中考复习专题圆综合

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习

2025年中考数学二轮复习专题圆与锐角三角函数综合题(第二课时)练习例1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊙BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且⊙ODB=⊙AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sin A=,求BH的长.练习1.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊙CD于点E.(1)求证:⊙BME=⊙MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin⊙BAM=,求线段AM的长.例2.如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊙AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.练习2.如图,AB是⊙O的直径,弦CD⊙AB,垂足为H,连结AC,过上一点E作EG⊙AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:⊙ECF⊙⊙GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan G=,AH=3,求EM的值.例3.如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分⊙ABM,弦CD交AB于点E,DE=OE.(1)求证:⊙ACB是等腰直角三角形;(2)求证:OA2=OE•DC:(3)求tan⊙ACD的值.练习3如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO⊙AC;(2)求证:DE•DA=DC2;(3)若tan⊙CAD=,求sin⊙CDA的值.例4.如图,已知在⊙ABP中,C是BP边上一点,⊙P AC=⊙PBA,⊙O是⊙ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:P A是⊙O的切线;(2)过点C作CF⊙AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin⊙ACE的值.练习4.如图1所示,已知AB,CD是⊙O的直径,T是CD延长线的一点,⊙O的弦AF交CD于点E,且AE=EF,OA2=OE•OT.(1)如图1,求证:BT是⊙O的切线;(2)在图1中连接CB,DB,若=,求tan T的值;(3)如图2,连接DF交AB于点G,过G作GP⊙CD于点P,若BT=6,DT=6.求:DG的长.例5.如图,已知AO为Rt⊙ABC的角平分线,⊙ACB=90°,,以O为圆心,OC为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F.(1)求证:AB是⊙O的切线;(2)求tan⊙CAO的值;(3)求的值.课后练习1.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,连结AD,过点D作⊙O的切线交CB的延长线于点E.(1)求证:DE∥AB.(2)若⊙O的半径为1,求CA•CE的最大值.(3)如图2,连结AE,若,求tan∠AEC的值.2.如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC=∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.3.如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在上,四边形MNPQ为正方形,点C在上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.4.如图,已知等腰三角形ABC内接于⊙O,AB=AC,点D为上一点(不与点A,C重合),连接AD,BD,CD,且BC=3CD=18.(1)如图1,若BD为⊙O直径.①求tan∠BAC的值;②求四边形ABCD的面积.(2)如图2,在上取一点E,使,连接CE,交AB于点F,若∠BDC=∠AFC,求AD的长度.5.如图1,AB是⊙O的直径,点P是直径AB上一动点,过点P作直径AB的垂线交⊙O于C,D两点.(1)若⊙O的半径为2,,连接CO,DO,求劣弧的长度;(2)如图2,点K是劣弧上一点,连接AK,BK,AK交CD于点Q,连接BQ,记∠BAK=α,∠ABQ=β,若BQ恰好平分∠ABK,且,求β的正切值;(3)如图3,当动点P移动到点O时,点K是劣弧上一点,连接AK,DK,AK交CD于点Q,DK交AB于点N,连接AD,QN.①求证:△DAQ∽△AND;②记∠OND=θ,△ANQ的面积为S1,△DON的面积为S2,求的值(结果用含有θ的三角函数值的式子进行表示).。

2023年春九年级数学中考高分复习圆综合压轴解答题专题训练原卷版

2023年春九年级数学中考高分复习圆综合压轴解答题专题训练原卷版

2023年春九年级数学中考高分复习圆综合压轴解答题专题训练原卷版1.如图,⊙O为正△ABC的外接圆.(1)尺规作图:作∠ABC的角平分线⊙O于点D.(2)过点D作⊙O的切线DE,交AB的延长线于点M.①求证:AC∥DE.②连接OM,若AM=2,求⊙O的半径.2.如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.(1)延长AB到圆外一点P,连接PC,若PC2=PB•P A,求证:PC是⊙O的切线;(2)求证:CF•AE=AC•BC;(3)若=,⊙O的半径是,求tan∠AEC和OH的长.3.已知四边形ABCD内接于⊙O,AB=AD.(1)如图1,求证:点A到∠C两边的距离相等;(2)如图2,已知BD与AC相交于点E,BD为⊙O的直径.①求证:tan∠CAD=;②若∠CBD=30°,AD=,求AE的长.4.如图,在▱ABCD中,AB=5,AD=3,∠ADB=90°,P为线段BD上一点,以PD为直径作圆分别交线段CD,AP于点E,F,延长AP交直线BC于点G,连接DF,EF,EP.(1)当∠DEF=45°时,求证:=.(2)当BG=2时,求tan∠FEP的值.(3)①当△DEF是以DE为腰的等腰三角形时,求DP的长.②记线段EF交BD于点Q,若=,则BG的长为.5.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切:(2)若,求的值;(3)在(2)的条件下,若⊙O的半径为4,PD=OD,求EC的长.6.如图,在矩形ABCD中,AB=6,AD=8,点O在对角线BD上(不与点B、D重合),以O为圆心,以OB为半径作圆O交BD于点E.(1)sin∠ABD=;(2)若圆O经过点A,求圆O的面积;(3)若圆O与△ACD的边所在直线相切,求OB的长.7.如图1,AB为⊙O的直径,C为弧BE的中点,AD和过点C的直线相交于D,交⊙O于点E.连接OC,BE,相交于点F,DE=CF.(1)求证:CD是⊙O的切线;(2)连接AC,交BE于点P,若EP=2,CD=3,求直径AB的长;(3)猜想AE、AB和AD之间的数量关系,并证明.8.如图1,在⊙O中,点H是直径AB上的一点,过H点作弦CD⊥AB,点E 是的中点,过点E作BD的平行线交DC延长线于点F,连接BE,交CD 于点G.(1)求证:EF是⊙O的切线;(2)求证:BD+EF=DF;(3)如图2,连接DE,若=k,则当k为何值时,线段DE=EF?9.如图1,点C在以AB为直径的⊙O上,P是AB延长线上一点,∠PCB=∠P AC,过点C作CE⊥AB,垂足为D,交⊙O于点E.(1)求证:PC是⊙O的切线;(2)若点D是P A的中点,求∠P的度数;(3)如图2,过点B作BM∥PC交⊙O于点M,交CD于点N,连接AM.若tan∠P=,CN=5,求AM的长.10.如图,在矩形ABCD中,AB=6,BC=8,点A在直线l上,AD与直线l相交所成的锐角为60°,点P在直线上l,AP=8,过点作EF⊥l,垂足为点E,且与点P重合,EF=6,以EF为直径,在EF的左侧作半圆O,点M是半圆O上任意一点.(1)连接AM,求线段AM的最大值;(2)矩形ABCD保持不动,半圆O沿直线l向左平移,当点F落在边AD上时,求半圆O与矩形ABCD重合部分的面积S;(3)在平移过程中,当半圆O与矩形ABCD的边相切时,求平移的距离.(参考数据:tan75°≈2+,结果保留根号)11.如图,AB是⊙O的直径,C、D是⊙O上两点.AE与过点C的切线垂直,垂足为E,直线EC与直径AB的延长线相交于点P,弦CD交AB于点F,连接AC、AD、BC、BD.(1)若∠ABC=∠ABD=60°,判断△ACD的形状,并证明你的结论;(2)若CD平分∠ACB,求证:PC=PF;(3)在(2)的条件下,若AD=5,PF=5,求由线段PC、和线段BP所围成的图形(阴影部分)的面积.12.李老师在上课时的屏幕上有如下内容:如图,AB是⊙O的直径,点C为弧BD的中点,连结AC交BD于点E,CE =1,,老师要求同学们在矩形方框中添加一个条件和结论后,编制成一道完整的题目,并解答.(1)李老师在方框中添加的内容是“BE=3,求AB的长”,请你解答;(2)以下是小童和小诗的对话:小童:我加的内容是“BE=3,连结CD,求CD的长”.小诗:我加的内容是“sin∠CBE=,连结OC,求tan∠ABD的值”.请你帮小诗完成解答:(3)参考第(1)题中李老师添加的内容及第(2)题中的对话,写出你想添加的内容(可以添线添字母,但所添内容不能与(1)、(2)中的内容相同),编制成一道完整的题目,并解答.13.已知,如图1,在△ABC中,AB=AC,点D是BC边上动点,E是△ABD 外接圆⊙O上的点,且,连结DE,BE.(1)求证:CD=BE;(2)如图2,当AE∥BC时.①求证:AC是⊙O的切线;②若AC=15,BC=18,求⊙O的半径.14.如图,四边形ABCD内接于⊙O,对角线AC是⊙O的直径,BD平分∠ABC,BD交AC于点E,过点D作DF⊥DB,DF交BA延长线于点F.(1)求证:AF=BC;(2)如果AB=3AF,求的值;(3)过点F作FG∥BD交CA延长线于点G,求证:AG=CE.15.如图1,已知AB是⊙O的直径,CD为⊙O的弦,连接AD,BC,相交于点E,连接OE并双向延长,交CD于点F,交⊙O于点P,点Q.(1)如图2,当AB∥CD时,且OE=3,EF=2时,求⊙O的半径;(2)如图3,当AB与CD不平行(假设∠ABC<∠DAB),过点F作AB的平行线,交BC的延长线于点M,交AD于点N.①求证:△MCF∽△DNF;②若OE=4,EF=3,求⊙O的半径;(3)在(2)②的条件下,连接AC,BD.若∠DEB=45°,求四边形ACDB的面积.16.若四边形的一组对角α,β,满足∠α+∠β=180°,我们把这个四边形称为可衍生四边形,∠β为二倍角.(1)如图1,在四边形ABCD中,AD⊥CD,∠A=130°,当四边形ABCD 为可衍生四边形,且∠C为二倍角时,求∠B的度数;(2)如图2,四边形ABCD内接于⊙O,点E是圆上一点,连结并延长CE,AD交于点F,延长CD,BA交于点G,CD•DG=AD•DF,求证:四边形ABCF 是可衍生四边形;(3)如图3,在(2)的条件下,连结AE,EG,若CD是⊙O的直径,AF⊥EG,AG=5AB,求sin∠F AG的值.17.【问题提出】小明在学习了“圆心角”和“圆周角”的知识后,发现了顶点在圆内(顶点不在圆心)的角,命名为圆内角.比如图1中,∠APC、∠BPD 是圆内角,所对的弧分别是、,圆内角的大小与所对弧的度数之间有什么关系呢?【问题解决】小明想到了将∠APC转化为学过的两种角,即圆周角、圆心角.解:连接BC,OA,OC,OB,OD.如图2,在△PBC中,∠APC=∠PBC+∠PCB∵∠PBC=∠AOC,∠PCB=∠BOD∴∠APC=∠AOC+∠BOD=(∠AOC+∠BOD)即:∠APC的度数=(的度数+的度数)(1)如图1,在⊙O中,弦AB、CD相交于点P,若的度数是60°,的度数是80°,则∠APD的度数是.【问题探究】顶点在圆外且两边与圆相交的角,命名为圆外角,圆外角的大小呢?(2)如图3,点P是⊙O外一点,点A、点C在圆上,连接P A、PC,分别与⊙O相交于点B、点D,试探索∠APC的度数与、度数之间的关系,并说明理由.【解释应用】直接利用前面发现的结论,解决问题.(3)如图4,平面直角坐标系内,点A(﹣,1)在⊙O上,点B、点C 是线段OM上的两个动点,且AB=AC,延长AB、AC分别与⊙O相交于点D、E,延长DE交y轴于点F,试探究∠F的度数是否变化,如果不变,请求出它的度数.18.定义:过三角形的一个顶点作该三角形的高线和角平分线,这两条线段所夹的角称为该三角形的珍珠角.(1)如图1,∠DAE是△ABC的珍珠角,∠B=α,∠C=β,α>β,请用α和β表示∠DAE.(2)如图2,△ABC中,∠BAC>∠B>∠C,以AC为直径作⊙O交BC于点D,点F在上,AF交DC于点E,∠FDC=∠BAE.求证:∠DAE是△ABC的珍珠角.(3)在(2)的条件下,如图3,连接OD,交AE于点G,OG=AB.若GF=m,BD=n,求BC的长(用含m,n的式子表示).19.如图,在平面直角坐标系xOy中,A,B两点的坐标分别为(26,0),(0,26).以AB为直径作⊙P,点C在直径AB上,且AC=a,点Q为⊙P上一动点.(1)若a=6,如图1,①求点C的坐标.②若CQ∥y轴,求点Q的坐标.(2)若a=5,如图2,点D在弦OA上,△QCD是以CQ为斜边的等腰直角三角形,求点Q的坐标.20.问题提出:(1)如图①,正方形ABCD内有一以BC为直径的半圆O,请通过画图在半圆O上找一点E,使得E到AD的距离最小.问题探究:(2)如图②,在Rt△ABC中,∠ACB=90°,AC=BC=4,点E为AB边上一点,BE=3AE,且∠CEF=45°,求CF的长.问题解决:(3)如图③,十四届全运会场馆外有一不规则区域.其中,AD∥BC,弧CD 所对的圆心角为60°,AE是区域内一条笔直的小路,即AE⊥BC于点E.组委会计划将本区域设计成为一个休闲娱乐区,规划在AB边上确定一点M作为一个入口,在AE、弧CD上分别确定点N、P,将△PNE修建成花园.为保持美观且节约成本,要求∠EMN=90°,且△PNE面积最小.已知AB=130m,BE=50m,AD=CE=150m,求△PNE面积的最小值.。

