电压电流双闭环控制
电压电流双闭环控制逆变器并联系统的建模和环流特性分析
[U ref1 ( s )( K P1 + K I1
s ) K1 + I H ( s ) ]Go1 s ) K 2 − I H ( s ) ]Go2
(4)
[U ref2 ( s)( K P2 + K I2 =
1 + ( K P1 + K I1 s ) K vf1 K1Go1
1 + ( K P2 + K I2 s ) K vf2 K 2 Go2
出的有功功率之差主要取决于输出电压的相位差 输出的无功功率之差主要取决于输出电压的幅值 差 因此 通过改变各逆变模块输出电压幅值来控 通过改变输出电压相 但文献 [5]提出了 输出 到 制各模块输出无功功率平衡 完全相反的研究结果
u vf 为反馈电压
压反馈系 数 KP K I 为 PI 调节器的比 例 和积分系 数 i ref 为电流 给 定 数 iL 为电感电流 K 为电流环 放 大 倍 Go 为输出滤波电 容 C f 与负载并联的 传递函数
Xiao Lan 1 1 2 Abstract Zhejiang University Li Rui 2 Nanjing China 210016 China 310027 Nanjing University of Aeronautics & Astronautics Hangzhou
Traditional power difference based paralleling control technology of inverters is evolved
素的电压电流双环控制逆变器单模块系统电路模 在此基础上分析了并联系统输出电压幅值 无功功率之间的关系 位与输出有功 值 应用等效输
出阻抗和求解微分方程两种方法推导出输出电压幅 相位与输出有功 无功功率之间的定量关系 并进行了仿真和实验验证
逆变器双闭环控制的限幅问题
逆变器双闭环控制的限幅问题一、概述逆变器是一种将直流电转换为交流电的电气设备,广泛应用于风电、光伏发电等领域。
在逆变器的控制过程中,双闭环控制是一种有效的控制策略,能够提高系统的稳定性和响应速度。
然而,在实际应用中,双闭环控制却面临着限幅问题,该问题不仅会影响逆变器的控制性能,还会导致系统不稳定甚至损坏设备。
解决逆变器双闭环控制的限幅问题对于提高系统的稳定性和可靠性至关重要。
二、逆变器双闭环控制原理逆变器双闭环控制是基于内外环控制的控制策略,内环控制主要是控制逆变器的输出电流或电压,外环控制则是控制输出电压或频率。
双闭环控制能够自动调节逆变器的输出电流或电压以及输出电压或频率,从而实现系统的稳定运行和优化性能。
然而,双闭环控制中存在限幅问题,即在控制过程中输出电流或电压受到一定范围的限制,超出限制范围将会出现问题。
三、逆变器双闭环控制的限幅问题分析1. 输出电流或电压限幅问题:在逆变器的双闭环控制过程中,输出电流或电压可能会受到一定范围的限制,当输出电流或电压超出限制范围时,系统容易出现过载、失稳等问题,从而影响系统的运行和性能。
2. 输出电压或频率限幅问题:双闭环控制中外环控制通常是控制输出电压或频率,当输出电压或频率超出限制范围时,系统可能会出现过压、过频等问题,进而影响逆变器和整个系统的安全运行。
四、解决逆变器双闭环控制的限幅问题的方法1. 设计合理的控制策略:针对逆变器双闭环控制中存在的限幅问题,可通过设计合理的控制策略来解决。
可以采用多级控制结构、合理的参数调节等手段,提高系统的稳定性和控制精度。
2. 优化控制算法:优化控制算法是解决逆变器双闭环控制限幅问题的重要手段,通过改进现有的控制算法或引入新的控制算法,能够更好地应对限幅问题,提高系统的控制性能。
3. 引入限幅保护机制:在逆变器的双闭环控制中引入限幅保护机制,能够及时发现并处理输出电流或电压超出限制范围的情况,有效地保护逆变器和整个系统不受损坏。
直流电动机双闭环调速系统设计
1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
电压、电流的反馈控制模式
