阻尼器型号
屈曲约束支撑及阻尼器施工
屈曲约束支撑及阻尼器施工1-1屈曲约束支撑及阻尼器概述本工程拟采用阻尼器、屈曲约束支撑规格及数量详见下表,各支撑构件实际长度以深化设计放样为准。
注:1.阻尼器参数为CA=1800KN/(m/s)a,a=0.2,最大行程为90mm,最大阻尼力为1200KN。
2.屈曲约束支撑A型参数为设计承载力5410KN,屈服承载力6000KN。
3.屈曲约束支撑B型参数为设计承载力6310KN,屈服承载力7000KN。
1-2施工部署本工程工作面较分散,为保证工期,施工初期需要在多工作面同时投入人力机具,同时施工,所以工作面和流水段须按照具体进度安排进行划分,根据目前的情况,对具备施工条件的部位,按照逐层顺序安排劳动力和机具,减少交叉施工,争取逐层齐头并进。
由于该项目为新建工程,我们将配合甲方的施工进度合理安排钢结构构件、阻尼器、屈曲约束支撑的安装进度。
钢结构、阻尼器、屈曲约束支撑预埋件的安装将随着主体结构钢筋绑扎进度同步进行,阻尼器、屈曲约束支撑及连接钢构件的安装将在单层主体结构浇筑完工,模板拆除后即组织约束支撑的安装施工,以此类推确保与主体结构同时完工。
1-3主要施工机械配备1-4阻尼器、屈曲约束支撑安装1-4-1施工顺序埋板放线→埋板安装→浇筑混凝土→测量放线→节点板安装→节点板焊接→阻尼器、屈曲约束支撑安装(以下统称耗能支撑)→防锈漆涂刷→防火涂料涂刷→验收。
1-4-2工程测量根据总平面布置图确定耗能支撑及钢结构各层分布位置。
1-4-2-1根据图纸测放节点板位置线。
1-4-2-2埋板安装工作结束后,应及时在埋板上确定接点板焊接位置,将节点板平面位置用激光水平仪投测到柱上,并作好红漆标记,经工程监理验收后,作为安装节点板引测的依据。
1-4-2-3仪器应严格对中、定平,并由专职测量员测量。
定位放线应严格控制建筑物几何尺寸,定位后需经工程监理,公司质检部门复核验收后再进入下道工序。
1-4-3耗能支撑及钢结构安装前的准备工作1-4-3-1耗能支撑及钢结构运输及堆放:1、垂直运输本工程为新建工程,利用外部塔吊及升降电梯将耗能支撑和节点板、钢结构构件等大型材料垂直向上运输。
分册液压阻尼器
1. 功能、用途:液压阻尼器是一种对速度反应灵敏的减振装置。
该装置借助特殊阀门控制液压缸活塞移动以抑制管道或设备由于受周期性或冲击性荷载的影响而产生的振动。
其主要用于防止管道或设备因地震力、液力、汽力冲击和风载所造成的破坏,专用的液压阻尼器也可以用来承受安全阀排放或破管引起的持续推力。
液压阻尼器对管道热胀冷缩的缓慢移动几乎没有阻尼,而且对低幅、高频振动也不起作用。
2. 特点:与其它形式减振装置相比较,液压阻尼器具有如下特点:a)阻尼器主要参数的调整、设定均在专用的实验台上进行,可以非常方便的改变闭锁速度和闭锁后速度,满足各种需求;b)阻尼力大且动作迅速可靠,具有良好的抗过载能力;c)结构简单、紧凑,可在较小安装空间内使用;d)摩擦阻力小,低于额定荷载的1~2%e)频率1〜33Hz不会产生共振;f)由于两端使用关节轴承,允许最大摆动角为土5°;g)使用了稳定、难燃、长寿命的液压油,大大延长了产品的维护周期,简便了维修;h)抗辐照、耐腐蚀、耐高温环境,可在-20〜93 C下长期工作,在121C下连续工作1小时,短时环境温度可达171C。
3. 用途:a)用于管道或设备抗地震冲击、流体冲击和风载冲击的双向抗振阻尼器;b)用于承受安全门排汽或破管引起的持续推力的单向限位阻尼器(包括拉伸方向限位阻尼器和压缩方向限位阻尼器两种)。
4. 分类及标记方法:液压阻尼器的型号采用7个单元格表示:第一单元格:产品类代码产品类代码为7,表示动载组件,包括液压阻尼器、弹簧减振器、限位动载管夹。
第二单元格:功能件类别1 / 10功能件类别用一位数字表示:液压阻尼器:0第三单元格:用途代码用途代码用一位数字表示:双向抗振阻尼器:0 拉伸方向限位阻尼器:1 压缩方向限位阻尼器:2第四单元格:荷载代码荷载代码用一位数字表示:额定荷载17.5kN:1 额定荷载45kN:2 额定荷载80kN:3 额定荷载140kN:4 额定荷载220kN:5 额定荷载300kN:6 额定荷载480kN:7第五单元格:行程代码行程代码用一位数字表示:最大行程80mm:1 最大行程120mm:2 最大行程180mm:3 最大行程250mm:4 最大行程370mm 5 (仅适用于荷载代码2〜7的液压阻尼器)最大行程500mm 6 (仅适用于荷载代码2〜7的液压阻尼器)第六单元格:尾部型式尾部型式用一位数字表示:尾部为销头连接:0 尾部无销头:1第七单元格:销孔直径销孔直径用三位数字表示:阻尼器两端销孔实际直径,销孔直径数值小于三位时,前面加“ 0”。
脉动阻尼器和吸入稳定器计算公式
这个公式适用于计量泵、活塞泵和柱塞泵的SENTRY®脉动阻尼器和吸入稳定器的选型。
对于气动隔膜泵和蠕动泵请见背面的选型表。
这个公式允许用户输入需要的防脉冲程度,表示成以平均工作压力为基准的最大和最小压力波动。
如果用户希望得到的压力是系统压力的±5%,公式中的百分比就是一个变量,按减少脉动90%来计算所需的缓冲容积。
例如,排出压力是80psi,残留脉冲是平均压力的±5%,即总共减少90%的脉动,压力波动范围则是76~84psi。
计量泵、活塞或柱塞泵选型所需的参数变量:V =泵单个冲程的容量K =泵的类型(参数K)P =平均工作压力D =允许的压力波动百分比(相对平均数的正负)N =气体膨胀系数氮气=0.714空气=1.0V) 单个冲程容量的计算:1、升/小时÷冲程次数/小时=升/冲程2、0.7854 ×镗孔直径(mm)2 ×冲程长度(mm) =毫升/冲程K) 泵的类型(参数K)单台泵:单泵头=0.60 双泵头=0.25双台泵:单泵头=0.25 双泵头=0.15三台泵:单泵头=0.13 双泵头=0.06四台泵:单泵头=0.10 双泵头=0.06五台泵:单泵头=0.06 双泵头=0.02P) 工作压力(平均)期望的压力波动:最小压力Pmin = P – (P × D)最大压力Pmax = P + (P × D)计算公式1-(P/P max)n脉动阻尼器所需容量=————————1-(P/P max)n简单估算容量=25.2×单个冲程容量容量估算的条件是:1、泵类型为单头泵2、填充介质为空气3、脉冲消除效果为95%气动双隔膜泵和蠕动泵下表所列的是用于气动双隔膜泵(AODD)的SENTRY脉动缓冲器和吸入稳定器的选型。
气动双隔膜泵(AODD)的吸入稳定器和排出的脉动缓冲器选择相同的型号。
所列的型号能产生90%的脉动消除效果,如果需要更高的阻尼效果,应该选择下一个更大的容量的系列。
HLMZ-Q系列气囊式脉动阻尼器说明书
HLMZ-Q系列气囊式脉动阻尼器说明书一、产品概述脉动阻尼器是消除管路脉动的常用元件,是计量泵必须配备的附件。
HLMZ-Q系列气囊式脉动阻尼器能够平滑由柱塞泵、隔膜泵等容积泵引起的管路脉动及消除系统的水锤现象,它由耐腐蚀的气囊将气体与管路中的液体隔离,通过气室容积的变化平滑管路脉动,对受压液体的能量进行储存和释放。