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图AB是O的直径点C是BD的中点过点C的切线与AD的延长线交于E连接CD AC.(1)求证:CE AE⊥(2)若CD AB∥1DE=求O的面积.2.如图ABC内接O点A为BC的中点D为BC边上一点DAC ACE∠=∠AE是O的切线112AF BD AB===连接CF.(1)求证:CE CF=(2)当点A 到弦BC 的距离为1时 求AE 的值.3.如图1 已知AB 是O 的直径 弦CD AB ⊥于点E 点P 是线段DC 延长线上的一点 连结PA 交O 于点F 连接DF 交AB 于点G 连接AD 和CF .(1)求证:PFC AFD ∠=∠.(2)若91AE BE ==, 且CF CD = 求DF 的长.(3)如图2 连接OF OD , 若四边形FODC 为平行四边形 求PFC DFA S S △△的值(直接写出答案).4.如图 在平面直角坐标系中 AB OC ∥(0,A ()4,0C - 且2AB =.以BC为直径作1O 交OC 于点D 过点D 作直线DE 交线段OA 于点E 且30EDO ∠=︒.(1)求证:DE 是1O 的切线(2)若线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切 求点P 的坐标.5.如图 以ABC 的边AB 为直径作O 交AC 于D 且OD BC ∥ O 交BC 于点E .(1)求证:CD DE =(2)若12AB = 4=AD 求CE 的长度.6.如图 四边形ABCD 是O 的内接四边形 点F 是CD 延长线上的一点 且AD 平分BDF ∠ AE CD ⊥于点E .(1)求证:AB AC =.(2)若9BD = 1DE = 求CD 的长.7.已知:A B C 三点不在同一直线上.(1)若点A B C 均在半径为R 的O 上(i )如图① 当45A ∠=︒ 1R =时 求BOC ∠的度数和BC 的长(ii )如图① 当A ∠为锐角时 求证:sin 2BC A R= (2)若定长线段BC 的两个端点分别在MAN ∠的两边AM AN (B C 均与A 不重合)滑动 如图① 当60MAN ∠=︒ 2BC =时 分别作BP AM ⊥ CP AN ⊥ 交点为P 试探索在整个滑动过程中 P A 两点间的距离是否保持不变?请说明理由.8.已知矩形ABCD 3AB = 3AD = 点O 是AD 的中点 以AD 为直径作圆 点A '是圆上的点.(1)如图1 连接A B ' 若A B '是圆O 的切线①求证:AB A B '=①设A O '与BC 交于点F 求OF 的长.(2)若动点G 从点B 向C 运动 连接OG 作四边形AOGB 关于直线GO 对称图形四边形A OGB '' 如图2.求点G 在运动过程中线段A B ''扫过的面积.9.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形其中这个角叫做美角.∠的度数(1)如图1 若四边形ABCD是圆美四边形.求美角BAD(2)在(1)的条件下若O的半径为4.①求BD的长①连接CA若CA平分BCD∠如图2 请判断BC CD AC之间有怎样的数量关系并说明理由.10.如图点E为正方形ABCD的边BC上的一点O是ABE的外接圆与AD交于点F ∠=∠.G是CD上一点且DGF AEB(1)求证:FG是O的切线(2)若4AB=1DG=求O半径的长.11.如图在菱形ABCD中点P在对角线AC上且PA PD=O是PAD的外接圆.(1)求证:AB是O的切线(2)若18tan2AC BAC=∠=,求O的直径.(请用两种方法作答)12.已知 AB 为O 的直径 弦CD 与AB 交于点E 点A 为弧CD 的中点.(1)如图1 求证:AB CD ⊥(2)如图2 点F 为弧BC 上一点 连接BF BD 2FBA DBA ∠=∠ 过点C 作CG AB ∥交BF 于点G 求证:12CG AB =.(3)如图3 在(2)的条件下 连接DF 交OE 于点L 连接LG 若4FG = tan GLB =∠ 求线段LF 的长.13.已知O 为ABC 的外接圆 O 的半径为6.(1)如图AB是O的直径点C是AB的中点.①尺规作图:作ACB∠的角平分线CD交O于点D连接BD(保留作图痕迹不写作法):①求BD的长度.(2)如图AB是O的非直径弦点C在AB上运动60ACD BCD∠=∠=︒点C在运动的过程中四边形ADBC的面积是否存在最大值若存在请求出这个最大值若不存在请说明理由.14.如图以AB为直径的O与AH相切于点A点C在AB左侧圆弧上弦CD AB⊥交O于点D连接AC AD点A关于CD的对称点为E直线CE交O于点F交AH 于点G.(1)求证:CAG AGC∠=∠(2)当点E在AB上连接AF交CD于点P若25EFCE=求DPCP的值(3)当点E在射线AB上2AB=四边形ACOF中有一组对边平行时求AE的长.15.圆内接四边形若有一组邻边相等 则称之为等邻边圆内接四边形.(1)如图1 四边形ABCD 为等邻边圆内接四边形 AD CD = 60ADC ∠=︒ 则ABD ∠=________(2)如图2 四边形ABCD 内接于O AB 为O 的直径 10AB = 6AC = 若四边形ABCD 为等邻边圆内接四边形 求CD 的长(3)如图3 四边形ABCD 为等邻边圆内接四边形 BC CD = AB 为O 的直径 且48AB =.设BC x = 四边形ABCD 的周长为y 试确定y 与x 的函数关系式 并求出y 的最大值.参考答案:1.(1)证明:连接OC①OC CE ⊥①90OCE ∠=︒①点C 是BD 的中点①CD BC =①DAC CAB ∠=∠①OA OC =①CAB OCA ∠=∠①OCA DAC ∠=∠①OC AD ∥①180AEC OCE ∠+∠=︒①90AEC ∠=︒①CE AE ⊥.(2)解:连接OD①CD AB ∥ OC AE ∥①四边形AOCD 是平行四边形①OA OC =①平行四边形AOCD 是菱形①AD CD OA ==①AD OA OD ==①ADO △是等边三角形①60OAD ∠=︒①CD AB ∥①60CDE OAD ∠=∠=︒①30DCE ∠=︒①2212CD DE ==⨯=①2OA CD ==①O 的面积为:224ππ⨯=.2.(1)证明:如图 连接OA 交BC 于点M①点A 为BC 的中点①,OA BC AB AC ⊥=①AE 与O 相切①AE OA ⊥①,AE BC EAC ACB ABD∠=∠=∠∥又①BD AF =①()SAS ABD CAF ≌①AD CF =①DAC ACE ∠=∠①CE AD ∥①四边形ADCE 为平行四边形①AD CE =①CE CF =(2)解:如图①112AF BD AB ===①2AB AC ==①BM CM =①点A 到弦BC 的距离为1 即1AM =在Rt ABM 中 222A A M B M B -= ①22213BM -①|31DM BM BD =-=313231CD DM MC ∴=+==由(1)可知四边形ADCE 为平行四边形 ①231AE CD ==.3.(1)解:①弦CD AB ⊥于点E ①12CB DB CB DB CD ===, ①AB 是O 的直径①AB AB AB CB AB DB =-=-,即AC AD AFD ADC =∠=∠,①四边形ADCE 是O 的内接四边形①180AFC ADC ∠+∠=︒180PFC AFC ∠+∠=︒PFC ADC ∴∠=∠①PFC AFD ∠=∠(2)解:如图:连接OE OC OC ,,与FD 相交于一点H①91AE BE ==, ①1911052AB AE BE OC AB =+=+===, ①弦CD AB ⊥于点E①2CD CE =在Rt OCE 中 ()22222OC OE CE OB BE CE =+=-+即()222551CE =-+解得3CE =①236CD =⨯=①CF CD =①62H CF CD OC FD DF F =⊥==,,设5OH x HC x ==-,在Rt OFH △中 222FH OF OH =-在Rt CFH △中 222FH CF CH =-即2222OF OH CF CH -=-①()2225365x x -=-- 解得75x =①482225DF FH ==== (3)解:如图 连接BF①四边形FODC 为平行四边形 且易知OF OD =①四边形FODC 为菱形①四边形ADCE 是O 的内接四边形①180180FAD FCD FCD PCE ∠+∠=︒∠+∠=︒, ①FAD PCE ∠=∠①由(1)知PFC AFD ∠=∠①PFC DFA ∽ ①FC PF PC FA DF DA== ①AB 是O 的直径①90AFB ∠=︒①四边形FODC 为菱形①FC OF OF CD =,①CD AB ⊥①OF AB ⊥①45AF BF FAB FBA =∠=∠=︒,①()()222222222AF BF AF AB OF CF +==== ①22FC FA ①212PFC DFA S FC S FA ⎛⎫== ⎪⎝⎭ 4.(1)证明:连接1O D BD 如图①(0,3A ()4,0C -23OA ∴= 4OC =. ①以BC 为直径作1O 交OC 于点D90BDC ∴∠=︒.,AB OC OC OA ⊥∥AB OA ∴⊥①四边形ABDO 为矩形2,OD AB BD OA ∴====2CD OC OD ∴=-=4BC ∴112O C O D ∴==1O CD ∴为等边三角形1160O CD O DC ∴∠=∠=︒30EDO ∠=︒1118090O DE O DC EDO ∴∠=︒-∠-∠=︒1O D DE ∴⊥1O D 为1O 的半径DE ∴是1O 的切线(2)解:①线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切①点P 到y 轴的距离等于PC .过点P 作PF y ⊥轴于点F PH x ⊥轴于点H 如图则PF PC =.由(1)知:60BCD ∠=︒12CH PC ∴= PH =.PF y ⊥轴 PH x ⊥轴 OA OC ⊥①四边形PHOF 为矩形OH PF PC ∴==142OC CH OH PC PC ∴=+=+= 83PC 83PF OH ∴== 84333PH == ①点P 的坐标为8433⎛- ⎝⎭.5.(1)证明:①四边形ABED 内接于O 180DEB A ∴∠+∠=︒又180DEB DEC ∠+∠=︒DEC A ∴∠=∠OD BC ∥C ADO ∴∠=∠①OA OD =①CAO ADO ∠=∠①C DEC ∠=∠①CD DE =(2)解:如图所示 连接AE①AB 为直径①90AEB ∠=︒90CAE C ∴∠+∠=︒ 90AED DEC ∠+∠=︒ 由(1)CD DE = C DEC ∠=∠CAE AED ∴∠=∠①AD DE =①AD DC =①28AC AD ==由(1)可得BAC ADO ∠=∠ C ADO ∠=∠ 则C BAC ∠=∠①12AB BC ==设CE x = 则12BE x =-2222AC CE AB BE -=-()222281212x x ∴-=-- 解得:83x = ①83CE =.6.(1)证明:①AD 平分BDF ∠∴ADF ADB ∠=∠ ①四边形ABCD 是O 的内接四边形∴180ABC ADC ∠+∠=︒180ADC ADF ∠+∠=︒ABC ADF ADB ∴∠=∠=∠ACB ADB ∠=∠ACB ABC ∴∠=∠AB AC ∴=.(2)解:过点A 作AG BD ⊥于点G90AGD ∴∠=︒①AD 平分BDF ∠∴ADF ADB ∠=∠AE CD ⊥90AED ∴∠=︒在AGD △和AED △中90AGD AED ADF ADBAD AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS AGD AED ∴≌1GD DE ∴== AG AE =在Rt AEC △和Rt AGB △中AE AGAB AC =⎧⎨=⎩()Rt Rt HL AEC AGB ∴≌CE BG ∴=又9BD = 1DE =918BG BD GD ∴=-=-=8∴=CE817CD CE ED =-=-=7CD ∴=.7.(1)(i )证明:①A B C 均在O 上 ①224590BOC A ∠=∠=⨯︒=︒①1OB OC ==在Rt BOC 中 根据勾股定理 ①2BC =(ii )证法一:如图① 连接EB 作直径CE 则E A ∠=∠ 2CE R =①90EBC ∠=︒ ①sin sin 2BCA E R ==证法二:如图①.连接OB OC 作OH BC ⊥于点H 则12A BOC BOH ∠=∠=∠ 12BH BC = ①12sin sin 2BC BH BC A BOH OB R R=∠===.(2)如图① 连接AP 取AP 的中点K 连接BK CK 在Rt APC △中 12CK AP AK PK === 同理得:BK AK PK ==①CK BK AK PK ===①点A B P C 都在K 上①由(1)(ii )可知sin 60BC AP ︒=①2sin 60AP ==︒ 故在整个滑动过程中 P A 两点间的距离不变.8.(1)①①矩形ABCDAD = 点O 是AD 的中点①90AO DO A ==∠=︒①BA 是圆O 的切线①A B '是圆O 的切线。

专题十 圆的综合问题-2023年中考二轮专题复习(原卷版)(全国适用)

专题十 圆的综合问题-2023年中考二轮专题复习(原卷版)(全国适用)