电压、电流的反馈控制模式电压、电流的反馈控制模式现在的高频开关稳压电源主要有五种PWM反馈控制模式。
电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。
针对不同的控制模式其处理方式也不同。
下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,叙述五种PWM反馈控制模式的进展过程、基本工作原理、电路原理暗示图、波形、特点及应用要`氪,以利于挑选应用及仿真建模讨论。
(1)电压反馈控制模式电压反馈控制模式是20世纪60年月后期高频开关稳压电源刚刚开头进展而采纳的一种控制办法。
该办法与一些须要的过电流庇护电路相结合,至今仍然在工业界被广泛应用。
如图1(a)所示为Buck 降压斩波器的电压模式控制原理图。
电压反馈控制模式惟独一个电压反馈闭环,且采纳的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。
逐个脉冲的限流庇护电路必需另外附加。
电压反馈控制模式的优点如下。
①PWM三角波幅值较大,脉冲宽度调整时具有较好的抗噪声裕量。
①占空比调整不受限制。
①对于多路输出电源而言,它们之间的交互调整特性较好。
①单一反馈电压闭环的设计、调试比较简单。
①对输出负载的变化有较好的响应调整。
电压反馈控制模式的缺点如下。
①对输入电压的变化动态响应较慢。
当输入电压骤然变小或负载阻抗骤然变小时,由于主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才干传至PWM比较器将脉宽展宽。
这两个延时滞后作用是动态响应慢的主要缘由。
①补偿网络设计原来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。
①输出端的LC滤波器给控制环增强了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增强一个零点举行补偿。
①在控制磁芯饱和故障状态方面较为棘手和复杂。
Buck电路平均电流双闭环控制
3)滤波电容设计
由C
duc dt
ic 可知, 2Vo
1 C
1 Ts 22
IL ,代入数值得 C 20.83uF ,考虑到
电容的等效串联电阻, RESR 0.01 。
三 Buck 变换器控制器参数设计
3.1 电路双闭环控制结构
整个系统的双闭环控制结构图如图 3-1。
图 3-1 系统总控制框图
Bode Diagram Gm = -Inf dB (at 0 rad/sec) , Pm = 28.3 deg (at 1.01e+006 rad/sec) 150
100
Magnitude (dB)
50
0
-50 -120
Phase (deg)
-150
-180
3
4
5
6
7
10
10
10
10
10
Frequency (rad/sec)
10
10
10
10
10
Frequency (rad/sec)
图 3-11 系统总的开环传函
Phase (deg)
四 Buck 变换器 Saber 仿真 4.1 电流环电流跟踪仿真
下图为加入了电流闭环的 Buck 电路,通过给定脉冲基准电流,观察电感电 流跟踪情况。
图 4-1 电流内环跟踪仿真原理图
图 4-2 电流环仿真输出电压和电感电流波形
kv
(
s wz
2
s2( s
1)( s wz3
1)( s
1) 1)
,
wp2
wp3
零点 wz2、wz3 由 wz1 大致确定, wp2、wp3 受到 wA 限制。具体参数需要通过 Saber 仿真,观察输出电压和电感电流波形找到满足电路输出要求的参数。在这里,取 wz2 1000 rad / s, wz3 1200 rad / s , wp2 wp3 65000 rad / s ,kv 3.3106 。作出 该补偿网络的幅频与相频特性曲线图。
电压电流双闭环原理
电压电流双闭环原理
电压电流双闭环原理是指电源的输出电压和负载电流都有相关的反馈控制回路,使得输出电压和负载电流始终保持稳定的控制策略。
这种控制方法常用于高精度和精密的电源应用中。