该系列产品广泛用于化工、水处理、食品饮料、电力、造纸、纺织及流体机械等行业。
二、主要功能1.消除水锤对系统的危害。
2.减小流速波动的峰值。
3.减少压力波动对管路、弯头、接头的冲击。
4.吸收泵的脉动,为其创造良好的工作环境并改善泵的工作性能。
5.和背压阀等配合使用可以使管路的压力波动接近为零。
6.紧急或快速储存能源,降低系统能耗。
7.作为辅助能源,允许系统选用略小的泵型和使用更小的管径,降低成本。
8.在系统中作为容积补偿和压力补偿元件。
三、工作原理气囊式脉动阻尼器是一种专门为蓄集受压液体而达到平滑脉动效果的装置。
液体是不可压缩的,利用气体的可压缩性来达到储存和释放能量的目的。
可伸缩的胶囊装在阻尼器壳体中,通过专用充气阀将惰性气体充入胶囊,气体膨胀,充满阻尼器壳体的整个容积。
当管路压力大于预充气体压力时,液体进入阻尼器内,胶囊被压缩,气体容积减小。
当达到气体压力与液体压力平衡时,气体容积的变化量即为可利用做功的有效容积。
注:1.可根据客户要求把脉动阻尼器壳体做成UPVC、PP、316、1Cr18Ni9Ti、碳钢等材质。
2.气囊也可根据耐蚀情况选用不同材质的橡胶,以在一些特定环境中使用。
3.与客户端的联接螺纹或法兰可按客户的要求制作。
4.可根据客户要求做成带或不带压力表式。
八、注意事项1.安装在离泵距离近的位置平滑脉动的效果会更好。
2.竖直安装比水平安装效果更好。
3.预充气体压力并非越大越好。
4.避免与系统发生共振。
5.与背压阀同时使用时,应安在泵与背压阀间,以吸收泵与背压阀间的流量峰值,减缓背压阀的磨损速度。
阻尼器参数示意
这里我们设置的阻尼器为横桥向减震支座:1、 首先求得结构的基频Hz f 24.01=和地震荷载下支撑位置横梁整体横向变形Dy=205mm;2、 根据求得的结构基频和横向位移Dy,查表得阻尼器活塞相对阻尼器外壳的相对速度V=276mm/s3、 假定阻尼指数,阻尼指数取值范围在0.2~1.0,阻尼指数越小,耗能效果越好,减震效果越好。
这里我们取阻尼指数2.0=s ,给定义资料中阻尼指数以α表示;4、 如选择阻尼器型号为“KZ-2000SX500X”,代表活塞最大行程500mm,最大阻尼力2000kN,查得对应的阻尼常数C=650kN.s/mm5、 有效刚度输入该阻尼器的线性弹性刚度。
综合以上数据在程序中的一般连接特性值数据如下图所示——将此阻尼器安装在附件模型的塔梁连接处,计算得到的阻尼器的横向变形-横向内力时程图形如下图——1、 阻尼器形式2、 参数表1-查得阻尼器活塞滑动相对速度3、 参数表2-根据阻尼指数和阻尼器行程、阻尼力、活塞速度,得到阻尼常数。
1) 阻尼力与阻尼器变形的往复曲线称为滞回环曲线。
阻尼指数越小,曲线越饱满,说明耗能效率越高。
2) 阻尼输出力与活塞速度关系:()αv v sign C F d ⋅⋅=或αv C F ⋅=,这两个式子都称为阻尼方程,C 为阻尼常数,单位是kN/(m/s )v 为活塞的运动速度,α为阻尼指数,midas 中的取值范围在0.2~1之间。
阻尼器的种类较多,有铅压阻尼器、钢阻尼器、摩擦阻尼器以及粘滞阻尼器等。
其中,较为成熟且适用于大跨度桥梁的主要是油阻尼器,也称粘滞阻尼器。
图4.3 液压阻尼器的工作机理粘滞阻尼器的基本构造由活塞、油缸及节流孔组成,如图4.2所示。
所谓节流孔是指具有比油缸截面面积小的流通通路。
这类装置是利用活塞前后压力差使油流通过节流孔时产生压力差从而产生阻尼力。
当阻尼力与相对变形的速度成比例时是线性的,不成比例时则是非线性的,其关系可表达为:F CV ξ=其中F 为阻尼力,C 是阻尼常数,ξ是阻尼指数(其值范围在0.1-2.0,从抗震角度看,常用值一般在0.2-1.0范围内)。
防屈曲钢板墙阻尼器施工技术的研究应用
防屈曲钢板墙阻尼器施工技术的研究应用【摘要】在不改变钢板墙的力学性能前提下,通过深化设计、使得其结构布置更加灵活、易修易换,深化后的钢板墙尺寸较原设计尺寸有了明显的减小,既方便了现场运输,降低安装难度,保证了安装质量,同时缩短了施工工期;辅助安装支架自主研发并运用到现场,在结构施工时先施工梁上、下钢板预埋件,结构混凝土浇筑后再焊接连接板,最后安装阻尼器。
实践证明,此施工技术实施效果良好,质量、进度、成本各指标均达到预期效果。
【关键词】防屈曲钢板墙阻尼器、二次深化、施工工艺流程及操作要点、分析总结1.施工技术应用概况云南省第一人民医院二号住院楼项目地下4层,地上23层(不含设备层)88.70米,建筑结构类型为钢筋混凝土框架及框架剪力墙结构,建筑设计合理使用年限50年,抗震设防烈度8度,地上8层~地上18层,层高3.5m。
本工程BRW应用在8至18层,8层13套,9层至18层每层16套(X、Y方向各布置8套),共计157套。
阻尼器型号为BRW1-800、BRW2-900两种。
1.技术内容简介云南省第一人民医院二号住院楼项目采用了防屈曲钢板阻尼墙减震技术,防屈曲钢板阻尼墙是指不会发生面外屈曲的钢板剪力墙,由承受水平荷载的芯板和防止芯板发生面外屈服的约束部件组成,是针对普通钢板剪力墙易发生面外屈曲而改进的新型抗侧力耗能构件。
它的基本组成如图1,芯板由钢板组成,在水平力的作用下,产生面内弯剪变形。
面外约束部件对芯板提供侧向约束,使芯板的屈曲临界荷载大于其抗剪屈曲承载力,使钢板墙只发生剪切屈服,极大的改善了在地震作用下的耗能能力。
防屈曲钢板墙的滞回曲线如图2,此外面外约束部件还可以作为芯板的保护层。
1.二次深化设计3.1防屈曲钢板墙的具体技术参数(1)屈服承载力:800kN和900kN;(2)最大承载力:1600kN和1800kN;(3)屈服位移:均为1mm;(4)极限位移:均为10mm;(5)弹性刚度:800kN/mm和900kN/mm;(6)第二刚度:16kN/mm和18kN/mm;(7)滞回曲线:光滑,饱满,无异常,任一循环中的滞回环包络面积下降不超过15%。
LXQⅡ系列 消谐电阻器 说明书
LXQ Ⅱ系列消谐电阻器使用说明书产品用途及特点 (1)型号说明 (3)主要技术指标及使用条件 (4)安装说明 (5)注意事项 (6)检验方法 (7)选型须知 (8)图一图三图二1.产品用途及特点LXQ Ⅱ系列消谐电阻器(以下简称消谐器)是一种非线性消谐阻尼器件,它安装在6~35kV 电压互感器(以下简称PT )一次绕组Y0中性点与地之间,起限流与阻尼的作用,能够达到良好的抑制涌流和PT 铁磁谐振的目的。
(图一、图二为LXQ Ⅱ型消谐电阻器,图三为LXQ (D )Ⅱ型消谐电阻器)在6~35kV 发、变电站所在电网中性点不接地情况下,母线上的PT 一次绕组会成为中性点不接地电网对地的唯一金属通道,电网相对地电容的充、放电,必然通过PT 一次绕组,使其铁芯深度饱和。
因此在电网接地消失时,会在PT 一次绕组中出现数安培的涌流,将PT 的0.5A 熔丝熔断,消谐器能有效限制PT 一次绕组的涌流。
在母线空载或出线较少时,可能产生铁磁谐振过电压,导致相电压不稳,出现接地指示误动作、PT 高压保险丝熔断等现象。
选用LXQ Ⅱ系列消谐电阻器,将会大大降低这种情况的发生。