专题十圆的综合问题一、非动态问题例题1如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作EF AC ⊥于点E ,交AB 的延长线于点F ,连接AD .(1)求证:EF 是O 的切线.(2)求证:FBD FDA △△∽.(3)若4DF =,2BF =,求O 的半径长.练习题1.在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D .(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若∠ABC =66°,求∠ACM ;(2)如图②,过点D 作⊙O 的切线DE 交AC 于点E ,求证:AE =EC ;(3)如图③,在(1)(2)的条件下,若tanA =34,求S △ADE :S △ACM 的值.2.如图1,在Rt △ABC 中,90C ∠=︒,以BC 为直径的O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为O 的切线.(2)若32MH =,34AC BC =,求O 的半径.(3)如图2,在(2)的条件下分别过点A 、B 作O 的切线,两切线交于点D ,AD 与O 相切于点N ,过N 点作NQ BC ⊥,垂足为E ,且交O 于Q 点,求线段AO 、CN 、NQ 的长度.3.如图,点P 在y 轴的正半轴上,P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和P 于E 、F 两点,连接AC 、FC ,AC 与BD 相交于点G .(1)求证:ACF ADB =∠∠;(2)求证:CF DF =;(3)DBC ∠=______°;(4)若3OB =,6OA =,则△GDC 的面积为______.4.如图,四边形ABCD 内接于半圆O ,BC 是半圆O 的直径,CE 是半圆O 的切线,CE AD ⊥交AD 的延长线于点E ,14DE BC =,OE 与CD 相交于点F ,连接BF 并延长交AE 的延长线于点G ,连接CG .(1)求证:AD BC ∥.(2)探究OF 与BF 的数量关系.(3)求tan GBC ∠的值.5.【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在O 中,AB 是弦,OP AB ⊥,垂足为P ,则OP 的长是弦AB 的弦心距.(1)若O 的半径为5,OP 的长为AB 的长为______.(2)若O 的半径确定,下列关于AB 的长随着OP 的长的变化而变化的结论:①AB 的长随着OP 的长的增大而增大;②AB 的长随着OP 的长的增大而减小;③AB 的长与OP 的长无关.其中所有正确结论的序号是______.(3)【问题解决】若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为______°.(4)已知如图②给定的线段EF 和O ,点Q 是O 内一定点.过点Q 作弦AB ,满足AB EF =,请问这样的弦可以作______条.6.已知O 为ACD ∆的外接圆,AD CD =.(1)如图1,延长AD 至点B ,使BD AD =,连接CB .①求证:ABC ∆为直角三角形;②若O 的半径为4,5AD =,求BC 的值;(2)如图2,若90ADC ∠=︒,E 为O 上的一点,且点D ,E 位于AC 两侧,作ADE ∆关于AD 对称的图形ADQ ∆,连接QC ,试猜想QA ,QC ,QD 三者之间的数量关系并给予证明.7.定义:两个角对应互余,且这两个角的夹边对应相等的两个三角形叫做余等三角形.如图1,在△ABC 和△DEF 中,若∠A +∠E =∠B +∠D =90°,且AB =DE ,则△ABC 和△DEF 是余等三角形.(1)图2,等腰直角△ABC ,其中∠ACB =90°,AC =BC ,点D 是AB 上任意一点(不与点A ,B 重合),则图中△________和△________是余等三角形,并求证:AD 2+BD 2=2CD 2.(2)图3,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为5,且AD 2+BC 2=100,①求证:△ABC 和△ADC 是余等三角形.②图4,连接BD 交AC 于点I ,连接OI ,E 为AI 上一点,连接EO 并延长交BI 于点F ,若∠ADB =67.5°,IE =IF ,设OI =x ,S △y 关于x 的函数关系式.8.如图1,在等腰ABC 中,AB AC ==120BAC ∠=︒,点D 是线段BC 上一点,以DC 为直径作O ,O 经过点A .(1)求证:AB 是O 的切线;(2)如图2,过点A 作AE BC ⊥垂足为E ,点F 是O 上任意一点,连结EF .①如图2,当点F 是DC 的中点时,求EF BF的值;②如图3,当点F 是O 上的任意一点时,EF BF 的值是否发生变化?请说明理由.(3)在(2)的基础上,若射线BF 与O 的另一交点G ,连结EG ,当90GEF ∠=︒时,直接写出EF EG -的值.9.【证明体验】(1)如图1,过圆上一点A 作O 切线AD ,AC 是弦(不是直径),若AB 是直径,连接BC ,求证:DAC ABC ∠=∠;(2)如图2,若AB 不是直径,DAC ∠______ABC ∠(填“>”、“<”或“=”);(3)如图3,(1)、(2)的结论是否成立,说明理由;【归纳结论】(4)由以上证明可知:切线与弦的夹角等于它所夹的弧对的______;【结论应用】(5)如图4,ABC 内接圆于O ,弦BE AB ⊥,交AC 于F ,过点A 作O 的切线AD ,交EB 的延长线于点D .若6AD =,2sin 3ACB ∠=,求线段BE 的长.10.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形(1)如图①,半圆O的直径为BC,OA⊥OB,点E在过点A的切线上,且BE=BA,点D 是AC 上的动点(不在点A、C上),求证:四边形AEBD为准平行四边形.(2)如图②,准平行四边形ABCD内接于⊙O,∠B≠∠D,若⊙O的半径为5,AB=AD,则①准平行四边形ABCD的面积S是线段AC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;②准平行四边形ABCD的面积S有最大值吗?如果有求出最大值,如果没有,说明理由.二、动点问题例题2(2021·浙江温州·三模)如图,在⊙O中,AB是直径,点D在圆内,点C在圆上,CD⊥半径OA于点E,延长AD交⊙O于F点,连结BF.当点M从点C匀速运动到点D 时,点N恰好从点B匀速运动到点A,且M,N同时到达点E.(1)请判断四边形ACBF 的形状,并说明理由.(2)连结AM 并延长交⊙O 于点G ,连结OG ,DN .记CM =x ,AN =y ,已知y =12.①求出AE 和BF 的长度.②当M 从C 到E 的运动过程中,若直线OG 与四边形BFDN 的某一边所在的直线垂直时,求所有满足条件的x 的值.练习题1.(2021·浙江温州·一模)如图,在矩形ABCD 中,AB =8,BC =6,E 是线段AB 上的一个动点,经过A ,D ,E 三点的⊙O 交线段AC 于点K ,交线段CD 于点H ,连接DE 交线段AC 于点F .(1)求证:AE =DH ;(2)连接DK ,当DE 平分∠ADK 时,求线段DE 的长;(3)连接HK ,KE ,在点E 的运动过程中,当线段DH ,HK ,KE 中满足某两条线段相等时,求出所有满足条件的AE 的长.2.(2022·河北·石家庄外国语教育集团一模)已知,在半圆O 中,直径AB =6,点C ,D 在半圆AB 上运动,(点C ,D 可以与A ,B 两点重合),弦CD =3.(1)如图1,当∠DAB=∠CBA 时,求证:△CAB ≌△DBA ;(2)如图2,若∠DAB =15°时,求图中阴影部分(弦AD 、直径AB 、弧BD 围成的图形)的面积;(3)如图3,取CD 的中点M ,点C 从点A 开始运动到点D 与点B 重合时结束,在整个运动过程中:①点M 到AB 的距离的最小值是___________;②直接写出点M 的运动路径长___________.3.(2022·湖南长沙·九年级期中)已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧 AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S .①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .4.(2022·广东·深圳中学一模)(1)【基础巩固】如图1,△ABC 内接于⊙O ,若∠C =60°,弦AB =r =______;(2)【问题探究】如图2,四边形ABCD 内接于⊙O ,若∠ADC =60°,AD =DC ,点B 为弧AC 上一动点(不与点A ,点C 重合)求证:AB +BC =BD(3)【解决问题】如图3,一块空地由三条直路(线段AD 、AB 、BC )和一条道路劣弧 CD围成,已知CM DM =千米,∠DMC =60°, CD的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M 另外三个入口分别在点C 、D 、P 处,其中点P 在 CD 上,并在公园中修四条慢跑道,即图中的线段DM 、MC 、CP 、PD ,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.5.(2022·四川·绵阳市桑枣中学一模)在矩形ABCD 中,5AB cm =,BC 10cm =,点P 从点A 出发,沿AB 边向点B 以每秒1cm 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以每秒2cm 的速度移动,P 、Q 两点在分别到达B 、C 两点时就停止移动,设两点移动的时间为t 秒,解答下列问题:(1)如图1,当t 为几秒时,PBQ △的面积等于24cm ?(2)如图2,以Q 为圆心,PQ 为半径作Q .在运动过程中,是否存在这样的t 值,使Q 正好与四边形DPQC 的一边(或边所在的直线)相切?若存在,求出t 值;若不存在,请说明理由.6.(2022·广东深圳·一模)在O 中,弦CD 平分圆周角ACB ∠,连接AB ,过点D 作DE //AB 交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若1tan3CAB ∠=,且B 是CE 的中点,O ,求DE 的长.(3)P 是弦AB 下方圆上的一个动点,连接AP 和BP ,过点D 作DH BP ⊥于点H ,请探究点P 在运动的过程中,BH AP BP +的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.7.(2021·四川德阳·二模)如图,在△ABC 中,AB =AC ,AO ⊥BC 于点O ,OE ⊥AB 于点E ,以点O 为圆心,OE 为半径作半圆,交AO 于点F .(1)求证:AC 是⊙O 的切线;(2)若点F 是OA 的中点,OE =3,求图中阴影部分的面积;(3)在(2)的条件下,点P 是BC 边上的动点,当PE +PF 取最小值时,直接写出BP 的长.8.(2022·湖南永州·一模)如图,在ABC ∆中,AB AC =,以AB 为直径的O 交BC 于D ,过D 点作O 的切线DE 交AC 于E .(1)求证:DE AC ⊥;(2)若10AB =,3cos 5ABC ∠=,求DE 的长;(3)在(2)的条件下,若P 为线段BD 上一动点,过P 点作BC 的垂线交AB 于N ,交CA 的延长线于M ,求证:PN PM +是定值,并求出定值是多少?9.(2022·江苏·南通市海门区东洲国际学校一模)[问题提出](1)如图1,已知线段AB =4,点C 是一个动点,且点C 到点B 的距离为2,则线段AC 长度的最大值是________;[问题探究](2)如图2,以正方形ABCD 的边CD 为直径作半圆O ,E 为半圆O 上一动点,若正方形的边长为2,求AE 长度的最大值;[问题解决](3)如图3,某植物园有一块三角形花地ABC,经测量,AC=BC=120米,∠ACB =30°,BC下方有一块空地(空地足够大),为了增加绿化面积,管理员计划在BC下方找一点P,将该花地扩建为四边形ABPC,扩建后沿AP修一条小路,以便游客观赏.考虑植物园的整体布局,扩建部分 BPC需满足∠BPC=60°.为容纳更多游客,要求小路AP的长度尽可能长,问修建的观赏小路AP的长度是否存在最大值?若存在,求出AP的最大长度;若不存在,请说明理由.10.(2021·江苏南京·九年级期末)如图,在平行四边形ABCD中,AB=BC=6,∠B=45°,点E为CD上一动点,经过A、C、E三点的⊙O交BC于点F.(1)【操作与发现】当E运动到AE CD⊥处,利用直尺与圆规作出点E与F.(保留作图痕迹)(2)在(1)的条件下,证明AF ABAE AD=.(3)【探索与证明】点E运动到任何一个位置时,求证AF AB AE AD=.(4)【延伸与应用】点E在运动的过程中,直接写出EF的最小值______.三、动圆问题例题3(2021·山东威海·一模)如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,点O 在射线AC 上(点O 不与点A 重合),过点O 作OD ⊥AB ,垂足为D ,以点O 为圆心,OD 为半径画半圆O ,分别交射线AC 于E ,F 两点,设OD =x .(1)如图1,当点O 为AC 边的中点时,则x =;(2)如图2,当点O 与点C 重合时,连接DF ,求弦DF 的长;(3)若半圆O 与BC 无交点,则x 的取值范围是.