复合材料-金属基复合材料 ppt课件

合集下载

复合材料的基体材料最新课件

复合材料的基体材料最新课件

复合材料的基体材料最新课件
31
钛在较高的温度中能保持高强度,优良的 抗氧化和抗腐蚀性能。它具有较高的强度/质 量比和模量/质量比,是一种理想的航空、宇 航应用材料。
复合材料的基体材料最新课件
32
钛合金具有比重轻、耐腐蚀、耐氧化、强度 高等特点,是一种可在450~700 ℃温度下使用的 合金,主要用于航空发动机等零件上。
复合材料的基体材料最新课件
33
用高性能碳化硅纤维、碳化钛颗粒、硼化钛 颗粒增强钛合金,可以获得更高的高温性能。
美国己成功地试制成碳化硅纤维增强钛复合 材料,用它制成的叶片和传动轴等零件可用于高 性能航空发动机。
复合材料的基体材料最新课件
34
现在已用于钛基复合材料的钛合金的成分和性能如下 钛合金的成分和性能
复合材料的基体材料最新课件
11
相反。对于非连续增强(颗粒、晶须、短纤维)金属 基复合材料,基体的强度对复合材料具有决定性的影响, 因此,要选用较高强度的合金来作为基体。
所以,要获得高性能金属基复合材料必须选用高强度 铝合金作为基体,这与连续纤维增强金属基复合材料基体 的选择完全不同。
如颗粒增强铝基复合材料一般选用高强度铝合金(如 A365,6061,7075)为基体。
复合材料的基体材料最新课件
24
(1) 铝和铝合金
铝是一种低密度、较高强度和具有耐腐蚀性能的 金属。在实际使用中,纯铝中常加入锌、铜、镁、锰 等元素形成合金,由于加入的这些元素在铝中的溶解 度极为有限,因此,这类合金通常称为沉淀硬化合金, 如A1--Cu--Mg和A1--Zn--Mg--Cu等沉淀硬化合金。
复合材料的基体材料最新课件
35
C、用于600-900 ℃的复合材料的金属基体

复合材料概述PPT课件

复合材料概述PPT课件
因此,基体开裂并不导致突然失效,材料的最终失效应变 大于基体的失效应变。
.
2、高温力学性能 室温下,复合材料的抗弯强度比基体材料高约10倍,弹性模
量提高约2倍。复合材料的抗弯强度至700℃保持不变,然 后强度随温度升高而急剧增加;但弹性模量却随着温度升 高从室温的137GPa降到850℃的80 GPa。这一变化显然与 材料中残余玻璃相随温度升高的变化相关。
其中一个组分是细丝(连续的或短切的)、薄片或颗粒 状,具有较高的强度、模量、硬度和脆性,在复合材料承受 外加载荷时是主要承载相,称为增强相或增强体。增强相或 增强体在复合材料中呈分散形式,被基体相隔离包围,因此 也称作分散相;复合材料中的另一个组分是包围增强相并相 对较软和韧的贯连材料,称为基体相。
1、室温力学性能
对陶瓷基复合材料来说,陶瓷基体的失效应变低于纤维的 失效应变,因此最初的失效往往是基体中晶体缺陷引起 的开裂。 材料的拉伸失效有两种:
第一:突然失效。如纤维强度较低,界面结合强度高,基 体较裂纹穿过纤维扩展,导致突然失效。
第二:如果纤维较强,界面结合较弱,基体裂纹沿着纤维 扩展。纤维失效前纤维/基体界面在基体的裂纹尖端和尾 部脱粘。
.
复合材料是由多相材料复合而成,共同特点主要有三个:
(1)综合发挥各种组成材料的优点,使一种材料具有多种性能, 具有天然材料所没有的性能。例如,玻璃纤维增强环氧基复合材料, 既具有类似钢材的强度,又具有塑料的介电性能和耐腐蚀性能。
(2)可按对材料性能的需要进行材料的设计和制造。如,针对方向性 材料强度的设计,针对某种介质耐腐蚀性能的设计等。 (3)可制成所需的任意形状的产品,可避免多次加工工序。例如,可 避免金属产品的铸模、切削、磨光等工序。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨 制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料 已实用化或即将实用化的领域有刀具、滑动构件、发动机制件 、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制 造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意 的使用效果。

《复合材料》PPT课件(2024)

《复合材料》PPT课件(2024)
优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
2024/1/26
03
良好的减震性能
Hale Waihona Puke 复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
16
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
2024/1/26
25
建筑领域应用
建筑结构
复合材料可用于制造建 筑结构部件,如梁、板 、柱和墙体等,具有轻 质、高强度和耐腐蚀等 优点。
2024/1/26
建筑材料
复合材料还可作为建筑 材料使用,如复合地板 、复合门窗和复合墙板 等,具有美观、环保和 耐用等特点。
装饰装修
复合材料也可用于建筑 装饰装修领域,如吊顶 、隔断和家具等,具有 多样化的外观和优良的 性能。
X射线衍射(XRD)
分析复合材料的晶体结构和相组成,确定增 强体和基体的晶体类型。
2024/1/26
透射电子显微镜(TEM)
揭示复合材料内部微观结构,如增强体的分 布、取向和缺陷等。
原子力显微镜(AFM)
研究复合材料表面纳米级形貌和力学性质。
20
宏观性能测试方法
拉伸试验
测定复合材料的拉伸强度、弹性模量 和断裂伸长率等力学性能指标。
性能变化。
疲劳试验
2024/1/26
研究复合材料在交变应力作用下的疲 劳性能,预测其疲劳寿命和疲劳强度