LXQⅡ系列消谐电阻器有如下特点:(1) LXQⅡ系列消谐电阻器结构设计从提高消谐器的热容量出发,非线性电阻体用SiC为基料经大吨位的压机压制成高密度的、圆饼状的坯体,在还原气体中,经上千度的高温烧结而成,裸露的消谐器表面结构经特殊处理,能经受日晒雨淋,可直接用于户内外。
(2) 消谐器体积小、重量轻、散热快、强度高,便于安装。
(3)用交流参数表征消谐器的电气参数。
工频0.3mA(峰值)下的参数反映电网正常运行情况下消谐器上的电压;工频3mA(峰值)下的参数反映电网单相接地情况下消谐器上的电压。
交流电流容易获得,方便用户进行复测。
(4) LXQ(D)Ⅱ型采用了分段变参数措施,提供了一个电压控制单元(放电管),使消谐器在正常工作电流段,仍保持原有的伏安特性,从而有效限制消谐器两端电压,将电压限制在弱绝缘PT的绝缘耐受等级以下,从而有效保护中性点绝缘。
哈维兰 DS,FG,DP,DV,HG 型号 液体动力振动阻尼器 使用说明书
ENGLISHInstallation, Operating and Maintenance Instructions - DS, FG, DP, DV, HG Series UnitsGeneralThese units may be used as Pump Pulsation Dampers, Pipeline Surge Absorbers, Thermal Expansion Compensators or Accumulators and all operate by having a compressible gas on one side of a separating membrane, the other side being connected to the liquid line, used correctly they are totally safe and will give many years of reliable service.SafetyAs with all hydro-pneumatic products great care should be exercised when handling and charging this type of equipment and should only be carried out by trained personnel, as they contain energy in the form of compressed gas.It is essential to read and understand the CA-7 Charging Instructions before any maintenance work is carried out.UNDER NO CIRCUMSTANCES PRE-CHARGE WITH OXYGEN DUE TO THE RISK OF EXPLOSIONIt is however perfectly acceptable for pressures below 7 bar to pre-charge using air pressure from an airline, foot or handpump, and Nitrogen from a high pressure cylinder above this. (Refer to CA-7 Charging Instructions)Unless otherwise specified in your purchase order, a small amount of silicon grease will be used to lubricate the rubber components during assembly at the factory, please check that this will not effect the process or the liquid being handled. When provided lifting eyes or lugs should be used for lifting the unit.Suitable safety devices must be provided :1. To protect the unit from overpressurisation in the event of the liquid line pressure exceeding the design pressureof the unit i.e. pressure relief valve, burst disc.2. Where a risk of fire exists that would cause the gas pre-charge pressure to rise above the design pressure theunit should be protected via the on site deluge system or a suitable safety device must be fitted to the gas side of the unit i.e. fusible plug or burst disc.3. Should the unit be fitted with a heating jacket or trace heated measures must be taken to restrict the heat inputto protect the unit from overpressurisation as in (1) (2) above.4. It is the responsibility of the user to establish a written scheme of examination for the vessel in line with localand statutory regulations for their safe operation. In drawing up the scheme of examination particular consideration should be given to condition monitoring of the membrane, internal and external surfaces of the pressure envelope that may be affected by corrosion, erosion or abrasion.5. Where equipment is installed in potentially explosive atmospheres do not allow dust layers to build up on theequipment. The process fluid