电压电流双闭环控制系统通常包含两部分:电压回路和电流回路。
电压回路负责测量并控制电源输出电压的大小,以保持稳定的输出电压。
电流回路则负责测量电源输出电流大小,并根据流经负载的电流反馈回路来实现对输出电流的闭环控制。
电源的电压回路通常包括一个比较器和一个反馈环。
比较器将输出电压信号与参考电压信号进行比较,并输出一个正向或反向的控制信号。
反馈环将控制信号送回至电源的输出端口,对输出电压进行调整。
这样,当输出电压偏离参考电压时,反馈环会自动对电源进行调整,并将输出电压维持在参考电压附近。
电流闭环控制则通过测量和控制负载电流来实现。
电压电流双闭环控制可以大大提高电源的稳定性和可靠性。
它可以弥补传统单电压闭环或单电流闭环的不足,确保电源提供稳定可靠的输出电压和电流。
同时,电压电流双闭环原理可以提高系统的响应速度和抗干扰能力,使得电源可以在各种不同的负载要求下保持均衡和稳定。
总之,电压电流双闭环原理是一种高效且精密的电源控制方式,可以保证输出电
压和电流的稳定性和可靠性,适用于各种电源应用中。
电机控制中双闭环及PI控制的个人理解[xiu]
运动控制中多闭环反馈控制及PI 控制的个人理解(1)虫虫QQ214081712 Email:kyo2000652@ 在运动控制系统中,为了实现对电机速度或者位置的良好控制,常常采用多重闭环的结构。
比如有刷直流电机调速系统,交流永磁同步电动机伺服系统,都采用了类似的结构,除此之外,闭环系统一般采用PI 控制器或者PID 控制器。
所以设计或调试类似系统就必须熟悉多闭环系统和PI 控制器的作用机理。
本问着重从物理意义的角度谈一下这些内容,而不做较深层次的分析,因为是个人的见解,所以难免有错误或者不全面的地方,请大家指出,谢谢! 一,基本知识:谈这个问题的时,首先要明确我们对运动控制系统的要求,其次要了解电机这个被控对象的一些特征,只有明确了这两点才能理解为什么选用多闭环的结构。
/1, 对运动控制系统的要求:不同类型运动控制系统对性能的要求是不一样的,比如一些调速系统要求系统能对负载扰动有很强的抑制能力,有的伺服系统要求系统对某类信号的静态误差不能超过多少,或者能适应频繁启动制动的情况。
但是把他们综合以下,可以大致归纳为以下几点:A,静态性能指标:主要是系统的静态误差,一般要保证指令信号和实际输出之间没有误差或者误差在允许范围内,假如你输入的指令是一个阶跃信号表示为50转每分,那么电机的稳态输出就要尽量接近50转每分,当然这里说的指令信号不一定都是阶跃信号,也有可能是斜坡或者其他信号,但是一般系统多用阶跃响应作为标准。
对于负反馈闭环控制系统来说,影响静态误差的主要因素是系统开环传递函数的型别,所以开环传函中串联的积分环节越多,系统型别就越高,静态误差越小,可以参考自动控制原理中的一些内容,这里不再深究。
B,抗扰动指标:也有不少书把该指标化归到静态性能中,这里单独把这个拿出来是为了强调它的重要性。
一般我们要求,当扰动在系统内某点产生作用时,系统输出受他的影响最小,也就是输出波动的幅度最小,而且能在很快的时间内恢复到正常输出。
SPWM变频电源双闭环控制的设计和研究.wps
SPWM变频电源双闭环控制的设计和研究在目前逆变电源的控制技术中,滞环控制技术和SPWM控制技术是变频电源中比较常用的两种控制方法。
滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM控制技术开关频率固定,滤波器设计简单,易于实现控制。
当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。
对于SPWM变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。
本文详细介绍了SPWM变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。
2系统简介图1 双闭环控制的SPWM变频电源系统构成简化图图1为系统构成简化图,该系统由主电路和控制电路两部分组成。