练习题1.(2022·江苏·常州市武进区前黄实验学校一模)如图,在平面直角坐标系中,矩形ABCD 的边BC 落在x 轴上,点B 的坐标为()1,0-,3AB =,6BC =,边AD 与y 轴交于点E .(1)直接写出点A 、C 、D 的坐标;(2)在x 轴上取点()3,0F ,直线()0y kx b k =+≠经过点E ,与x 轴交于点M ,连接EF .①当15MEF ∠=︒时,求直线()0y kx b k =+≠的函数表达式;②当以线段EM 为直径的圆与矩形ABCD 的边所在直线相切时,求点M 的坐标.9.(2021·江苏镇江·一模)如图1,ABC 中,5AB =,AC =7BC =,半径为r 的O 经过点A 且与BC 相切,切点M 在线段BC 上(包含点M 与点B 、C 重合的情况).(1)半径r 的最小值等于__________.(2)设BM =x ,求半径r 关于x 的函数表达式;(3)当BM =1时,请在图2中作点M 及满足条件的O .(要求:尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗)10.(2022·浙江温州·一模)如图,在矩形ABCD 中,AB =4,BC =6,点E ,F 分别在边AD ,CD 上,且∠ABE =∠CBF ,延长BE 交CD 的延长线于点G ,H 为BG 中点,连结CH 分别交BF ,AD 于点M ,N .(1)求证:BF CH ⊥.(2)当FG =9时.①求tan FBG ∠的值.②在线段CH 上取点P ,以E 为圆心,EP 为半径作E (如图),当E 与四边形ABMN 某一边所在直线相切时,求所有满足条件的HP 的长.11.(2022·江苏镇江·九年级期末)如图:已知线段5AM =,射线AS 垂直于AM ,点N 在射线AS 上,设AN n =,点P 在经过点N 且平行于AM 的直线上运动,PAM ∠的平分线交直线NP 于点Q ,过点Q 作QB AP ∥,交线段AM 于点B ,连接PB 交AQ 于点C ,以Q 为圆心,QC 为半径作圆.(1)求证:PB 与Q 相切;(2)已知Q 的半径为3,当AM 所求直线与Q 相切时,求n 的值及PA 的长;(3)当2n 时,若Q 与线段AM 只有一个公共点,则Q 的半径的取值范围是______.四、圆的图形变换问题例题4平面上,矩形ABCD 与直径为QP 的半圆K 如图摆放,分别延长DA 和QP 交于点O ,且∠DOQ =60°,OQ =OD =3,OP =2,OA =AB =1.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°).发现(1)当α=0°,即初始位置时,点P____直线AB 上.(填“在”或“不在”)求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中.简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值:(3)如图,当点P 恰好落在BC 边上时.求α及S 阴影.拓展如图.当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设BM =x (x >0),用含x 的代数式表示BN 的长,并求x 的取值范围.探究当半圆K 与矩形ABCD 的边相切时,求sin α的值.练习题1.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O 的半径.2.如图,已知AB 为O 的直径,CD 为弦.CD =AB 与CD 交于点E ,将CD沿CD 翻折后,点A 与圆心O 重合,延长BA 至P ,使AP OA =,连接PC .(1)求O 的半径;(2)求证:PC 是O 的切线;(3)点N 为 ADB 的中点,在PC 延长线上有一动点M ,连接MN 交AB 于点G .交 BC 于点F的值.(F与B、C不重合).求NG NF3.如图1,在Rt△ABC中,∠C=90°,AB=10,BC=6,O是AC的中点,以点O为圆心在AC的右侧作半径为3的半圆O,分别交AC于点D、E,交AB于点G、F.(1)思考:连接OF,若OF⊥AC,求AF的长度;(2)探究:如图2,将线段CD连同半圆O绕点C旋转.①在旋转过程中,求点O到AB距离的最小值;②若半圆O与Rt△ABC的直角边相切,设切点为K,连接AK,求AK的长.4.如图,点B在数轴上对应的数是﹣2,以原点O为圆心、OB的长为半径作优弧AB,使C为OB的中点,点D在数轴上对应的数为4.点A点的左上方,且tan∠AOB(1)S扇形AOB=;(2)点P是优弧AB上任意一点,则∠PDB的最大值为;(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,顺时针旋转a(0°≤a≤360°),①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.5.如图1,在正方形ABCD中,AB=10,点O,E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG =;(2)如图2,将半圆O 绕点E 逆时针旋转α(0°<α<180°),点O 的对应点为O ′,点F 的对应点为F ′,设M 为半圆O ′上一点.①当点F ′落在AD 边上时,求点M 与线段BC 之间的最短距离;②当半圆O ′交BC 于P ,R 两点时,若PR 的长为53π,求此时半圆O ′与正方形ABCD 重叠部分的面积;③当半圆O ′与正方形ABCD 的边相切时,设切点为N ,直接写出tan ∠END 的值.6.如图,已知⊙O 的半径为2,AB 为直径,CD 为弦,AB 与CD 交于点M ,将弧CD 沿着CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP =OA ,链接PC .(1)求证:PC 是⊙O 的切线;(2)点G 为弧ADB 的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E ,交弧BC 于点F (F 与B 、C 不重合).问GE ▪GF 是否为定值?如果是,求出该定值;如果不是,请说明理由.7.如图,在ABE △中,BE AE >,延长BE 到点D ,使DE BE =,延长AE 到点C ,使CE AE =.以点E 为圆心,分别以BE 、AE 为半径作大小两个半圆,连结CD .(1)求证:AB CD =;(2)设小半圆与BD 相交于点M ,24BE AE ==.①当ABE S 取得最大值时,求其最大值以及CD 的长;②当AB 恰好与小半圆相切时,求弧AM 的长.8.在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP ' .(1)如图1,若75O ∠=︒,且BO '与 AB 所在的圆相切于点B .①求APO ∠'的度数.②求AP 的长.(2)如图2,BO '与 AB 相交于点D ,若点D 为 AB 的中点,且//PD OB ,求 AB 的长.9.如图,矩形ABCD 中,4=AD ,AB m =(4m >),点P 是DC 上一点(不与点D ,C 重合),连接AP ,APQ 与APD △关于AP 对称,PM 是过点A ,P ,Q 的半圆O 的切线,且PM 交射线AB 于点M .(1)当AP PM =时,半圆O 与AB 所围成的封闭图形的面积为___________;(2)当Q 在矩形ABCD 内部时,①判断PAQ ∠与AMP ∠是否相等,并说明理由;②若3tan 4PAQ ∠=,求AM 的长;(3)当14DP DC =时,若点Q 落在矩形ABCD 的对称轴上,求m 的值及此时半圆O 落在矩形ABCD 内部的弧长.10.如图1,在正方形ABCD 中,10AB =,点O 、E 在边CD 上,且2CE =,3DO =,以点O 为圆心,OE 为半径在其左侧作半圆O ,分别交AD 于点G ,交CD 延长线于点F .(1)AG =________.(2)如图2,将半圆O 绕点E 逆时针旋转()0180αα︒<<︒,点O 的对应点为O ',点F 对应点为F ',当半圆O '交BC 于P 、R 两点时,若弧PR 的长为5π3,求此时半圆O '与正方形ABCD 重叠部分的面积.(3)当半圆O '与正方形ABCD 相切时,设切点为N ,直接写出tan END ∠的值.11.如图⊙O 中直径AB =2,点E 是AB 的中点,点C 是AE 上的一个动点,将CB 沿线段BC 折叠交AB 于点D .(1)如图1,当∠ABC =20°时,求此时 AC 的长.(2)如图2,连结AC ,当点D 与点О重合时,求此时AC 的长.(3)设AC =x ,DO =y ,请直接写出y 关于x 的函数表达式及自变量x 的取值范围.12.如图,在平行四边形ABCD 中,AB =10,AD =15,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小.(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号).(3)若点Q 恰好落在平行四边形ABCD 的边所在直线上时,直接写出PB 旋转到PQ 时点B 经过的路径的长(结果保留π).13.如图1,四边形ABCD 是正方形,且AB =8,点O 与B 重合,以O 为圆心,作半径长为5的半圆O ,交BC 于E ,交AB 于F ,交AB 延长线于G 点,M 是半圆O 上任一点;发现:AM 的最大值为,S 阴影=.如图2,将半圆O 绕点F 逆时针旋转,旋转角为α(0°<α<180°).思考:(1)若点C 落在半圆O 的直径GF 上,求圆心O 到AB 的距离;(2)若α=90°,求半圆O 落在正方形内部的弧长;探究:在旋转过程中,若半圆O 与正方形的边相切,求点A 到切点的距离.【注:sin37°=35,sin53°=45,tan37°=34】14.如图,在矩形ABCD 中,6AB =,8BC =,O 是AD 的中点,以O 为圆心,在AD 的下方作半径为3的半圆O ,交AD 于点E ,F .(1)思考:连接BD ,交半圆O 于点G 、H ,求GH 的长;(2)探究:将线段AP 连带半圆O 绕点A 顺时针旋转,得到半圆O ',设其直径为E F '',旋转角为α(0180α<<︒);①设F '到直线AD 的距离为m ,当72m >时,求α的取值范围.②若半圆O '与线段AB 相切,或半圆O '与线段BC 相切,设切点为R ,直接写出 F R '的长.(3sin 494︒=,3cos 414︒=,3tan 374︒=,结果保留π)15.如图1,在Rt ABC 中,90C ∠=︒,10AB =,6BC =,O 是AC 的中点,以点O 为圆心在AC 的右侧作半径为3的半圆O ,分别交AC 于点D 、E ,交AB 于点G 、F .思考:连接OF ,若OF AC ⊥,求AF 的长度;探究:如图2,将线段CD 连同半圆O 绕点C 旋转.(1)在旋转过程中,求点O 到距离的最小值;(2)若半圆O 与Rt ABC 的直角边相切,设切点为K ,连接AK ,求AK 的长.16.如图,在矩形ABCD 中,4=AD ,30BAC ∠=︒,点O 为对角线AC 上的动点(不与A 、C 重合),以点O 为圆心在AC 下方作半径为2的半圆O ,交AC 于点E 、F .(1)当半圆O 过点A 时,求半圆O 被AB 边所截得的弓形的面积;(2)若M 为 EF的中点,在半圆O 移动的过程中,求BM 的最小值;(3)当半圆O 与矩形ABCD 的边相切时,求AE 的长.17.如图1,扇形OAB 的半径为4,∠AOB =90°,P 是半径OB 上一动点,Q 是 AB 上一动点.(1)连接AQ 、BQ 、PQ ,则∠AQB 的度数为;(2)当P 是OB 中点,且PQ ∥OA 时,求 AQ的长;(3)如图2,将扇形OAB 沿PQ 对折,使折叠后的 QB'恰好与半径OA 相切于点C .若OP =3,求点O 到折痕PQ 的距离.18.如图1,在Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,以MN 为直径的半圆O 按如图所示位置摆放,点M 与点A 重合,点N 在边AC 的中点处,点N 从现在的位置出发沿AC CB -方向以每秒2个单位长度的速度运动,点M 随之沿AC CB -下滑,并带动半圆O 在平面内滑动,设运动时间为t 秒(0t ≥),点N 运动到点B 处停止,点P 为半圆中点.(1)如图2,当点M 与点A 重合时,连接OP 交边AB 于E ,则EP 为____________;(2)如图3,当半圆的圆心O 落在了Rt ABC ∆的斜边AB 的中线时,求此时的t ,并求出此时CMN ∆的面积;(3)在整个运动的过程中,当半圆与边AB 有两个公共点时,求出t 的取值范围;(4)请直接写出在整个运动过程中点P 的运动路径长.19.如图1,矩形ABCD 中,3AB =,4=AD ,以AD 为直径在矩形ABCD 内作半圆O .(1)若点M 是半圆O 上一点,则点M 到BC 的最小距离为________;(2)如图2,保持矩形ABCD 固定不动,将半圆O 绕点A 顺时针旋转α()090α︒<<︒度,得到半圆O',则当半圆O'与BC相切时,求旋转角α的度数;AD'与边BC有交点时,求tanα的取值范围.(3)在旋转过程中,当20.如图,半圆O的直径4AB=,以长为2的弦PQ为直径,向点O方向作半圆M,其中P 点在AQ(弧)上且不与A点重合,但Q点可与B点重合.发现 AP的长与 QB的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求 AP的长.(注:结果保留π,cos35= ,cos55=。