temperature shall not exceed the ignition temperature of the dust.6. The maximum operating temperature of this equipment must not exceed the design temperature stamped onthe Vessel or Vessel Nameplate, this is not to be confused with the temperature rating shown on the label for compliance with the ATEX Directive.StorageUnits must be stored in such a way as to prevent mechanical damage to the shell and branch connections, if the unit is to be put into storage for a period of more than 6 months it is advisable to release its gas pre-charge, however where units have a pre-charge exceeding 320 bar g the gas pressure should be released when it is put into storage for a period more than 2 weeks.Store away from extremes of temperature. The bladders are manufactured from elastomers, which may suffer degradation at temperatures below minus 10°C or above 90°C.If the unit has been in use prior to storage then the bladder should be removed and cleaned of any process fluid.Spares Kits should be stored in a dark place in their original packaging away from:-1. Extremes of temperature2. Direct sources of heat.3. Humid conditions which may cause condensation.4. Equipment generating ozone ie. Mercury and high voltage equipment.5. It is recommended that contact between rubbers of different compositions be avoided.ENGLISHPrior To Installation•Check the correct connection has been supplied.•Ensure that the maximum working pressure and temperature to which the unit may be subjected does not exceed the design pressure and temperature stamped on the unit or nameplate. If for any reason the working pressure of the unit cannot be ascertained, then check with our works quoting the serial number on the unit.•Check that the unit is pre-charged. Units are usually supplied already pre-charged and this would normally be marked on the unit. If installation is taking place within 3-4 months of original supply then it should not need checking. If the unit has not been supplied precharged or only has a nominal ‘transit’ precharge (often 1 bar) then pre-charging should be carried out in accordance with relevant Flowguard pre-charging instructions. As a general guide pre-charge pressure should be as follows.•Pump Discharge and Suction Dampers -80% of minimum operating or minimum suction pressure at working temperature. If the precharge of any of your units is significantly different to this or if you have any other queries regarding precharge then contact our works by telephone or fax quoting the serial number.•All units are tested in our works before shipment and traces of test fluid may still be present inside the unit. Test fluid is normally water/oil emulsion. If these traces of fluid are likely to cause any problems when mixed with your process fluid then the units must first be flushed out at system pressure.MountingGenerally units should be mounted in a vertical position either way up. Most units below size 50 however, can be successfully mounted in a horizontal position. Single ported