逆变电源主电路采用以IGBT为开关器件的单相逆变电路, 采用全桥电路结构,经过LC低通滤波器,滤去高频成分,在滤波电容两端获得相应频率的光滑的正弦波。
虚线框包括的是控制电路,电压电流瞬时值双闭环反馈控制是由输出滤波电感电流和输出滤波电容电压反馈构成的。
其外环为输出电压反馈,电压调节器一般采用PI形式。
电压外环对输出电压的瞬时误差给出调节信号,该信号经PI调节后作为内环给定;电感电流反馈构成内环,电流环设计为电流跟随器。
电流内环由电感电流瞬时值与电流给定比较产生误差信号,与三角形载波比较后产生SPWM信号,通过驱动电路来控制功率器件,保证输出电压的稳定,形成典型的双环控制。
在实际应用中采用电流内环之外还设置电压外环的目的除了降低输出电压的THD外,还在于对不同负载实现给定电流幅值的自动控制。
3SPWM变频电源的线性化模型由于SPWM变频电源中存在着开关器件,因此是一个非线性系统,但因为一般情况下,SPWM变频电源的开关频率远高于调制频率,故可以利用传递函数和线性化技术,建立起SPWM变频电源的线性化模型[1],如图2所示。
三相逆变dq分解电压电流双闭环控制中的电流环
三相逆变dq分解电压电流双闭环控制中的电流环下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相逆变DQ分解电压电流双闭环控制中的电流环在现代电力系统中,三相逆变器广泛应用于交流电驱动、电力电子变换等领域。
电压外环和电流内环的双闭环控制
电压外环和电流内环的双闭环控制
电压外环和电流内环的双闭环控制是一种常见的电力电子控制策略。
在这种控制方式中,电压控制回路外环负责调节电源输出电压的稳定性和精度,而电流控制回路内环负责调节负载电流的稳定性和响应速度。
具体操作过程如下:
1. 外环电压控制:根据电源输出电压与设定值之间的误差,通过控制开关器件的通断来调节电源输出电压。
通常采用PID
控制算法,计算得到控制信号并输出给开关器件,从而实现电压的稳定控制。
2. 内环电流控制:根据负载电流与设定值之间的误差,通过控制开关器件的通断来调节负载电流。
通常也采用PID控制算法,计算得到控制信号并输出给开关器件,从而实现电流的稳定控制。
整个双闭环控制系统可以分为两个环节,外环电压控制和内环电流控制。
外环控制电压,内环控制电流,两个环节通过反馈和前馈相互调节,从而实现对电源和负载的稳定控制。
这种双闭环控制策略可以有效地提高系统的响应速度和稳定性。
外环控制可以防止电压产生较大的波动,保证负载的正常工作;内环控制可以实现对负载电流的精确控制,满足不同负载的需求。
同时,两个环节的相互独立控制还可以减小相互之间的干扰,提高整个系统的控制性能。
总的来说,电压外环和电流内环的双闭环控制是一种常用的电力电子控制策略,可以有效地实现对电源输出电压和负载电流的稳定控制。
直流电机双闭环调速--自动控制原理与系统
直流电机双闭环调速--⾃动控制原理与系统⼀、单闭环调速系统存在的问题①⽤⼀个调节器综合多种信号,各参数间相互影响,②环内的任何扰动,只有等到转速出现偏差才能进⾏调节,因⽽转速动态降落⼤。
③电流截⽌负反馈环节限制起动电流,不能充分利⽤电动机的过载能⼒获得最快的动态响应,起动时间较长。
电流截⽌负反馈单闭环直流调速系统最佳理想起动过程最佳理想起动过程:在电机最⼤电流(转矩)受限制条件下,希望充分利⽤电机的允许过载能⼒,最好是在过渡过程中始终保持电流(转矩)为允许的最⼤值。
缺点:改进思路:为了获得近似理想的过渡过程,并克服⼏个信号综合在⼀个调节器输⼊端的缺点,最好的办法就是将主要的被调量转速与辅助被调量电流分来加以控制,⽤两个调节器分别调节转速和电流,构成转速、电流双闭环调速系统。
⼆、转速、电流双闭环调速系统的组成双闭环调速系统其原理图双闭环直流调速系统双闭环直流调速系统静态结构图静态结构图系统特点(1)两个调节器,⼀环嵌套⼀环;速度环是外环,电流环是内环。
(2)两个PI调节器均设置有限幅;⼀旦PI调节器限幅(即饱和),其输出量为恒值,输⼊量的变化不再影响输出,除⾮有反极性的输⼊信号使调节器退出饱和;即饱和的调节器暂时隔断了输⼊和输出间的关系,相当于使该调节器处于断开。