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)

2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)1.如图,已知四边形ACBD内接于⊙O,AB是⊙O的直径,AB=10,点D是半圆的中点,连接CD,点I是CD上一点,且DI=DB.(1)求证:点I是△ABC的内心;(2)若BC=6,求△BIC的面积;(3)随着点C的变化,点I的位置也发生改变,请探求CI长度的取值范围.2.如图,在△ABC中,AB=4,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作⊙O的切线DH交AC于点H,且DH⊥AC,连接DE与AB交于点G.(1)求证:AB=AC;(2)填空:①当BD=时,四边形EODA为菱形;②若∠EGA=∠EAG,则GO 的长为.3.如图,AB是⊙O的直径,点D在⊙O上,连接AD并延长至点C,连接BC交⊙O于点E,AB=BC=10,AC=12,过点D作DF⊥BC于点F.(1)求证:直线DF是⊙O的切线;(2)连接DE,设△CDE的面积为S1,四边形ADEB的面积为S2,求的值;(3)点P在上,且的长为,点Q为线段BD上一动点,连接PQ,求的最小值.4.(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为;(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,有一块半径为1的⊙O,若⊙O的内接四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=2,求AB的长.5.如图1,△ABC内接于⊙O,弦AE交BC于点D,连接BO,且∠ABO=∠DAC.(1)求证:AE⊥BC;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若∠ACF=∠OBC,求证:MD=ED;(3)如图3,在(2)的条件下,∠BFC=3∠EAC,若BM=,AM=3时,求弦CF 的长.6.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC 交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.7.如图,等边△ABC内接于⊙O,点D是弧AC上一点,连接BD交AC于E.(1)如图1,求证∠ADB=∠CDB;(2)如图2,点F为线段BD上一点,连接CF,若∠BCF=2∠ABD时,求证:BF=DE+AD;(3)在(2)的条件下,作∠BCF的平分线交⊙O于M,在CM上取点R,连接AR交CF于点T,若TR=1,MR=5,∠CAT=3∠ACD,求AT的长.8.如图,在△ABC中,∠C=90°,AC=BC=2.(1)若点D、E、F分别在AB,AC,BC边上(如图1),连接DE,DF,EF,且∠EDF =90°,DE=DF.①四边形DECF的四个顶点是否在同一个圆上,并说明你的理由;②EF最小值为;四边形CEDF的面积是;(请直接写出答案)③点C到线段EF的最大距离为;(请直接写出答案)(2)若点D、E、F分别在AC,BC,AB边上(如图2),连接DE,DF,EF,且∠EDF =90°,DE=DF,求EF的最小值.9.已知,△ABC内接于⊙O,AD⊥BC于点G,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,过点O作ON⊥BC于N,过点B作BH⊥AC于H,交AD于点E,交⊙O 于点F,求证:AE=2ON;(3)如图3,在(2)的条件下,直线OE交AB于点P,交AC于点Q,若HC:EF=:2,BP=11,CQ=2,求线段AD的长.10.(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则点P到直线l的距离的最大值为.问题探究:(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点,求S△ABF:S△BFD的值.问题解决:(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD =90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米400元,草坪的造价是每平米200元,请帮设计师算算修好花坛和草坪预算最少需要多少元?11.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE:PF=1:3,AB=2,求OG的长.12.已知⊙O是△ABC的外接圆,BC为⊙O的直径,弧AB上一点D满足DB=DA,连结CD交AB于点E.(1)求∠AED+∠ABC的值.(2)求证:AC•BC=CE•CD;(3)连接OE,若∠BOE=∠BEO,求△BEO与△BED的面积比.13.【基础巩固】(1)如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∼△BCF;【尝试应用】(2)如图2,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,∠CFE=45°,若设AE=y,BF=x,求出y与x的函数关系及y的最大值.【拓展提高】(3)已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上.如图3,如果AD:BD=1:2,求CE:CF的值.14.如图1,▱ABCD为⊙O的内接四边形,已知,以A为顶点作∠P AZ=45°,交BC于P,交CD于Z.(1)求证:四边形ABCD为正方形;(2)若BC=4BP,求DZ:CZ的值;(3)如图2,过P作PQ⊥AD于Q,过Z作ZX⊥AB于X,交PQ于Y.若,求四边形ZYPC的面积.15.如图1,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A 以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D、点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA;(2)如图2,设经过点D、C、E三点的圆为⊙P;①当⊙P与边AB相切时,求t的值;②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧,如图3),联结CP并延长交边AB于点M,连接PF,当△PFM与△CDE相似时,求CE的长.16.问题解决:(1)如图①,半圆O的直径AB=6,点P是半圆O上的一个动点,则△P AB的面积最大值是.(2)如图②,在扇形OAB中,∠AOB=90°,OA=6,点C、D分别在OA和OB上,且AC=2,D是OB的中点,点E在弧AB上.连接CE、DE,四边形CODE的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.17.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是倍对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当4DH=3BG时,求△BGH与△ABC的面积之比.18.【概念提出】圆心到弦的距离叫作该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长随着OP的长的确定而确定;④AB的长与OP的长无关.其中所有正确结论的序号是.【问题解决】如图②,已知线段EF,MN,点Q是⊙O内一定点.(3)用直尺和圆规过点Q作弦AB,满足AB=EF;(保留作图痕迹,不写作法)(4)若弦AB,CD都过点Q,AB+CD=MN,且AB⊥CD.设⊙O的半径为r,OQ的长为d,MN的长为l.①求AB,CD的长(用含r,d,l的代数式表示);②写出作AB,CD的思路.19.阅读,然后解答问题:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你证明:“三边分别为3,,5的三角形是奇异三角形;(2)在Rt△ABC中,AB=c,AC=b,BC=1,且c>b>1,若Rt△ABC是奇异三角形,求b和c;(3)如图,AB是⊙的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.20.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究证明:如图2,在⊙O上任取一点C(不与点A,B重合),连接PC,OC.求证:P A<PC.(2)直接应用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=3,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A1MN,连接A1B,则A1B 长度的最小值为.(4)综合应用:如图5,平面直角坐标系中,分别以点A(﹣2,3),B(4,5)为圆心,以1,2为半径作⊙A,⊙B,M,N分别是⊙A,⊙B上的动点,P为x轴上的动点,直接写出PM+PN的最小值为.参考答案1.(1)如图1,证明:∵点D是半圆的中点,∴∠ACD=∠ABD=∠BCD=∠DAB,∵DI=DB.∴∠DIB=∠DBI,∴∠DCB+∠CBI=∠ABD+∠ABI,∴∠CBI=∠ABI,∴点I是△ABC的内心;(2)如图2,作AE⊥CD于E,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠ACD=∠ABD=∠BCD=∠DAB=45°,在Rt△ABC中,BC=6,AB=10,∴AC=8,在Rt△ACE中,AE=CE=AC=4,在Rt△ADE中,AE=4,BD=AD==5,∴DE=3,∴CD=CE+DE=7,∵DI=BI=5,∴CI=2,作IJ⊥BC于J,∴IJ=CI=2,∴S△BIC===6;(3)如图3,∵DI=BD=5,∴I在以D为圆心,5为半径的圆上一段弧上运动,作⊙O的直径DC′与⊙D交于点I′,当C与C′重合,I与I′重合时,IC最大,C′I′=10﹣5,∴0<CI≤10﹣52.(1)证明:连接OD,∵DH为⊙O的切线,D为切点,∴OD⊥DH,∵DH⊥AC,∴∠ODH=∠DHC=90°,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠OBD=∠C,∴AB=AC;(2)解:①如图,连接AD、OD、EO,∵四边形EODA为菱形,∴AD=OD=AB=2,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,故答案为:2;②∵∠EGA=∠EAG,∴∠EAG=∠OGD,∵AE∥OD,∴∠CED=∠ODE,∠EAG=∠AOD,∴∠OGD=∠GOD,∴OD=DG,∵∠B=∠AED,∴∠ODE=∠B,又∵∠OGD=∠DGB,∴△OGD∽△DGB,设OG=x,∴,∴,∵x>0,∴x=﹣1,∴OG=﹣1,故答案为:﹣1.3.(1)证明:连接OD,∵AO=OD,∴∠OAD=∠ODA,∵AB=BC,∴∠OAD=∠C.∴OD∥BC,∵DF⊥BC,∴DF⊥OD,∵OD是⊙O的半径,∴直线DF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴AD=DC=6,∵四边形ADEB是⊙O的内接四边形,∴∠ADE+∠ABE=180°,∵∠ADE+∠CDE=180°,∴∠CDE=∠ABC,∵∠C=∠C,∴△CDE∽△CBA,∴=,∴;(3)如图,过点Q作QG⊥AB于点G,∵sin∠ABD=,∴QG=BQ,∴PQ+BQ=PQ+QG,∴当P,Q,G三点共线时,PQ+BQ有最小值为PG,∵的弧长为π,∴,∴∠POB=60°,∴PG=OP•sin60°=,∴PQ+BQ的最小值为.4.解:(1)如图1,作DE⊥AC于E,作DF⊥AB于F,∵AD平分∠BAC,∴DE=DF,由S△ABC=S△ABD+S△ACD得,AB•AC=,∴4×3=4•DE+3DE,∴DE=,故答案是;(2)如图2,作CE⊥BD于E,作AF⊥BD于F,∵AC是直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBC=∠ABD=,∴=,∠ECB=90°﹣∠DBC=45°=∠DBC,∴AD=CD,BE=CE,∵点B是半圆AC的三等分点(弧AB<弧BC),∴的度数是60°,的度数是120°,∴∠ADB=30°,∠BDC=60°,∴∠ADB=∠DCE=30°,∴△ADF≌△DCE(AAS),∴AF=DE,∴AF+CE=DE+BE=8,∴S四边形ABCD=S△ABD=====32;(3)如图3连接AC,延长CD至E,使DE=AD,连接AE,∵AB=AD,∴=,∴∠ACB=∠ACE,∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC=60°,∴△ADE是等边三角形,∴∠E=60°,∴∠B=∠E,又∵AC=AC,∴△ABC≌△AEC(AAS),∴BC=CE,∵CE=DE+CD=AD+CD=2,∴BC=2.∵⊙O的半径是1,∴BC是⊙O的直径,∴∠BAC=90°,∴AB=BC•cos60°=1.5.(1)证明:延长BO交⊙O于G,连接AG,如图:∵=,∴∠G=∠C,∵∠ABO=∠DAC,∴∠G+∠ABO=∠C+∠DAC,∵BG为⊙O直径,∴∠BAG=90°,∴∠G+∠ABO=∠C+∠DAC=90°,∴∠ADC=90°,∴AE⊥BC;(2)证明:设BF交AC于N,延长BO交⊙O于G,连接CG,BE,如图:∵BG为⊙O直径,∴∠BCG=90°,∴∠G+∠OBC=90°,∵∠G=∠BFC,∠OBC=∠ACF,∴∠BFC+∠ACF=90°,∴∠CNF=90°,∴∠NBC+∠NCB=90°,由(1)知:AE⊥BC有∠DAC+∠NCB=90°,∴∠NBC=∠DAC,∵=,∴∠DAC=∠DBE,∴∠NBC=∠DBE,又∠BDM=∠BDE=90°,BD=BD,∴△BDM≌△BDE(ASA),∴MD=ED;(3)解:连接AF、BE,如图:∵=,∴∠BFC=∠BAC,∵∠BFC=3∠EAC,∴∠BAC=3∠EAC,∴∠BAE=2∠EAC,由(2)知∠EAC=∠DBE=∠DBM,BE=BM=,∴∠EBM=2∠EAC,∴∠EBM=∠BAE,又∠BEM=∠AEB,∴△BEM∽△AEB,∴==,∵AM=3,∴==,解得:EM=2,AB=5,在Rt△AMN中,MN2+AN2=AM2=9(Ⅰ),在Rt△ABN中,(+MN)2+AN2=AB2=25(Ⅱ),由(Ⅰ)、(Ⅱ)可得:MN=,AN=,∵∠AMF=∠BME,∠AFM=∠BEM,∴△BEM∽△AFM,∴=,即=,∴MF=,∴NF=MF﹣MN=,∵cos∠BAC=cos∠BFC,∴=,即=,∴CF=.6.(1)如图1,证明:连接OA,OC,∴OB=OC,又AB=AC,OA=OA,∴△AOB≌△AOC(SSS),∴∠OAC=∠OAB,∴∠BAC=2∠OAB,∵OA=OB,∴∠ABD=∠OAB,∴∠BAC=2∠ABD;(2)如图2,证明:连接AG,OG,延长AO交BG于M,交BC于P,交⊙O于N,由(1)知,∠BAO=∠CAO,∴=,∵AB=AC,∴AP⊥BC,∵BH⊥AC,∠AMH=∠BMP,∴∠CBG=∠CAO,∵=,∴∠CAG=∠CBG,∴∠CAG=∠CAO,∴AM=AG,=,∴GM=2GH,∠BON=∠COG,∵OB=OG,∴∠OBG=∠OGB,∴△BOM≌△GOF(ASA),∴BM=GF,∴BM+MF=GF+MF,即BF=MG=2GH;(3)如图3,解:设∠ABD=α,由(1)(2)知,∠BAC=2∠ABD=2α,∠CAG=,连接AG,作DT⊥AB于T,截取TK=AT,∴AD=DK=2,∴∠DKA=∠DAK=2α,∵∠BDK=∠AKD﹣∠ABD=2α﹣α=α,∴BK=DK=2,∴AK=AB﹣BK=3,∴AT=KT==,∴DT===,∴cos2α===,tanα==,在Rt△ABH中,AH=AB•cos2α=5×=,在Rt△AHG中,GH=AH•tanα==,∴BF=2GH=.7.