dampers should be fitted on a ‘Tee’ as close as practicable to the pump, keeping the length of the branch as short as possible, the longer the branch the less effective the damper will be.NOTE: Unless stated otherwise on the order, we have made no allowances for supporting the damper. The installer should support the damper and pipework in such a manner as to prevent excessive loadings or stresses on the vessel and branches.After Installation•Ensure that the charging valve cap is hand tight. This cap contains a seal that is the main defence against loss of gas through the charging valve core. The valve core, a non-return valve, which prevents gas loss in the short term, can leak over a long period.•Using soapy water (50% washing up liquid is ideal) check the charging valve, charging valve cap and the whole vessel end for any signs of gas leakage. This is best done with the unit at normal working pressure but it is usually effective if carried out at precharge pressure.•If a pressure gauge is fitted to the pump watch the needle closely when the pump is first switched on. As pressure builds up the flickering of the needle due to pulsations should cease or be considerably reduced as the precharge is reached. In the absence of the correct precharge checking device this is a reasonably accurate way of checking the precharge.MaintenancePulsation Dampers need very little maintenance. The gas precharge should be checked periodically to ensure that no leakage has taken place, using charging kit CA7. It should be noted that when checking the pressure, a small amount of nitrogen is released from the vessel into the charging assembly and its connecting hose. This will cause the reading to be slightly low.Any small losses in precharge pressure may also be due to temperature variations. If small losses are detected the pressure should be topped up. If, however, losses are significant or persistent the cause of the leak should be ascertained and a repair affected.Extreme caution should be exercised during disassembly when the vessel has been used on corrosive or toxic substances as, even after flushing small amounts of fluid may remain, particularly if the bladder is punctured.ENGLISHDisassembly•Prior to disassembly ensure that the unit is isolated from the process line or the process line is depressurised and drained down.•Release the gas using a suitable charging assembly (see leaflet CA7).•Remove gas bladder from gas chamber as follows:•Remove charging valve (Fig 1)•High pressure units (type HG) are fitted with a threaded retaining ring, which may be removed with a peg spanner.Other units (types FG & DS) are fitted with a split retaining ring which should be removed by tapping gas header down bore with a soft faced mallet until retaining ring is fully exposed (Fig 2). The segmented ring (Fig 5) may now be removed from the groove by sliding rings together to form a gap (Fig 6), slide one segment out of the groove with a screwdriver (Fig7) and then lift out of groove (Fig 8). For types DP the construction is the same as FG/DS except that the retaining ring is replaced by a single piece of spring material.