均匀和节能。
温度控制系统设计
温度传感器
选择合适的温度传感器,实现炉内温度的实 时监测。
温度控制仪表
选择高精度的温度控制仪表,实现温度的精 确控制。
控制算法
采用合适的控制算法,实现温度的快速、稳 定控制。
按照说明书逐步组装电阻炉,并确保所有电气和管道连接正确、牢固。
安装步骤与注意事项
遵守安全规定
准确测量与定位
在安装过程中,始终遵守国家和地方 的安全规定,确保人员和设备安全。
确保所有尺寸和定位准确,以免影响 正常使用和性能。
检查设备完整性
确保在运输过程中设备没有损坏,如 有损坏应及时联系供应商。
调试步骤与注意事项
热处理电阻炉的设计
目录
CONTENTS
• 热处理电阻炉概述 • 热处理电阻炉的设计要素 • 热处理电阻炉的材料选择 • 热处理电阻炉的节能与环保设计 • 热处理电阻炉的安装与调试
01 热处理电阻炉概述
定义与特点
定义
热处理电阻炉是一种利用电阻加热原 理,对金属材料进行加热处理的设备。
特点
具有加热速度快、温度均匀、节能环 保、操作简便等优点,广泛应用于金 属材料加工和制造行业。
注意观察与记录
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻炉的设计要求
作者:小鱼来源:中华电炉网类别:论文集锦日期:2002.03.12 今日/总浏览: 1/113
(1)尺寸参数,电阻炉应以工作区尺寸偢主要设计参数。

(2)电源,电阻炉应按运行在50HZ、三相四线380V交流电网下设计,额定电阻炉用单相220V;大于30KW者用三相380V;两者之间,单相三相均可,控制电路电压不越过220V。

对额定电压低于电源电压的电阻炉应配备调压器、变压器或饱和电抗器等。

(3)安全和环境保护,对额定电压高于25V的电阻炉,必须设置联锁保护开关,当炉门或炉盖打开时,自动切断电源,或使用具有接地保护或可靠绝缘的操作工具。

电阻炉电热元件引出棒或引出线的接线端处应有安全保护罩壳。

罩内的空间应足够大,以便于电源线的引入和不致受到损伤。

罩壳和导线应能承受电阻炉在工作时所产生的热影响而不致受到损坏。

有爆炸危险的控制气氛炉,应具有必要的联锁报警系统和其他安全装置。

(4)密封,间歇式电阻炉的炉门或炉盖等应能可靠关闭,以尽可能减少漏气。

电热元件和热电偶引出管孔等应密封。

对控制气氛炉其炉壳等的焊缝应不漏气。

焊缝结构应保证在砌筑炉衬后能对其进行检漏和焊补。

对真空炉的密封要保证真空炉要求的压升率。

(5)炉衬,炉衬各层所用材料应按可靠耐用、热损失小、避免优材劣用等要求,根据其使用条件合理选择。

电热元件和直接与之接触的耐火制品,在工作中相互不起反应。

炉内与渗碳气氛直接接触的炉衬内层,其Fe2O3的含量应小于1%(如抗渗碳砖)。

砖砌炉衬的灰缝厚度应符合以下要求:对自然气氛(空气)电阻炉,炉顶大灰缝应不大于 1.5mm,炉墙灰缝不大于2mm,炉底灰缝不大于3mm;对控制气氛炉,各处灰缝不大于1mm。

所用砂浆的材质应与所连接的耐火砖的材质相适应。

工业电阻炉的耐火砖砌体中应留有膨胀缝。

在砖砌炉衬中不得使用粉未状、碎片状或颗粒状绝热材料,但用于直译砌体中缝隙的除外。

耐火纤维炉衬所用纤维制品的敷设方式应能承受包括风速有内的炉内各项工作条件。

炉衬接缝应互相错开至少100mm,为了减少收缩,炉衬材料应经预热或预压缩。

所有敷设用附件,包括吊挂加热元件用的附件,以及炉衬的敷设方式,镶嵌件的装配等,应按照耐火纤维制品厂的要求或经实践考验确认使用可靠。

(6)加热元件,加热元件的材料应根据其使用条件(工作温度、炉内气氛、可能出现的冷凝物或沉积物等所引起的热和化学影响等)命题选择加热元件的发热部分应截面均匀,表面平整光滑,无明显裂纹和划伤。

加热元件的设计和在炉内布置应符合热处理和炉温均匀度的要求,并应避免与炉料接触的可能性。

其表面负荷(加热元件表面功率)应合理选择,使加热元件有足够长的使用寿命。

加热元件应可靠固定,以免反复加热后因移动、变形而影响炉温均匀度。

金属元件引出棒的截面积至少就为加热元件发热部的3倍,同时还应考虑尽可能使用同种材质及在保护气氛下的焊接。

(7)测量、控制和记录,选用的热电偶的分度号应符合标准,应有合适的保护管。

工业电阻炉热电偶引线的长度应不短于7。

5m。

引线的材料应与热电偶相同或用相应的补偿导线。

电阻炉的每个控温区应配备指示、控制和记录仪(最好分别采用两套独立的温度指示与控制系统)。

温度仪表上应标有配用的热电偶分度号。

应配备超温控制仪,超温控制电路应是独立的电路。

对采用非金属加热元件(碳化硅、二硅化钼等元件)的电阻炉、电极盐浴炉和真空炉等应配备电流表以检测主电路电流值的变化。

(8)性能要求,电阻炉的炉体经烘干后各相加热元件对炉壳和各相之间的绝缘不得低于0。

5MΩ。

控制电路对地(在电路不直接接地时)的绝缘电阻不低于1MΩ。

电阻炉的绝缘耐压强度应在规定的试验条件和试验电压下保持1Min(俗称打高压),而无闪烁或击穿现象。

电炉额定功率的偏差规定为:对采用镍铬、铁铬铝等电阻温度系数不大的金属加热元件的电阻炉在0~+10%范围内;对采用碳化硅、二硅化钼、钨、钼、石墨等电阻温度系数较大的电热元件的电阻炉应在±10%范围内。

相关文档
最新文档