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴=,∴∠ADB=∠CDB;(2)证明:如图,作∠BCF的角平分线,交BD于点G,设∠ACD=α,∵=,∴∠ABD=∠ACD=α,∵∠BCF=2∠ABD,∴∠FCG=∠BCG=∠ACD=α,∵△ABC是等边三角形,∴BC=AC,∵=,∴∠DAC=∠DBC,在△ADC与△BGC中,,∴△ADC≌△BGC(SAS),∴BG=AD,DC=GC,∵=,∴∠BDC=∠BAC=60°,∴△DGC是等边三角形,∴∠FGC=∠EDC=60°,在△CED与△CFG中,,∴△CED≌△CFG(ASA),∴ED=FG,∴BF=BG+GF=AD+DE,即BF=DE+AD;(3)解:设∠ACD=α,则∠CAT=3∠ACD=3α,如图,延长CF交⊙O点P,交AM于N点,连接P A,过M点作MQ∥AP,交AR于Q 点,连接PM,∵CM是∠BCF的平分线,由(2)得∠FCG=∠BCG=∠ACD=α,∴∠ACP=∠ACB﹣∠BCF=60°﹣2α,∠BAT=∠BAC﹣∠CAT=60°﹣3α,∵=,=,∴∠MAB=∠BCG=α,∠MAP=∠FCG=α,∴∠MAC=∠BAC+∠BAM=60°+α,∴∠MAT=∠MAC﹣∠CAT=60°+α﹣3α=60°﹣2α,∠P AT=∠MAT+∠MAP=60°﹣2α+α=60°﹣α,∵=,∴∠AMP=∠ACP=60°﹣2α,∴∠AMP=∠MAT=60°﹣2α,∴MP∥AR,∴∠AMQ=∠MAP=α,∠MQT=∠P AR=60°﹣α,∵=,∴∠AMC=∠ABC=60°,∴∠QMR=∠AMC﹣∠AMQ=60°﹣α,∴∠QMR=∠MQR=60°﹣α,∴QR=MR=5,∵设MP=AQ=m,则QT=QR﹣TR=5﹣1=4,∴AT=QT+AQ=4+m,∵=,∴∠MPC=∠MAC=60°+α,又∵∠MNP=∠ANT=∠APC+∠P AM=60°+α,∠ATN=∠ACP+∠CAT=60°﹣2α+3α=60°+α,∴∠MNP=∠MPC=∠ANT=∠ATN=60°+α,∴MP=MN,AN=AT,∴AM=MN+AN=MP+AT=m+4+m=4+2m,在△AMR中,∠AMR=60°,AM=4+2m,MR=5,AR=5+m,如图,过R点作AM边的高HR,∴∠MRH=30°,∴MH=MR=,HR==MR=,∴AH=AM﹣MH=+2m,在Rt△AHR中,HR2+AH2=AR2,∴()2+(+2m)2=(5+m)2,解得:m=2或﹣(舍去),∴AT=4+m=6.8.解:(1)①取EF中点P,连接CP,DP,∵点P为EF中点,∴PE=PF=EF.∵∠ACB=∠EDF=90°,∴CP=DP=AC,∴PE=PF=PC=PD,∴点E、D、F、C在以P为圆心,EF为半径的同一个圆上;②当DE⊥AC时,DE的长度最小,此时EF最短,∵∠A=45°,AD=,∴DE=1,∵DE=DF,∴EF==;∵D是AB的中点,∴AD=BD=CD=,CD⊥AB,∠BCD=45°,∵DE⊥DF,∴∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形DECF=S△DEC+S△DCF=S△DEC+S△ADE=S△ADC=××=1;故答案为;1.③由②可知当EF取最小值时,点C到线段EF的最大距离为EF=.故答案为.(2)过点F分别作FG⊥CA于点G,设DC=a,CE=b,∵∠CDE+∠GDF=∠GDF+∠DFG=90°,∴∠CDE=∠DFG,∵∠C=∠DGF,DE=DF,∴△DCE≌△FGD(AAS),∴FG=DC=a,GD=CE=b,则2a+b=2,a2+b2=DF2,∴DF2=a2+(2﹣2a)2,=5a2_8a+4=5,当a=时,DF2最小,此时EF2最小,∴EF的最小值为.9.(1)证:如图1,作直径AE,连接BE,∴∠ABE=90°,∴∠BAO=90°﹣∠E,∵=,∴∠E=∠C,∴∠BAO=90°﹣∠C,∵AD⊥BC,∴∠AGC=90°,∴∠CAD=90°﹣∠C,∴∠BAO=∠CAD;(2)证:如图2,∵ON⊥BC,∴BC=2CN,作直径CM,连接BM,AM,∴MB⊥BC,∵ON⊥BC,∴ON∥BM,∴△CON∽△CMB,∴==2,∴BM=2ON,∵=,∴∠BAM=∠BCM,∴∠BAM=∠BCM=90°﹣∠BMC,∵=,∴∠BMC=∠BAC,∴∠BAM=90°﹣∠BAC,∵∠AHB=90°,∴∠ABH=90°﹣∠BAC,∴∠BAM=∠ABH,∴BE∥AM,∴四边形AMBE是平行四边形,∴AE=BM,∴AE=2ON;(3)解:如图3,连接AF,CF,连接CE并延长交AB于I,连接OB、OC和BD,作OJ⊥AB于J,∵AG⊥BC,BH⊥AC,∴CI⊥AB,又∵∠AEH=∠BEG,∴∠GBE=∠EAH,∵=,∴∠F AC=∠GBE,∴∠F AC=∠EAH,∵∠AHF=∠AHE=90°,AH=AH,∴△AHE≌△AHF(ASA),∴EH=FH,∴FH=,同理可得:EG=DG=,∴tan∠BFC===,∴∠BFC=60°,∵=,∴∠BAC=∠BFC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,ON⊥BC,∴∠BON==60°,∴OA=OB=2ON,∵AE=2ON,∴AO=AE,∴∠AOE=∠AEO,∴∠AOP=∠AEQ,∵∠BAO=∠CAD,∵△AOP≌△AEQ(ASA),∴AP=AQ,∴△APQ是等边三角形,∴∠APQ=60°,∵∠AEH=90°﹣∠BAC=30°,∴∠AEH=∠ABH=30°,∴PE=PB=11,设AP=AQ=PQ=x∴OP=EQ=PQ﹣PE=x﹣11,AC=AQ+CQ=x+2,在Rt△AIC中,∠BAC=60°,AC=x+2,∴AI=AC=(x+2),CI=(x+2),∴BI=AB﹣AI=(x+11)﹣(x+2)=+10,在Rt△BIC中,BC2=BI2+CI2,=()2+[(x+2)]2,在Rt△POJ中,∠APH=60°,OP=x﹣11,∴PJ=(x﹣11),OJ=(x﹣11),∴AJ=AP﹣PJ=x﹣(x﹣11)=,在Rt△AOJ中,OA2=OJ2+AJ2=[(x﹣11)]2+()2,∴OB2=[(x﹣11)]2+()2,∵BN=OB,∴BC=2BN=OB,∴BC2=3OB2=3•[(x﹣11)]2+()2,∴3•[(x﹣11)]2+()2=()2+[(x+2)]2,化简,得,x2﹣23x+130=0,∴x1=13,x2=10(舍去),∴AB=x+11=24,AC=x+2=15,∴BH=AB=12,AH=12,∴CH=AC﹣AH=3,∴BC==21,∵∠CAD=∠CBH,∠AGC=∠BHC=90°,∴△ACG∽△BCH,△BGE∽△AGC,∴==,=∴===,∴AG=,CG=,∴BG=BC﹣CG,=21﹣=,∴=,∴DG=EG=,∴AD=AG+DG=+=.10.解:(1)点P到直线l距离的最大值,即过圆心O向直线l作垂线交圆O于点P,连接OA,∵AB=8,OC⊥AB,∴AC=4,由勾股定理得:OC=3,∴PC=8,故答案为:8;(2)过点F作FG⊥AB,∵∠ABC=45°,AD⊥BC,∴△ABD为等腰直角三角形,∴AB=BD,又∵△ABC为等腰三角形,且AB=BC,BE⊥AC,∴BE平分∠ABC,又∵FD⊥BC,FG⊥AB,∴FG=FD,∴S△ABF=×AB×FG,S△BDF=×BD×DF,∴;(3)连接MC,过点A作AP⊥BC于点P,∵∠ABC=60°,AB=60,∴BP=30,AP=30,∴CD=30,设总费用为W元,∴W=400S△AMN+200S△BNC,∴W=200(2S△AMN+S△BNC),∴当2S△AMN+S△BNC最小时,总费用最小,又∵AM=20米,BM=40米,∴2S△AMN=S△BMN,∴当S△BMN+S△BNC最小时,费用最小,即S四边形BMNC最小时,费用最小,又∵S四边形BMNC=S△BMC+S△CMN,过点M作MH⊥BC,垂足为H,∵∠ABC=60°,BM=40米,∴BH=20米,MH=20米,MC=40米,∴∠BCM=30°,∴∠DCM=60°,∴S△BMC==800(平方米),∴当S△CMN最小时,费用最小,∴S△CMN=×NQ=20NQ,∴当NQ最小时,费用最小,∵ND=25米,∴N点在以D为圆心,25为半径的圆上运动,过圆心D向MC作垂线交⊙D于N点,交MC于Q,即此时NQ最小,∵CQ=15米,DQ=45米,∴NQ=45﹣25=20(米),∴S△MNC最小值=×20=400(平方米),∴S四边形BMNC最小值=1200(平方米)∴W最小值=200×1200=240000(元),11.(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,∴EF=2FM,CD=2DN,∴CD=EF;(2)∵PE:PF=1:3,∴设PE=x,PF=3x,则EF=PE+PF=4x,∵OM⊥EF,∴EM=FM=EF=2x,∴PM=EM﹣PE=2x﹣x=x,∵PB平分∠DPF,∠DPF=60°,∴∠FPB=DPB=DPF=30°,∴OM=x,OP=x,在Rt△OPM和Rt△OPN中,,∴Rt△OPM≌Rt△OPN(HL),∴PM=PN,由(1)知:FM=DN,∴PM+FM=PN+DN,∴PF=PD,∵∠DPF=60°,∴△PDF是等边三角形,∵PB平分∠DPF,∴PB⊥DF,垂足为G,∴DF=PF=3x,FG=DF=,∴PG===,∴OG=PG﹣OP=﹣x=,∵AB=2,∴OF=AB=,在Rt△OFG中,根据勾股定理,得OG2+FG2=OF2,∴()2+()2=()2,整理,得x2=3,解得x=±(负值舍去),∴x=,∴OG===.12.(1)解:∵BC是直径,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∴∠ACB+∠ABC=45°,∵BD=AD,∴=,∴∠ACD=∠BCD,∵∠AED=∠ACD+∠CAE,∴∠AED+∠ABC=90°+∠ACB+∠ABC=135°;(2)证明:∵=,∴∠ACD=∠BCE,∵∠CBE=∠ADC,∴△CBE∽△CDA,∴=,∴AC•BC=CE•CD;(3)解:如图,过点B作BT⊥OE交CD于点T,连接OT.∵BO=BE,∴BO垂直平分线段OE,TB平分∠ABC,∴TO=TE,∴TB平分∠OTE,∵CE平分∠ACB,∴∠BTD=∠TCB+∠TBC=(∠ACB+∠ABC)=45°,∴∠OTE=90°,∴OT⊥CD,∴CT=TD,∵BC是直径,∴∠BDT=90°,∴∠BTD=∠DBT=45°,∴BD=DT=CT,∵CO=OB,CT=TD,∴BD=2OT,∴DT=CT=2ET,∴CE=3DE,∴S△BEC=3S△ADE,∵BO=OC,∴S△BEC=2S△BEO,∴2S△BEO=3S△DEB,∴=.13.(1)证明:∵∠A=∠EFC,∴∠E+∠EF A=∠EF A+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),∴当x=4时,y最大=2;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴,∴,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a=x,∴,∴CE:CF=4:5.14.(1)∵四边形ABCD为平行四边形,∴∠B=∠D.又∵∠B+∠D=180°,∴∠B=∠D=90°.∴四边形ABCD为矩形,∵,∴AB=AD.∴四边形ABCD为正方形.(2)延长CD至点Q,使得DQ=BP,连接AQ,如图,∵四边形ABCD为正方形,∴∠ABP=∠ADQ=90°.在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,∠BAP=∠DAQ.∵∠BAD=90°,∴∠DAP+∠BAD=90°.∴∠DAP+∠QAD=90°.∴∠QAP=90°.∵∠P AZ=45°,∴∠P AZ=∠QAZ=45°.在△APZ和△AQZ中,,∴△APZ≌△AQZ(SAS).∴PZ=QZ.设AB=4a,DZ=t,则BP=a,ZC=4a﹣t,ZP=t+a,在Rt△CPZ中,∵ZC2+CP2=ZP2,∴(4a﹣t)2+(3a)2=(t+a)2.解得:t=.∴DZ=a,CZ=a,∴DZ:CZ=3:2.(3)∵四边形ABCD为正方形,PQ⊥AD,ZX⊥AB,∴四边形AXYQ,AXZD,XBPY,XBCZ均为矩形.设AB=a,AX=m,AQ=n,则mn=.由(2)可知,PZ=DZ+BP=m+n,CZ=XB=a﹣m,CP=DQ=a﹣n.在Rt△CPZ中,∵ZC2+PC2=PZ2,∴(a﹣m)2+(a﹣n)2=(m+n)2.化简得:a2﹣(m+n)a=mn.∴S四边形ZYPC=(a﹣m)(a﹣n)=a2﹣(m+n)a+mn=2mn=2×=5.15.(1)证明:∵∠C=90°,AC=16,AB=20,∴BC==12,∴=,∵==,∴=,∵∠C=∠C,∴△DCE∽△BCA;(2)解:①如图1,作PG⊥AC于G,PF⊥BC于F,作PH⊥AB于H,设CD=3a,CE=4a,DE=5a,由题意得,PH=PC=DE=,PF=CG=CD=a,FG=2a,∵S△ABC=S△APB+S△PBC+S△P AC,∴BC•AC=AB•PH++,∴12×16=20×a+12×a+16×2a,∴a=,∴t=3a=;②如图2,设CD=3a,CE=4a,DE=5a,∴PF=DE=a,由(1)知,△DCE∽△BCA,当△PMF∽△DCE时,∴△PMF∽△BCA,==,∴PM=a,FM=2a,由S△ABC=得20•CM=12×16,∴CM=,∵CP+PM=CM,∴a+a=,∴4a=,即CE=,当△PMF∽△ECD时,类比上可得,a+2a=,∴4a=,∴CE=,综上所述:CE=或.16.解:(1)点P运动至半圆O的中点时,如图1:此时底边AB上的高最大,即P'O=r=3,△P AB的面积最大值,∴S△P'AB=×3×6=9,故答案为:9;(2)四边形CODE的面积存在最大值,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE'的面积最大,如图2:∵OA=OB=6,AC=2,点D为OB的中点,∴OC=4,OD=3,在Rt△COD中,CD=5,OG=2.4,∴GE′=6﹣2.4=3.6,∴四边形CODE'面积为S△CDO+S△CDE′=×3×4+×5×3.6=15,∴四边形CODE的面积的最大值为15;(3)四边形ABCD的面积存在最大值,连接BD,作△ABD的外接圆O,过A作AE⊥BD于E,如图3:∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,即C在⊙O上,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,有BD=AB=AD=6,在Rt△ABE中,BE=AB=3,AE=BE=3,∴S△ABD=BD•AE=×6×3=9,当C为中点,即A、E、C共线时,△BDC的面积最大,此时∠ACB=∠ADB=60°,AC为⊙O直径,∴∠CAB=30°,∴AC==4,∴CE=AC﹣AE=,∴S△BDC=BD•CE=×6×=3,∴S四边形ABCD=S△ABD+S△BDC=12,即四边形ABCD的面积的最大值是12.17.(1)解:在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,∵∠A+∠B+∠C+∠D=360°,∴3∠B+∠3∠C=360°,∴∠B+∠C=120°,∴∠B与∠C的度数之和为120°;(2)证明:在△BED与△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BEO,∵∠BOE=2∠BCF,∴∠BDE=2∠BCF连接OC,设∠EAF=α,则∠AFE=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠EFC=∠AOC=2∠ABC,∴四边形DBCF是倍对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是倍对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴==,∵4DH=3BG,BG=2HG,∴DG=,∴==,∴=.18.解:(1)连接OA,∵OP⊥AB,∴AP=,∵OA=5,OP=3,∴AP==4,∴AB=2AP=8,故答案为:8;(2)设半径为r不变,∴AB=2AP=2,当r不变,OP的长增大时,AB减小;OP长确定时,AB也确定,故选:②③;(3)如图,利用△MPF和△OP'B全等,首先作EF的垂直平分线,再取FM=r,然后以点O为圆心,MP为半径画圆,再以OQ为直径画圆,两圆交点为P',从而画出线段AB,如图,线段AB即为所求;(4)①解:设AB=2m,CD=2n,如图,可得:,解得:,∴AB=,CD=,②作图思路:先作斜边为4r,一条直角边为2,另一条直角边为的直角三角形;再作斜边为,一条直角边为l,另一条直角边为的直角三角形;再在⊙O中作出长为的弦,再如(3)中作法,过点Q作弦AB;最后过点Q作AB的垂直弦CD.19.(1)证明:在△ABC中,三边长分别是3,和5,∵32+52=2()2,。