•Fit extractor bolt with suitable mating thread into charging valve hole (Fig 3).•Header plug may now be levered out using two levers to ensure that header plug remains square to the axis of the bore. On the larger sizes it may be necessary to use spacers on end of shell to give enough clearance (Fig 4). •Bladder may now be removed from gas header plug, on units larger than size 50 the button and backing washer, closing the end of the bladder, should be removed and retained for fitment to the replacement bladder.Reassembly•It is recommended that the inner and outer seals be replaced each time the damper is stripped down.•On units above size 50 the original button and backing washer should be fitted with new seals and assembled onto the bladder.•Assemble bladder onto gas header ensuring that the inner seal is replaced in the correct position on the gas header and the outer seal is correctly positioned in its groove in the shell.•Smear the outer seal and top of the bladder with a lubricant, which is compatible with the bladder and the process liquid. Silicon Grease is used at the factory unless otherwise stated on your purchase order.•Assemble bladder and gas header into bore of shell.•High Pressure units-Tap gas header down bore with a soft-faced mallet until the retaining ring thread is fully exposed.Do not use the threaded retaining ring to force the gas header down as this can cause the threads to gall.•Low Pressure units-Tap gas header down bore with a soft-faced mallet until retaining ring groove is exposed. The segmented ring, may now be fitted into the groove.•Fit extractor tool with suitable mating thread into charging valve hole (Fig 3).•Header plug may now be levered up using two levers to ensure that the header plug remains square to the axis of the bore and the retaining ring segments are seated correctly.•Replace charging valve and recharge damper with nitrogen to the pressure specified on the label.•Replace weather protection cap if supplied.•Suction Dampers, which may work at pressure close to, or below, atmospheric pressure, may be fitted with screws and washers to prevent the gas header from being sucked down the bore. These must be refitted after maintenance. •Dampers, which may be subjected to high compression ratios, may be furnished with a cushion fluid on the gas side of the bladder. The volume of fluid to be used is normally 25% of the nominal volume. The fluid used should be compatible with the system fluid in order to avoid any problems in the event of bladder failure.ENGLISHBasic Accessories and sparesDescription Part NumberStandard 1215 stainless steel charging valve – BSP thread SK-CV-1215/B Standard 1215 stainless steel charging valve – UNF thread SK-CV-1215/U Low Pressure Adaptor, allows 1215 valves to be charged using a foot pump SK-AD-15/11 Levers Set Short (300mm) for removing gas headers