⽽输出未达限幅时,调节器才起调节作⽤,使输⼊偏差电压在调节过程中趋于零,⽽在稳态时为零。
(3)电流检测采⽤三相交流电流互感器;(4)电流、转速均实现⽆静差。
由于转速与电流调节器采⽤PI调节器,所以系统处于稳态时,转速和电流均为⽆静差。
转速调节器ASR输⼊⽆偏差,实现转速⽆静差。
三、双闭环调速系统的静特性双闭环系统的静特性如图所⽰特点:1)n0-A 的特点①ASR不饱和。
②ACR不饱和。
或n0为理想空载转速。
此时转速n与负载电流⽆关,完全由给定电压所决定。
电流给定有如下关系??因ASR不饱和,,故。
n0A这段静特性从⼀直延伸到。
2)A—B段①ASR饱和。
电压电流双闭环的工作原理
电压电流双闭环的工作原理
电压电流双闭环是指在电力系统中同时建立电压和电流的闭环控制系统,通过对电压和电流进行反馈控制,实现电力系统稳定运行的目的。
电压闭环控制是通过对电压进行反馈控制来调节发电机的励磁电压或变压器的调压器的控制,以使系统电压维持在设定值范围内。
电压测量信号与设定值进行比较后经过PID控制算法形成控制量,通过调节励磁电压或调压器的控制,实现对电压的闭环控制。
电流闭环控制是通过对电流进行反馈控制,以对负载电流进行调节,使其符合设定值。
电流测量信号与设定值进行比较后经过PID控制算法形成控制量,通过调节发电机励磁电压或变压器的调压器控制,实现对电流的闭环控制。
电压电流双闭环的工作原理是通过对电压和电流的测量信号进行比较,经过PID控制算法形成控制量,通过调节励磁电压或调压器的控制,实现对电压和电流的闭环控制。
通过两个闭环控制系统的相互作用,实现对电力系统的稳定运行和负载电流的控制。
boost电路双闭环原理
boost电路双闭环原理Boost电路双闭环原理Boost电路是一种常用的直流-直流(DC-DC)转换器,能够将输入电压提升到所需的输出电压。
为了提高系统的稳定性和响应速度,往往采用双闭环控制。
本文将从浅入深介绍Boost电路双闭环原理。
Boost电路简介Boost电路是一种非隔离型DC-DC转换器,主要由一个开关管、电感、二极管和电容组成。
通过周期性的对开关管进行开关,使得电感储能并传输给输出负载,从而达到提升电压的目的。
Boost电路工作原理1.输入电压:Boost电路的输入电压为Vin。
2.感性储能:当开关管导通时,电感储存能量,电流增大。
3.关断开关:当开关管关断时,电感的磁场能量转移到电容上,电压增大。
4.输出电压:输出电压为Vout。
5.控制器:控制器根据输出电压与给定参考电压之间的差异调节开关管的工作周期和占空比,以确保输出电压稳定在设定值。
单闭环控制Boost电路单闭环控制只使用输出电压作为反馈信号来调节开关管的工作状态。
具体步骤如下:1.输出电压采样:采样输出电压并与给定参考电压进行比较。
2.反馈控制:根据比较结果调节开关管的工作周期和占空比,使得输出电压趋近给定参考电压。
3.稳定输出:通过不断采样和调节,使输出电压稳定在设定值。
4.缺点:单闭环控制对输入电压和负载变化的响应较慢,系统稳定性差。
双闭环控制Boost电路双闭环控制除了使用输出电压外,还引入了电流反馈信号来进一步提高系统稳定性和响应速度。
具体步骤如下:1.输出电压采样:采样输出电压并与给定参考电压进行比较。
2.反馈控制:根据比较结果调节开关管的工作周期和占空比,使得输出电压趋近给定参考电压。
3.电流采样:采样输出电流并与给定参考电流进行比较。
4.电流控制:根据比较结果调节开关管的工作周期和占空比,使得输出电流趋近给定参考电流。
5.稳定输出:通过同时采样和调节输出电压和电流,使系统更加稳定,响应速度更快。
双闭环控制的优势双闭环控制相比单闭环控制具有以下优势:1.响应速度更快:通过引入电流反馈,能够更快地对负载变化做出调节,提高系统的响应速度。
转速﹑电流双闭环直流调速系统
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。
《基于永磁同步电机的直驱型风力发电系统控制策略的研究》范文