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与三角形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图 O 是ABC 的外接圆 AB 是O 的直径 FH 是O 的切线 切点为F FH BC ∥ 连接AF 交BC 于E 连接BF .(1)证明:AF 平分BAC ∠(2)若ABC ∠的平分线BD 交AF 于点D 4EF = 6DE = 求tan EBF ∠的值.2.如图① OA 是O 的半径 点P 是OA 上一动点 过P 作弦BD ⊥弦AC 垂足为E连结AB BC CD DA .(1)求证:BAO CAD ∠=∠.(2)当OA CD ∥时 求证:AC BC =.(3)如图① 在(2)的条件下 连结OC .①若ABC 的面积为12 4cos 5ADB求APD △的面积. ①当P 是OA 的中点时 求BD AC 的值.3.如图 ABC 内接于O AB ,是①O 的直径 过点C 作O 的切线交AB 的延长线于点D BE CD ⊥ EB 的延长线交O 于F CF ,交AB 于点G BCF BCD ∠=∠.(1)求证:BE BG =(2)若1BE = 求O 的半径.4.如图 O 是ABC 的外接圆 AB 是O 的直径 BD 是O 的切线 连接AD 交O 于点E 交BC 边于点F 若点C 是AE 的中点.(1)求证:ACF BCA ∽△△(2)若1CF = 2BF = 求DB 的长.5.如图1 锐角ABC 内接于O 点E 是AB 的中点 连结EO 并延长交BC 于D 点F 在AC 上 连结AD DF BAD CDF ∠=∠.(1)求证:DF AB .(2)当9AB = 4AF FD ==时①求tan CDF ∠的值①求BC 的长.(3)如图2 延长AD 交O 于点G 若::1:4:3GC CA AB = 求BED DFC S S△△的值.6.如图 AB 为O 的直径 弦CD AB ⊥于点E 连接AC BC .(1)求证:CAB BCD ∠=∠(2)若4AB = 2BC = 求CD 的长.7.如图 四边形ABCD 内接于O BC 为O 的直径 O 的切线AP 与CB 的延长线交于点P .(1)求证:PAB ACB ∠=∠(2)若12AB = 4cos 5ADB求PB 的长.8.在Rt ABC 中 90BCA ∠=︒ CA CB = 点D 是ABC 外一动点(点B 点D 位于AC 两侧) 连接CD AD .(1)如图1 点O 是AB 的中点 连接OC OD 当AOD △为等边三角形时 ADC ∠的度数是______(2)如图2 连接BD 当135ADC ∠=︒时 探究线段BD CD DA 之间的数量关系 并说明理由(3)如图3 O 是ABC 的外接圆 点D 在AC 上 点E 为AB 上一点 连接CE DE 当1AE = 7BE =时 直接写出CDE 面积的最大值及此时线段BD 的长.9.如图 AB 为O 的直径 AB AC = BC 交O 于点DAC 交O 于点E 45BAC ∠=︒.(1)求EBC ∠的大小(2)若O 的半径为2 求图中阴影部分的面积.10.如图 点C 是弧AB 的中点 直线EF 与O 相切于点C 直线AO 与切线EF 相交于点E 与O 相交于另一点D 连接AB CD .(1)求证:AB EF ∥(2)若3DEF D ∠=∠ 求DAB ∠的度数.11.如图1 BC 是O 的直径 点A 在O 上 AD ①BC 垂足为D AE AC = CE 分别交AD AB 于点F G .(1)求证:FA FG =(2)如图2 若点E 与点A 在直径BC 的两侧 AB CE 的延长线交于点G AD 的延长线交CG 于点F .①问(1)中的结论还成立吗?如果成立 请证明 如果不成立 请说明理由①若2tan3BAD∠=求cos BCE∠.12.如图1四边形ABCD内接于O连结BD AC交于点G点E是AB上一点连结CE交BD于点F且满足ACD ACF∠=∠.(1)求证:ACE ABD∠=∠(2)若点C是BD的中点①求证:CE CD=②若34CFCD=3tan4BDC∠=时求EFFD的值.(3)如图2当点F是BG的中点时若2AB=3AC=求CG的值.13.如图 四边形OABC 中90OAB OCB ∠=∠=︒ BA BC =.以O 为圆心 以OA 为半径作O .(1)求证:BC 是O 的切线(2)连接BO 形延长交O 于点D 延长AO 交O 于点E 与BC 的延长线交于点F ①补全图形①若AD AC = 求证:OF OB =.14.如图 在ABC 中 AB AC = AO BC ⊥于点O OE AB ⊥于点E 以点O 为圆心 OE 为半径作圆O 交AO 于点F .(1)求证:AC 是O 的切线(2)若60AOE =︒∠ 3OE = 在BC 边上是否存在一点P 使PF PE +有最小值 如果存在请求出PF PE +的最小值.15.如图1 在O 中 P 是直径AB 上的动点 过点P 作弦CD (点C 在点D 的左边) 过点C 作弦CE AB ⊥ 垂足为点F 连接BC 已知BE ED =.(1)求证:FP FB =.(2)当点P 在半径OB 上时 且OP FB = 求FPFC 的值.(3)连接BD 若55OA OP ==. ①求BD 的长.①如图2 延长PC 至点G 使得CG CP = 连接BG 求BCG 的面积.参考答案:1.(1)解:连接OF 如图所示:FH 是O 的切线OF FH ∴⊥①FH BC ∥OF BC ∴⊥BF CF ∴=BAF CAF ∴∠=∠AF ∴平分BAC ∠(2)解:如图作出ABC ∠的平分线BD 交AF 于点DABD CBD ∠=∠ BAF CAF CBF ∠=∠=∠ 且FBD CBD CBF ∠=∠+∠ BDF ABD BAF ∠=∠+∠FBD BDF ∴∠=∠4610BF DF EF DE ∴==+=+= AB 是O 的直径90AFB ∴∠=42tan 105EF EBF BF ∴∠===.2.(1)解:延长AO 交圆O 与F 连接BF .①90ABF ∠=︒①BD AC ⊥与E①90AED ABF ∠=∠=︒又AOE AFB ∠=∠①ABF AED ∽①BAF EAD ∠=∠即BAO CAD ∠=∠.(2)连接CF①AF 是O 的直径①90ACF ∠=︒①90AFC FAC ∠+∠=︒①OA CD ∥①FAC ACD ∠=∠①BD AC ⊥与E①90AED ∠=︒①90CDE ACD ∠+∠=︒①AFC CDE ∠=∠又①AFC CBA ∠=∠ CDE CAB ∠=∠①CBA CAB ∠=∠①AC BC =.(3)①①4cos 5ADB①45DE AD = ①45DE AD =①2235AE AD DE AD =- ①ACB ADB①45CE BC = 设4CE a = 则5BC a AC == ①223BE BC CE a -①5BC AC a ==①AE AC EC a =-=①53AD a = 43DE a = ①OP CD ①14OE AE DE CE == ①13PE a = 53PD a = ①211552236APD SPD AE a a a =⋅=⨯⨯= ①11531222ABC S AC BE a a =⋅=⨯⨯= 解得:22415a = ①25524466153APD S a ==⨯=. ①过点O 作OH AC ⊥于H①22AC AH CH ==①PE AC ⊥①PE OH ∥①P 是OA 的中点①E 是AH 的中点设AE k = 则2AH k = 4AC k= 3CE k = 4BC AC k ==①BE①ADB ACB ∠=∠ AED BEC∠=∠①AED BEC ∽ ①AEDEBE CE =①AE CEDE BE ⋅===①BD =①74BD AC k ==故BDAC3.(1)证明:如图 连接OC①CD 是①O 的切线①OC CD ⊥①90OCB BCD ∠+∠=︒①OC OB =①OCB OBC ∠=∠①BCF BCD ∠=∠①90BCF OBC ∠+∠=︒①90BGC ∠=︒ 即BG CF ⊥①BCF BCD ∠=∠,BE CF ⊥①BE BG =(2)解:①AB 是O 的直径 CF AB ⊥①BC BF =①BC BF =①BCF F ∠=∠①BE CD ⊥ BCF BCD ∠=∠①30BCF BCD F ∠=∠=∠=︒①60OBC ∠=︒①1BE =①2BC =①60OB OC OBC =∠=︒,①OBC △为等边三角形①2OB BC ==即O 的半径为2.4.(1)解:①AB 是O 的直径①090ACB FCA ∠=∠=①点C 是AE 的中点①AC EC =①CAE CBA ∠=∠①ACF BCA ∽△△(2)ACF BCA ∵∽△△2AC CF CB =⋅∴1CF = 2BF =23AC CF CB =⋅=∴AC ∴090ACB ∠=AB ∴==1sin 2CA ABC AB ∴∠=== 30CAE CBA =︒∠=∠∴903060BAC ∴∠=︒-︒=︒603030BAD ∴∠=︒-︒=︒BD 是O 的切线 90ABD ∴∠=︒tan D B B BA D A ∠==∴2DB ∴=5.(1)证明:①点E 是AB 的中点 且DE 过圆心①AB DE ⊥①AD BD =①B BAD ∠=∠有①BAD CDF ∠=∠①B CDF ∠=∠①DF AB . (2)①DFAB ①CDF CBA △△∽①DF CF BA CA=即:494CF CF=+ 解得:165CF = 又①AF FD =①CAD FDA ∠=∠①DF AB①FDA BAD CDF ∠=∠=∠①CAD CDF ∠=∠又C C ∠=∠①CDF CAD ∽ ①=CD CA CF CD①2161657645525CD CF AC ⎛⎫=⋅=⨯+= ⎪⎝⎭ ①245CD = ①CDF CBA △△∽①DC DF BC BA= 即24459BC = ①545BC = ①5424655BD BC DC =-=-= ①1922AE AB == 在ADE 中222293762DE AD AE ⎛⎫=-=- ⎪⎝⎭①3772tan tan 92DE CDF EAD AE ∠=∠=== 综上 17tan CDF ∠ 545BC =. (3)①::1:4:3GC CA AB =①它们所对圆心角度数比为1:4:3.根据同弧所对圆周角为原心角的一半 可知它们所对的圆周角度数比为1:4:3 即1::1:4:3B C ∠∠∠=设1∠=α 则4B α∠= 3C α∠=则14ADB C α∠=∠+∠=①AD BD =①4BAD B α∠=∠=①4ADB BAD B α∠=∠=∠=①ADB 为等边三角形①460α=︒①15α=︒①345C α∠==︒过点E 作EM BC ⊥交BC 于M 过点A 作⊥AP BC 交BC 于P 过点F 作FN BC ⊥交BC 于N设2BD m =①=60B ∠︒ 90BED ∠=︒①1cos6022BE BD m m =⋅︒=⨯= sin sin 60EM BE B m m =⋅=⋅︒==①211222BED S EM BD m =⋅=⋅=同理sin 2sin 602AP AB B m m =⋅=⨯︒== ①45C PAC ∠=∠=︒①PC AP == ①12PD BD m ==①)1CD PC PD m =-=①45C NFC ∠=∠=︒设FN CN n ==①DF AB60FDN B ∠=∠=︒ ①3tan 60FN DN ==︒ 又①CD DN NC =+ 即)331m n =+ 解得:()233n m = ①)()211953313322DFC S DC FN m m -=⋅=⨯⨯= ①2253332953BED DFC S m S -+△△. 6.(1)证明:①直径AB CD ⊥①BC BD =.①A BCD ∠=∠(2)解:连接OC①直径AB CD ⊥①CE ED =.①直径4AB =①2CO OB ==①2BC =①OCB 是等边三角形①60COE ∠=︒①30OCE ∠=︒ ①112OE OC == 在Rt COE △中①CE①2CD CE ==7.(1)证明:如图 连接OA①AP 为O 的切线①OA AP ⊥①90OAP ∠=︒①90OAB PAB ∠+∠=︒①OA OB =①OAB OBA ∠=∠①90OBA PAB①BC 为O 的直径①90ACB OBA ∠+∠=︒①PAB ACB ∠=∠(2)由(1)知PAB ACB ∠=∠ 且ADB ACB ∠=∠ ①ACB PAB ADB ∠=∠=∠ ①4cos cos cos 5ACB PAB ADB ∠=∠=∠= 在Rt ABC 中 3tan 4AB ACB AC ∠== ①12AB =①16AC =①2220BC AB AC +=①10OB =过B 作BF AP ⊥于F①ADB FAB ∠=∠ 4cos 5ADB①4cos 5FAB ∠=①3sin 5FAB ∠= ①在Rt ABF 中 36sin 5BF AB FAB =⋅∠=①OA AP BF AP ⊥⊥,,①BF OA ∥ ①PBF POA ∽①BF PB OA PO ①3651010PB PB =+①1807PB = 故PB 的长为1807. 8.(1)解:90BCA ∠=︒ BC AC = 点O 是AB 的中点 90COA ︒∴∠= 12CO AB OA == AOD 是等边三角形OD OA ∴= 60ODA DOA ∠=∠=︒OC OD ∴= 906030COD COA DOA ∠=∠-∠=︒-︒=︒ ()()11180180307522ODC COD ∴∠=︒-∠=⨯︒-︒=︒ 7560135ADC ODC ODA ∴∠=∠+∠=︒+︒=︒故答案为:135︒(2)解:线段BD CD DA 之间的数量关系为:BD DA =+ 理由如下: 过点C 作CH CD ⊥交AD 的延长线于点H 如图2所示:则180********CDH ADC ∠=︒-∠=︒-︒=︒ DCH ∴△是等腰直角三角形CH CD ∴= HD90BCA ∠=︒ACH BCD ∴∠=∠()ACH BCD SAS ∴≌BD AH HD DA AD ∴==+=+ (3)解:连接OC 如图3所示:90BCA ∠=︒ BC AC =ACB ∴是等腰直角三角形45ABC ∴∠=︒ O 是ABC 的外接圆O ∴是AB 的中点OC AB ∴⊥ ()()111174222OC OA AB AE BE ===+=⨯+= 413OE OA AE ∴=-=-=在Rt COE △中 由勾股定理得:2222435CE OC OE ++ CE 是定值∴点D 到CE 的距离最大时 CDE 面积的面积最大 AB 是O 的直径过点O 作ON CE ⊥于N 延长ON 与O 的交点恰好是点D 时 点D 到CE 的距离最大 CDE 面积的面积最大1122OCE S OC OE CE ON =⋅=⋅431255OC OE ON CE ⋅⨯∴===4OD OC ==128455DN OD ON ∴=-=-=此时 在直角CNO 中 222212164()55CN OC ON =-=-=在直角CND △中 222216885()()55CD CN DN +=+=在直角ABD △中 222228BD AB AD AD =-=- 由(2)知 8581022BD CD AD AD AD =+==2228108()AD AD ∴-=+610AD ∴=8108106101410BD AD ∴+=即CDE 面积的面积最大值为4 此时 1410BD .9.(1)解:①AB 为O 的直径①90AEB ∠=︒又①45BAC ∠=︒①=45ABE ∠︒.又①AB AC =①67.5ABC C ∠=∠=︒①22.5EBC ∠=︒.(2)解:连接OE 如图所示:①45ABE BAE ∠=∠=︒①AE BE =①OA OB =①OE AB ⊥①2OA OB OE ===①OBE OBE S S S =-阴影扇形29021223602π⨯⨯=-⨯⨯2π=-.10.(1)证明:连接OC 如图①直线EF 与O 相切于点C①OC EF ⊥.①点C 是AB 的中点①OC AB ⊥.①AB EF ∥.(2)解:①OC EF ⊥①90OCE ∠=︒.①90DEF EOC ∠+∠=︒.①2EOC D ∠=∠ 3DEF D ∠=∠①590D ∠=︒.①18D ∠=︒.①331854DEF D ∠=∠=⨯︒=︒.①AB EF ∥①54DAB DEF ∠=∠=︒.11.(1)证明:BC 为直径90BAC ∴∠=︒90ACE AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACE ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=(2)解:①(1)中的结论成立理由如下: BC 为直径90BAC ∴∠=︒即:=90GAC ∠︒90ACG AGC ∴∠+∠=︒AD BC ⊥90ADB ∴∠=︒90ABD DAB ∴∠+∠=︒①AE AC =ACG ABD ∴∠=∠DAB AGC ∴∠=∠FA FG ∴=①如图2 过点G 作GM BC ⊥交CB 的延长线于点M90GMB ADB ∴∠=∠=︒又ABD GBM ∠=∠GBM ABD ∴∽ ∴BMMGBD DA = ∴BM BDMG DA =90BAD ABD ∠+∠=︒90BAD DAC ∠+∠=︒ABD DAC ∴∠=∠ACE ABD ∠=∠DAC ACE ∴∠=∠AF CF ∴=又AF GF =CF GF ∴=∴点F 为CG 的中点2tan 3BD BAD AD ∠== ∴23BMBD MG DA ==90ADB ADC ∠=∠=︒ABD CAD ∴∽ ①23BDAD AD CD ==设2BD x = 则3AD x =①233x x x CD= 解得:92CD x =AD BC ⊥ GM BC ⊥AD GM ∴∥①点D 为CM 的中点29CM CD x ∴==92DM CD x ∴== BM DM BD ∴=-52x = ①23BM MG = 32MG BM ∴=154x = CG ∴22MG CM +()221594x x ⎛⎫+ ⎪⎝⎭394x = cos BCE ∴∠CM CG =. 9394xx = 1213=. 12.(1)①ACD ACF ∠=∠ ACD ABD ∠=∠ ①ACE ABD ∠=∠(2)①①点C 是BD 的中点①BAC DAC ∠=∠ BC DC =①BAC DAC DBC ∠=∠=∠①BEC BAC ACE ∠=∠+∠ ABC ABD DBC ∠=∠+∠ ①BEC ABC ∠=∠①CE BC =①CE CD =②延长CE 交O 于点P 连接PB 连接CO 交BD 于点M由①得BAC DAC DBC ∠=∠=∠ BC DC = ①CM BD ⊥ ①12DM BM BD ==①BAC BPC ∠=∠①DBC DPC ∠=∠①BCF PCB ∠=∠①CBF CPB ∽ ①CB CF CP CB = ①34CF CD = 设3CF k = 4DC CE CB k === 则EF k = ①434k k CP k= 则163PC k = ①43PE PC CF EF k =--=①在Rt CMD 中 3tan 4CM BDC DM ∠== 设BDC ∠的对边为3CM m = 则4DM m = ①由勾股定理得5CD m = ①44cos 55DM m BDC CD m ∠=== ①4cos 5DM BDC DC ∠==①165DM k = 由12DM BM BD == ①3225BD DM k ==①BPF CDF ∠=∠ PBF DCF ∠=∠ ①BPF CDF ∽ ①PF BF DF CF= 设DF y = 由4733PF PE EF k k k =+=+= 325BF BD DF k y =-=- ①732353k k y y k-= 解得15y k = 275y k = ①155EF k DF k ==或5775EF k DF k == 综上可知EF DF 的值为15或57(3)过F 作FH AB ∥ 交AC 于点H同理FHG CHF ∽ ①FH HC HG FH= ①点F 是BG 的中点则设AH HG a == ①FH HC HG FH = 即131a a -= 整理得2310a a -+= 解得:135a +=(舍去) 235a -=①325CG a =-13.(1)证明:如图 连接BO90OAB OCB ∠=∠=︒ BA BC = BO BO =①()Rt Rt HL ABO CBO ≌①AO CO =CO ∴是O 的半径又①90BCO ∠=︒①BC 是O 的切线(2)①解:依照题意画出图形 如图所示①证明:①Rt Rt ABO CBO ≌ ①AOB BOC ∠=∠①AOD COD ∠=∠①AD AC =①AOC AOD ∠=∠①120AOC AOD COD ∠=∠=∠=︒ ①60AOB BOC ∠=∠=︒①90BCO ∠=︒①30OBC ∠=︒①60AOB OBC F ∠=∠+∠=︒①30F OBC ∠=︒=∠①OB OF =.⊥与点D如图14.(1)证明:过点O作OD AC⊥=AO BCAB AC∠∴平分BACAO⊥OE AB⊥OD AC∴=OD OEOE是圆的半径OD∴是圆的半径这样AC经过半径OD的外端且垂直于半径OD∴是O的切线AC(2)解:在BC边上存在一点P使PF PE+有最小值.延长AO交O于点G连接EG交BC于点P连接PF则此时PF PE+最小连接EF过点E作EH AO⊥于点H如图∠=︒OE OFAOE60=∴为等边三角形OEF∴===3EF OE OF⊥EH OF1322OH HF OF ∴=== 39322GH OG OH ∴=+=+= 在Rt EHO 中sin EH AOE OE ∠=EH OE ∴=在Rt EHG △中EG BC FG ⊥ OG OF = PG PF ∴=PE PF PE PG EG ∴+=+==∴在BC 边上存在一点P 使PF PE +有最小值.PF PE +的最小值为 15.(1)①BE ED = ①BCE DCE ∠=①CE AB ⊥①90CFP CFB ∠=∠=︒ 在CPF 和CBF 中 DCE BCE CF CFCFP CFB ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ASA CPF CBF ≌ ①FP FB =.(2)由(1)得 FP FB = ①OP FB =①OP FB FP ==设3OA a =①OP FB FP a === ①2OF OP PF a =+= 连接OE①在Rt OFE △中 ()()225FE OE OF a - ①AB 为O 的直径 CE AB ⊥ ①5CF EF a == ①55FP FC a ==(3)①连接OE 如图①AB 为O 的直径 CE AB ⊥ ①CB BE =①BE ED =①BE ED CB == ①CB BE BE BD +=+ ①CE BD =①CE BD =①55OA OP == ①1OP =①FP FB = 5FP FB OP ++= ①2FP FB ==①3OF =在Rt OFE △中 FE =①4FE =①12CF FE CE == ①8CE = ①8BD = ①①CG CP = FP FB = ①点F 点C 是线段PB GO 的中点 ①CF 为PGB △的中位线 ①12CF GB = 12CF GB ∥ ①4CF = ①8GB = ①CF AB ⊥ ①BG AB ⊥ ①BCG 中BG 边上的高等于BF 的长①BCG 的面积为:1182822BG BF ⨯=⨯⨯=.。