SK-TL-LVR/S Lever Set Long (450mm) for removing gas headers SK-TL-LVR/LGas Headers Extractor with 1/4” BSP Thread SK-TL-GHX/BGas Headers Extractor with 1/2” UNF Thread SK-TL-GHX/URings SK.TL.PSRRetainingPeg Spanner for removal of ThreadedENGLISH1. ApprovalsPrepared By: A. Hay Title: Works Manager Date: 8 June 2007 .Reviewed By: G. Lowndes Title: Senior Design Engineer Date: 8 June 2007 .Approved By: G. Lowndes Title: Senior Design Engineer Date: 8 June 2007 .Watford Bridge, New Mills,High Peak, SK22 4HJ, England Tel: +44 (0) 1663 745976 Fax: +44 (0) 1663 742788 E-Mail:******************。
浅谈某核电项目阻尼器的选型和计算
浅谈某核电项目阻尼器的选型和计算作者:杨永刚来源:《世界家苑·学术》2017年第06期摘要:阻尼器作为支吊架中比较特殊的一类限制管道振动的装置,其在核级管道中应用数量较少,但是起到的作用却很重要,本次总结就对阻尼器的计算和设计选型进行简单的描述。
关键词:阻尼器;计算;设计选型阻尼器是一种利用阻尼特性来减缓机械振动机消耗动能的装置。
在核电支架力学计算报告中的功能符号为AM,以AMX、AMY、AMZ来表示对各个方向的限制,例如:AMX表示X 向振动、摆动阻尼器。
下面以某项目6号机组区域支架R220.038C为例来简单介绍一下阻尼器设计过程中的计算和选型部分:1跟其他支架设计初步阶段不同的是,阻尼器在管道布置阶段要根据力学试算提供的载荷值来确定阻尼器的刚度,在布置时根据现场的空间和刚度确定的阻尼器长度范围确定阻尼器的安装角度和安装形式。
在支架的力学计算报告中R220.038C支点的设计载荷为19463N,即为1946.3daN,对照图1中的阻尼器规格型号表,1946.3daN2为选定阻尼器的型号我们需要根据阻尼器的位移来进行详细的进一步计算,而计算之前先需要了解支架的各个工况的位移和计算阻尼器我们需要根据其中那些工况的位移来选择计算。
2.1冷态位移、热态位移阻尼器选型时冷态、热态位移对应的是正常工况下的位移NORMAL工况的位移是只考虑了自重的位移,即冷态位移;REACTOR NORMAL OPERATION的位移是正常运行工况下的位移,考虑了运行时的自重和热胀,即阻尼器热态位移。
2.2事故工况位移力学报告给出的支架荷载包含了正常、扰动、事故三种工况。
扰动工况(UPSET)加载了自重、热胀、SL-1运行基准地震,跨厂房时还有SL-1引起的锚固点位移、气候最大影响、气候最小影响、蠕变预应力锚固点位移、建筑物沉降引起的锚固点位移。
事故工况加载了自重、热胀、SL-2安全停堆地震,跨厂房时有SL-2引起的锚固点位移,跨安全壳时有设计基准事故产生的锚固点位移。
粘滞阻尼器选型方法-概述说明以及解释
粘滞阻尼器选型方法-概述说明以及解释1.引言1.1 概述概述部分的内容可以是对粘滞阻尼器选型方法主题进行简要介绍,并概括讨论研究的背景和意义。
概述部分的内容可以如下所示:第1.1节概述粘滞阻尼器作为一种重要的振动控制装置,在工程领域得到了广泛的应用。
它通过消耗和转化振动能量,实现了结构物的振动控制,从而提高了结构的稳定性和可靠性。
随着现代工程结构的快速发展和需求的提高,粘滞阻尼器在建筑、桥梁、航空、能源等领域中的应用越来越多。
然而,粘滞阻尼器的选型方法一直是一个复杂而具有挑战性的问题。
本文旨在探讨粘滞阻尼器的选型方法,通过系统的综述和分析,总结出一套科学合理的选型方法,以指导工程师在实际工程设计中正确、有效地选择粘滞阻尼器。
这对于提高结构的振动控制效果,降低结构的振动响应具有重要的理论和实践意义。
本文将首先介绍粘滞阻尼器的基本原理,包括其工作原理、结构特点和数学模型等。
然后,详细讨论粘滞阻尼器的选型方法,包括振动特性分析、设计参数确定、性能评价等方面。
通过对已有研究成果的综述和分析,本文将提出一套科学、实用的选型方法。
最后,文章将对选型方法进行总结,并展望未来的研究方向,以期为粘滞阻尼器的选型提供参考和借鉴。
通过本文的研究和讨论,相信能够推动粘滞阻尼器选型方法的进一步发展,为工程实践提供更好的指导和支持。
这将有助于提高结构的抗震性能、减小振动带来的危害,从而为工程领域的可持续发展做出贡献。
文章结构部分的内容可以按照以下方式进行编写:文章结构是指文章的整体组织和布局,它对于读者来说是十分重要的,可以帮助读者更好地理解和把握文章的主旨和内容。
本文按照以下结构组织:1. 引言1.1 概述在引言部分,将简要介绍粘滞阻尼器的背景和概念,以引起读者的兴趣并说明本文的重要性。
1.2 文章结构本章将详细介绍文章的结构,包括引言、正文和结论三个部分,并简要说明每个部分的内容和目的。
1.3 目的在此部分,将明确说明本文的目的,即通过选型方法帮助读者更好地选择适合其需求的粘滞阻尼器。
建筑抗震减震阻尼器尺寸规格
建筑抗震减震阻尼器尺寸规格建筑抗震减震技术在现代建筑中扮演着至关重要的角色,其中抗震减震阻尼器是一种常见的装置。
抗震减震阻尼器通过提供阻尼和吸能功能,在地震发生时减少建筑物的振动,从而保护建筑结构和提高建筑物的抗震性能。
为了确保抗震减震阻尼器的有效性,其尺寸规格需要被认真设计和控制。
1. 抗震减震阻尼器的尺寸参数1.高度:抗震减震阻尼器的高度取决于建筑物的层高和结构需求。
一般来说,抗震减震阻尼器的高度应为建筑物高度的一定比例,通常在10%~15%之间。
2.直径:抗震减震阻尼器的直径主要受到受力要求和阻尼效果的影响。
一般来说,直径越大,阻尼效果越好,但同时也会增加阻尼器的成本和制造难度。
3.质量:抗震减震阻尼器的质量直接影响其阻尼效果和稳定性。
通常情况下,抗震减震阻尼器的质量应在一定范围内,以确保其在地震时能够起到稳定和有效的作用。
2. 抗震减震阻尼器设计考虑因素1.阻尼效果:抗震减震阻尼器的尺寸需要根据建筑物的结构特点和设计要求来确定,以确保其具有良好的阻尼效果,减少地震荷载对建筑物的影响。
2.安装空间:抗震减震阻尼器的尺寸也需要考虑到安装空间的限制。
设计师在确定抗震减震阻尼器尺寸时,需要考虑到建筑物内部和外部的空间情况,以确保其能够有效安装和运行。
3.制造成本:抗震减震阻尼器的尺寸规格还需要考虑到制造成本。
设计师需要在尺寸设计上进行合理权衡,以确保在满足设计要求的前提下,尽量降低制造成本,提高抗震减震阻尼器的经济性。
3. 结语建筑抗震减震阻尼器作为一种重要的抗震减震装置,在设计和制造过程中尺寸规格的确定至关重要。