《基于永磁同步电机的直驱型风力发电系统控制策略的研究》篇一一、引言随着可再生能源的持续发展,风力发电作为一种绿色、环保的能源方式,已逐渐成为全球范围内的研究热点。
在风力发电系统中,永磁同步电机(PMSM)因其高效率、高功率密度和低维护成本等优点,被广泛应用于直驱型风力发电系统。
本文旨在研究基于永磁同步电机的直驱型风力发电系统的控制策略,以提高系统的运行效率和稳定性。
二、永磁同步电机基本原理永磁同步电机(PMSM)是一种以稀土永磁材料作为转子磁场的电机。
其基本原理是利用电子控制系统控制定子电流的相位和幅值,使电机产生恒定的电磁转矩,从而实现电机的稳定运行。
PMSM具有高效率、高功率密度、低噪音等优点,适用于直驱型风力发电系统。
三、直驱型风力发电系统概述直驱型风力发电系统是指风能直接驱动永磁同步电机进行发电的系统。
该系统无需齿轮箱等传动装置,简化了系统结构,提高了系统的可靠性。
同时,由于直接利用风能驱动电机,使得系统的能量转换效率更高。
四、控制策略研究针对直驱型风力发电系统,本文研究以下控制策略:1. 最大功率点跟踪(MPPT)控制策略:为充分利用风能资源,通过控制电机的工作点在最佳工作曲线附近,实现最大功率输出。
通过实时监测电机的输出功率和风速等信息,调整电机的转速和电压等参数,实现MPPT控制。
2. 速度和电流双闭环控制策略:为保证电机的稳定运行和输出功率的稳定性,采用速度和电流双闭环控制策略。
外环为速度环,根据风速和系统要求设定目标转速;内环为电流环,根据电机定子电流的实际值与参考值之间的误差调整电流控制器,实现对电机转速的精确控制。
3. 故障诊断与保护策略:为保证系统的安全运行,设计故障诊断与保护策略。
通过实时监测电机的运行状态和系统参数,及时发现并处理系统故障。
当系统出现异常时,自动切断电源或调整系统工作状态,避免设备损坏或事故发生。
五、实验与分析为验证所提出的控制策略的有效性,本文进行了实验分析。
离网型光伏逆变器的电压与双电流闭环控制方法
离网型光伏逆变器的电压与双电流闭环控制方法仲磊1 ,莫建冬2 ,韩金刚1 ,汤天浩1(1.上海海事大学电力传动与控制研究所,上海201306;2.上海航天设备制造总厂,上海200245)摘要离网型光伏逆变器一般采用电压、电流双闭环控制结构,其电流内环可采用电感电流反馈控制或电容电流反馈控制。
电感电流内环具有抑制小信号扰动和过流保护的作用;电容电流内环具有带负载能力强,稳定性更好的优点。
但对于高性能要求的特殊场合,双闭环系统受到限制。
本文提出一种电压与双电流三闭环控制方法,构建了电压外环,电容电流中间环,电感电流内环的系统结构,并通过系统分析和仿真来验证三环系统的优越性。
关键词系统结构,控制策略,系统设计,性能分析和比较。
1 引言光伏发电系统在运行中,可能存在的扰动一般为:占空比的扰动,母线电压扰动[1],负载电流的扰动等。
为此,离网型光伏逆变器常用电压、电流双闭环控制方法[2][3]。
其电流内环又可采用电感电流反馈控制和电容电流反馈控制两种形式。
由于电感电流和电容电流在系统结构中位置不同,对于不同的扰动,其抗扰效果也不同:采用电压外环电感电流内环控制策略对母线电压扰动和占空比扰动有比较好的抑制作用,但是对负载电流扰动不能及时抑制;而采用电压外环电容电流内环控制策略对负载电流扰动能够及时抑制,但是对母线电压扰动和占空比扰动的抑制不够及时。
从上述的分析可知,双闭环系统在抗扰动方面有其局限性,特别是对于航天、载运工具等高性能要求的特殊场合,双闭环系统难以满足技术要求。
为此,本文提出一种基于电压与双电流三闭环控制方法,以提高系统的鲁棒性。
2 双闭环控制系统的抗扰性能分析2.1 电压外环电感电流内环控制策略电压外环电感电流内环控制框图[4][5](忽略开关延时),如图1 所示:图 1 电压外环电感电流内环控制策略的结构框图其中Vref 为负载电压给定;Gv(s) 为电压外环的调节器的传递函数;Gvf为电压反馈的反馈系数;G (s) 为电感电流环的调节器的传递函数;G为电感电流的反馈系数; d 表示占空比;i l i l fKPWM = E / UT,其中 E 为母线电压,UT为调制三角波的峰值。