2023年中考数学二轮专题复习频考点突破 圆的综合(含解析)

2023年中考数学二轮专题复习频考点突破 圆的综合(含解析)

2023年中考数学频考点突破--圆的综合1.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=4 √3,OA=4,求阴影部分的面积.2.AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG⋅ED的值.3.如图,已知A、B是⊙O上两点,⊙OAB外角的平分线交⊙O于另一点C,CD⊙AB 交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为弧AB̀的中点,F为⊙O上一点,EF交AB于G,若tan⊙AFE= 34,BE=BG,EG=3 √10,求⊙O的半径.4.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.5.如图1,在正方形ABCD中,点F在边BC上,过点F作EF⊙BC,且FE=FC (CE<CB),连接CE、AE,点G是AE的中点,连接FG.(1)用等式表示线段BF与FG的数量关系是;(2)将图1中的⊙CEF绕点C按逆时针旋转,使⊙CEF的顶点F恰好在正方形ABCD的对角线AC上,点G仍是AE的中点,连接FG、DF.①在图2中,依据题意补全图形;②求证:DF=√2FG.6.如图,已知⊙ABC,AC=3,BC=4,⊙C=90°,以点C为圆心作⊙C,半径为r.(1)当r取什么值时,点A、B在⊙C外(2)当r在什么范围时,点A在⊙C内,点B在⊙C外.7.已知直线l与⊙O,AB是⊙O的直径,AD⊙l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分⊙DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:⊙DAE=⊙BAF.8.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分⊙ACE;(2)若BE=3,CE=4,求⊙O的半径.9.如图,AB是⊙O的直径,BD是弦,C是BD的中点,弦CE⊥AB,H是垂足,BD交CE,CA于点F,G.(1)求证:CF=BF=GF;(2)若CD=6,AC=8,求圆O的半径和BD长.10.如图所示,线段AB=1.8cm,作满足下面要求的图形.(1)到点A和点B的距离都小于1.1cm的所有点组成的图形.(2)到点A和点B距离都大于1.1cm的所有点组成的图形.11.如图,在Rt⊙ABC中,⊙C=90°,点D在线段AB上,以AD为直径的⊙O与BC 相交于点E,与AC相交于点F,⊙B=⊙BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.12.如图,在⊙ABC中,⊙A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.(1)求证:BC为⊙O的切线;(2)若F为OA的中点,⊙O的半径为2,求BE的长.13.如图,已知AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D= 2∠CAD.(1)求∠D的大小;(2)若CD=2,求AC的长.14.如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN 于点D、C,DO平分⊙ADC.(1)求证:CD是⊙O的切线;(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式. 15.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊙AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.16.如图,在⊙ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习专题圆综合集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#中考复习专题(六)——圆综合专训题型一:圆与直线1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线;(2)如果∠A =60o ,则DE 与DF 有何数量关系请说明理由; (3)如果AB =5,BC =6,求tan ∠BAC 的值.2. 如图,在Rt △ABC 中,∠C=90o ,以AC 为直径作⊙O ,交AB 于D ,过点O 作OE ∥AB ,交BC 于E 。

(1)求证,ED 为⊙O 的切线; (2)如果⊙O 的半径为23,ED=2,延长EO 交⊙O 于F ,连接DF 、AF 求△ADF 的面积。

3.(2012,兰州)如图,Rt△ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连接DE 、OE .(1)判断DE 与⊙O 的位置关系并说明理由; (2)若tan C =52,DE =2,求AD 的长. 4.(2010兰州)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线;(2)求证:12BC AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值. 5. 如图,梯形ABCD 是等腰梯形,且AD ∥BC ,O 是腰CD 的中点,以CD 长为直径作圆,交BC 于E ,过E 作EH ⊥ABAB C EOD于H .EH= CD , (1)求证:OE ∥AB ;(2)求证:AB 是⊙O 的切线; (3)若BE=4BH ,求 的值.6.已知△ABC 内接于⊙O ,BT 与⊙O 相切于点B ,点P 在直线AB 上,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图,当点P 在线段AB 上时,求证:PA ·PB =PE ·PF ;(2)当点P 在BA 延长线上时,(1)中的结论是否仍然成立若成立,请证明;若不成立,请说明理由;(3)若AB =4 2,cos ∠EBA =13,求⊙O 的半径. 7.如图,AB 是半圆O 的直径,AB =2,射线AM 、BN 为半圆O 的切线.在AM 上取一点D ,连接BD 交半圆于点C ,连接AC .过O 点作BC 的垂线OE ,垂足为点E BN 相交于点F .过D 点作半圆O 的切线DP ,切点为P ,与BN 相交于点Q . (1)求证:△ABC ∽△OFB ;(2)当△ABD 与△BFO 的面枳相等时,求BQ 的长;(3)求证:当D 在AM 上移动时(A 点除外),点Q 始终是线段BF 的中点.8.(2013恩施州)如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧AE 的中点,过C 作CD ⊥AB 于点D ,CD 交AE 于点F ,过C 作CG ∥AE 交BA 的延长线于点G .(1)求证:CG 是⊙O 的切线.(2)求证:AF=CF .(3)若∠EAB=30°,CF=2,求GA 的长. 9.(2013荆州)如图,AB 为⊙O 的直径,弦CD 与AB 相交于E ,DE =EC ,过点B 的切线与AD 的延长线交于F ,过E 作EG ⊥BC 于G ,延长GE 交AD 于H .C AB EP O FOA C P N MD E(1)求证:AH=HD ;(2)若cos ∠C =45,DF =9,求⊙O 的半径. 10.(2013襄阳)如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径.∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:DP ∥AB ;(2)若AC=6,BC=8,求线段PD 的长.11.(2013南宁)如图,在△ABC 中,∠BAC=90°,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC 于点E ,BE 交⊙O 于点F ,连接AF ,AF 的延长线交DE 于点P . (1)求证:DE 是⊙O 的切线; (2)求tan ∠ABE 的值;(3)若OA=2,求线段AP 的长.12.(2013钦州)如图,在Rt △ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与AC 、BC 边分别交于点E 、F 、G ,连接OD ,已知BD=2,AE=3,tan ∠BOD=. (1)求⊙O 的半径OD ;(2)求证:AE 是⊙O 的切线; (3)求图中两部分阴影面积的和.13.(2013茂名)如图,在O 中,弦AB 与弦CD 相交于点G ,OA CD ⊥于点E ,过点B 的直线与CD 的延长线交于点F ,AC BF ∥. (1)若FGB FBG ∠=∠,求证:BF 是O 的切线; (2)若3tan 4F ∠=,CD a =,请用a 表示O 的半径; (3)求证:22GF GB DF GF -=⋅.14.(2013内江)如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC . (1)求证:BC 平分∠PDB ;(2)求证:BC 2=ABBD ; (3)若PA=6,PC=6,求BD 的长.O(第24题图)GFEDCBA题型二:圆与三角形1.如图,在锐角△ABC 中,AC 是最短边,以AC 中点O 为圆心,12AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是AE ︵的中点; (2)求证:∠DAO =∠B +∠BAD ;(3)若S △CEF S △OCD = 12,且AC =4,求CF 的长.2.(2011菏泽)如图,BD 为⊙O 的直径,AB=AC ,AD 交BC 于点E ,AE=2,ED=4, (1)求证:△ABE∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF=BO ,连接FA ,试判断直线FA 与⊙O 的位置关系,并说明理由.3.(2009本溪)如图所示,AB 是⊙O 直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC=∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD 的长.4. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连接AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连接BF . (1)证明:AF 平分∠BAC ; (2)证明:BF=FD ;(3)若EF=4,DE=3,求AD 的长.O AB DC EFPF OECBAG5.(2010荆门)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA=4:3,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:ACCD=PCBC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大并求这个最大面积S .6.如图,⊙O 的弦AD∥BC,过点D 的切线交BC 的延长线于点E ,AC∥DE 交BD 于点H ,DO 及延长线分别交AC 、BC 于点G 、F. (1)求证:DF 垂直平分AC ; (2)求证:FC =CE ;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.7.在ABC Rt ∆中,090=∠C ,AD 是BAC ∠的平分线,点E 在AB 边上,以AE 为直径的⊙O 经过点D.(1)判断BC 与⊙O 的位置关系,并说明理由; (2)求证:BD AD DE AB •=•;(3)设⊙O 交AC 于点F,连接EF,若tan ∠BAC=34,求BCEF 的值. 8.如图,在ABC Rt ∆中,︒=∠90C ,AD 是角平分线,AD DE ⊥交AB 于E ,ADE ∆的外接圆⊙O 与边AC 相交于点F ,过F 作AB 的垂线交AD 于P ,交⊙O 于G ,连接GE .(1)求证:BC 是⊙O 的切线; (2)若2,34tan ==∠BE G ,求⊙O 的半径; (3)在(2)的条件下,求AP 的长.CD E OFA9.(四川省广安市)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦DE ⊥AB 分别交⊙O 于点D 、E ,交AB 于点H ,交AC 于点F .P 是ED 延长线上一点,且PC =PF .(1)求证:PC 是⊙O 的切线;(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么 (3)在(2)的条件下,若OH =1,AH =2,求弦AC 的长.10.如图,AB 是⊙O 的弦,D 为OA 半径的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且CE=CB . (1)求证:BC 是⊙O 的切线; (2)连接AF ,BF ,求∠ABF 的度数; (3)如果CD=15,BE=10,sinA=513,求⊙O 的半径. 11.如图1,⊙O 是△ABC 的外接圆,AB 是直径,OD ∥AC ,且∠CBD=∠BAC ,OD 交⊙O 于点E . (1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,证明:以O 、A 、C 、E 为顶点的四边形是菱形;(3)作CF ⊥AB 于点F ,连接AD 交CF 于点G (如图2),求FGFC的值. 12.(2012湘潭)如图,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,2AC=AB ,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作直线PB 的垂线CD 交PB 于D 点. (1)如图1,求证:△PCD∽△ABC;(2)当点P 运动到什么位置时,△PCD≌△ABC 请在图2中画出△PCD 并说明理由; (3)如图3,当点P 运动到CP⊥AB 时,求∠BCD 的度数.13.(2013广东)如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.14.(13呼和浩特)如图,AD 是△ABC 的角平分线,以点C 为圆心,CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD=4:3.O AB PDFH EC(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.15.(2013玉林)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,(1)求∠DQN的度数;(2)求证:△DNQ≌△ANM;(3)猜想△DNQ的周长与AC的长度有什么关系。

相关文档
最新文档