通过合理设计和控制抗震减震阻尼器的尺寸参数,可以提高建筑物的抗震性能,保护建筑结构和提高建筑物的整体安全性。
因此,在实际工程中,需要根据具体情况精心设计抗震减震阻尼器的尺寸,确保其能够有效发挥作用。
带你了解各种阻尼器知识
带你了解各种阻尼器知识一、什么是消能减震结构消能减震就是通过在建筑结构的某些部位如柱间、剪力墙、节点、联接缝、楼层空间、相邻建筑间、主附建筑间等设置阻尼器以增加结构阻尼,消耗地震下结构的振动能量,达到减小结构的振动反应,实现结构抗震和抗风的目的。
采用了消能减震技术的结构称为消能减震结构。
二、消能减震技术的适用范围消能减震技术在特定的条件下,才能发挥它最大的效用,达到经济安全的目的,消能减震技术主要用于以场合:▪高烈度(>7度)地区▪强风地区▪超高层建筑▪大型公共建筑-大跨空间结构▪大型综合体-框架支撑(少墙)结构▪震动舒适度要求:风作用和大面积楼盖三、阻尼器有哪些类型下图为史上最全阻尼器类型表:1、TMD调频质量阻尼器(tuned mass damper,TMD):由质块,弹簧与阻尼系统组成。
一般将其振动频率调整至主结构频率附近,改变结构共振特性,以达到减振作用。
调频质量阻尼器(TMD)属于结构被动调谐减振控制的装置中的一种。
被动调谐减振控制系统是由结构和附加在主结构上的子结构组成。
附加的子结构具有质量、刚度和阻尼,因而可以调节子结构的自振频率,使其尽量接近主结构的基本频率或激振频率,这样当主结构受激振而振动时,子结构就会产生一个与主结构振动方向相反的惯性力作用在主结构上,使主结构的反应衰减并受到控制。
子结构的质量可以是固体质量也可以是液体质量。
台北101大厦的那个大球就是TMD的一种2、TLD调频液体阻尼器(Tuned Liquid Damper,简称TLD)是一种被动耗能减振装置,近年来进行了大量的研究和应用。
调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。
其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。
3、TLCD调谐液柱式阻尼系统(Tuned liquid column dampe,简称TLCD)利用辅助振动系统来消除主体结构的振动。
粘滞阻尼器选型方法
粘滞阻尼器选型方法全文共四篇示例,供读者参考第一篇示例:粘滞阻尼器是一种常用的工业设备,用于控制机械系统的振动和冲击。
在现代工程中,粘滞阻尼器的选择是至关重要的,它直接影响到系统的稳定性和性能。
本文将介绍粘滞阻尼器的基本原理、选型方法和实际应用。
一、粘滞阻尼器的基本原理粘滞阻尼器是一种通过粘性阻尼来减少结构振动的装置,其基本原理是通过在结构上施加阻尼力来消散振动能量。
粘滞阻尼器的阻尼力与结构速度成正比,通常用以下方程来描述:F_damping = c*vF_damping是阻尼力,c是阻尼系数,v是结构速度。
通过调节阻尼系数,可以控制阻尼器对结构振动的影响,从而实现系统的稳定性和控制性能。
二、粘滞阻尼器的选型方法1. 系统动力学分析在选择粘滞阻尼器时,首先需要对系统进行动力学分析,了解系统的振动特性和频率分布。
通过振动模态分析、频域分析等手段,确定系统的共振频率和振动模态,为后续的选型提供依据。
2. 阻尼要求分析根据系统的工作要求和振动环境,确定阻尼器的阻尼要求。
一般来说,阻尼应该能够有效减小系统的振动幅度,同时不影响系统的稳定性和性能。
3. 阻尼器类型选择根据阻尼要求和系统特性,选择合适的粘滞阻尼器类型。
常见的粘滞阻尼器包括液体粘滞阻尼器、摩擦粘滞阻尼器、磁流变粘滞阻尼器等。
根据不同的工作环境和要求,选择最适合的类型。
4. 阻尼器参数计算根据系统的动力学特性和阻尼要求,计算阻尼器的参数。
包括阻尼系数、尺寸、材料等参数,确保阻尼器能够满足系统的振动控制需求。
5. 阻尼器安装和调试选择好合适的粘滞阻尼器后,进行安装和调试。
根据设计要求和实际情况,调整阻尼器参数,确保其正常工作并有效控制系统的振动。
三、粘滞阻尼器的实际应用粘滞阻尼器广泛应用于航天、航空、汽车、建筑等领域,用于控制结构振动和减小冲击力。
在火箭发射台、汽车悬挂系统、高层建筑中,都可以看到粘滞阻尼器的身影,有效提高了系统的稳定性和性能。
粘滞阻尼器的选型是一项复杂的工程任务,需要综合考虑系统的动力学特性、阻尼要求和实际应用环境。
脉动阻尼器和吸入稳定器计算公式
这个公式适用于计量泵、活塞泵和柱塞泵的SENTRY®脉动阻尼器和吸入稳定器的选型。
对于气动隔膜泵和蠕动泵请见背面的选型表。
这个公式允许用户输入需要的防脉冲程度,表示成以平均工作压力为基准的最大和最小压力波动。
如果用户希望得到的压力是系统压力的±5%,公式中的百分比就是一个变量,按减少脉动90%来计算所需的缓冲容积。
例如,排出压力是80psi,残留脉冲是平均压力的±5%,即总共减少90%的脉动,压力波动范围则是76~84psi。
计量泵、活塞或柱塞泵选型所需的参数变量:V =泵单个冲程的容量K =泵的类型(参数K)P =平均工作压力D =允许的压力波动百分比(相对平均数的正负)N =气体膨胀系数氮气=0.714空气=1.0V) 单个冲程容量的计算:1、升/小时÷冲程次数/小时=升/冲程2、0.7854 ×镗孔直径(mm)2 ×冲程长度(mm) =毫升/冲程K) 泵的类型(参数K)单台泵:单泵头=0.60 双泵头=0.25双台泵:单泵头=0.25 双泵头=0.15三台泵:单泵头=0.13 双泵头=0.06四台泵:单泵头=0.10 双泵头=0.06五台泵:单泵头=0.06 双泵头=0.02P) 工作压力(平均)期望的压力波动:最小压力Pmin = P – (P × D)最大压力Pmax = P + (P × D)计算公式1-(P/P max)n脉动阻尼器所需容量=————————1-(P/P max)n简单估算容量=25.2×单个冲程容量容量估算的条件是:1、泵类型为单头泵2、填充介质为空气3、脉冲消除效果为95%气动双隔膜泵和蠕动泵下表所列的是用于气动双隔膜泵(AODD)的SENTRY脉动缓冲器和吸入稳定器的选型。
气动双隔膜泵(AODD)的吸入稳定器和排出的脉动缓冲器选择相同的型号。
所列的型号能产生90%的脉动消除效果,如果需要更高的阻尼效果,应该选择下一个更大的容量的系列。
黏滞流体阻尼器的规格型号表示方法
黏滞流体阻尼器的规格型号表示方法黏滞流体阻尼器的规格型号表示方法一般是由以下几个参数组成:
1. 阻尼力矩(或阻尼力):一般用Nm或kN·m表示。
2. 阻尼器的最大旋转速度:一般用rpm或r/min表示。
3. 阻尼器的最大扭矩:一般用Nm或kN·m表示。
4. 阻尼器的最大扭矩和阻尼器的最大旋转速度的乘积:一般用W或kW表示。
因此,一个黏滞流体阻尼器的规格型号表示方法可能如下:
阻尼力矩:1000 Nm 最大旋转速度:5000 rpm 最大扭矩:2000 Nm 最大功率:5 kW
其中,Nm表示牛·米,kN·m表示千牛·米,rpm表示每分钟转数,W表示瓦,kW表示千瓦。
1/ 1。