耐化学腐蚀试验
测试复合材料在不同化学介质中的耐 腐蚀性能,评估其耐酸、耐碱、耐盐 雾等能力。
加速老化试验

金属基复合材料(MMC)制备工艺课件

金属基复合材料(MMC)制备工艺课件

VS
详细描述
机械合金化法是一种制备金属基复合材料 的有效方法。在球磨机中,将金属粉末与 增强相(如碳纳米管、陶瓷颗粒等)混合 ,在高能球磨过程中,金属粉末与增强相 在剧烈的机械力作用下发生合金化及复合 。该方法具有制备工艺简单、成本低、可 批量生产的优点。
扩散焊接法
总结词
通过在高温和压力作用下,使金属基体与增 强相之间发生相互扩散,实现冶金结合。
用于制备高尔夫球杆、滑 雪板等轻质、高强度的运 动器材。
05 喷射沉积法制备mmc
喷射沉积法的原理
喷射沉积法是一种制备金属基复合材料 的方法,其原理是将两种或多种材料通 过高速喷射流混合,并在快速凝固条件
下形成复合材料。
在喷射沉积过程中,各种材料的颗粒或 液体在高速运动中相互碰撞、混合和分
散,形成均匀的复合材料。
为了获得均匀分布的增强相, 需要采用合适的分散剂和分散
工艺。
常用的分散剂包括表面活性剂 、偶联剂、高分子聚合物等。
分散工艺可以采用球磨、超声 波振动、搅拌等方式。
压制与烧结
压制是将混合分散后的粉末压制成一 定形状和尺寸的预制件。
烧结是使预制件在高温下致密化的过 程,通过物质迁移和组织转变来实现 。
除了上述两种方法外,还有化学沉积法、物理气相沉 积法、熔融浸渗法等方法制备金属基复合材料。
详细描述
化学沉积法是通过化学反应在金属基体上沉积增强相 ,实现复合。物理气相沉积法是利用物理过程,在金 属基体上沉积增强相,制备金属基复合材料。熔融浸 渗法是将增强相(如碳纤维、陶瓷颗粒等)与金属基 体混合,经过熔融、浸渗后冷却固化,制备出金属基 复合材料。这些方法各有特点,适用范围也不同,可 根据实际需求选择合适的制备方法。

金属及陶瓷基复合材料PPT

金属及陶瓷基复合材料PPT
影响扩散粘结过程的主要参数是温度、压力和一定温度及压力下 维持的时间,其中温度最为重要,气氛对产品质量也有影响。
热压工艺: 1)纤维与金属基体制成复合材料预制片; 2)将预制片按设计要求裁剪成所需的形状、叠层排 布(纤维方向),视对纤维体积含量的要求,在叠层时 添加基体箔; 3)将叠层故人模具内,进行加热加压,最终制得复 合材料或零件。
影响复合材料的性能的因素: 1、预制件的质量; 2、模具的设计; 3、预制件预热温度; 4、熔体温度; 5、压力;
液态金属搅拌铸造法
这种方法的基本原理是将颗粒直接加入到基体 金属熔体中,通过一定方式的搅拌使颖粒均匀 地分散在金属熔体中并与之复合,然后浇铸成 锭坯、铸件等。
搅拌铸造法主要问题:
爆炸焊接的特点是作用时间短、材料的温度低, 不必担心发生界面反应。
用爆炸焊接可以制造形状复杂的零件和大尺寸 的板材,需要时一次作业可得多块复合板。 此法主要用来制造金属层合板和金属丝增强金 属基复合材料,例如钢丝增强铝、铜丝或钨丝 增强钛、钨丝增强镍等复合材料。
爆炸焊接
液态法
液态法是制备金属基复合材料的主要方法:
可惰性气氛中进行,也可在大气中进行 也有用纤维织物与基体箔直接进行热压制造复合材料 及零件的。
扩散粘结法
热压温度:
温度控制在基体合金的固相线和液相线之间。 热压压力: 选用压力可在较大范围内变化,但过高容易损伤纤维,一 般控制在10MPa以下。压力的选择与温度有关,温度高、 压力可适当降低。
热压时间: 时间在10-20minin即可。 热压气氛: 热压可以在大气中进行
固态法1粉未冶金法2热压固结法也称扩散粘结法3热等静压法4热轧法5热挤压和热拉法6爆炸焊接法颗粒晶须合金粉未混合热压成品零件复合材料坯挤压轧制等颗粒晶须合金粉未混合烧结成品零件颗粒晶须合金粉未混合封装除氧热压法热压法和热等静压法亦称扩散粘结法是加压焊接的一种因此有时也称扩散焊接法

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

金属陶瓷基复合材料PPT课件

金属陶瓷基复合材料PPT课件

15
5.3.2 陶瓷基复合材料的制造
制备方法:
①料浆浸渍-热压烧结法;②化学气相渗透法 ③有机先驱体热解法; ④熔融渗透法 ⑤直接氧化沉淀法; ⑥反应烧结法
(2)晶须和颗粒增强陶瓷基复合材料的制备工艺
①晶须复合材料制备工艺
a.烧结法
b.先驱体转化法
c.电泳沉积法
2020/4/2
16
② 原位生长晶须 ③ 颗粒增强陶瓷基复合材料
碳化硅保护高 温下的氧化
21
5.2.4.2 性能
➢ 轻质、高强度、高硬度和耐高温; ➢ 熔点高, 高温抗氧化性能好; ➢ 化学稳定好, 耐辐射,具有较高的热辐射 率; ➢ 具有碳纤维与碳材料的突出性能; ➢ 低温下,易于氧化。
2020/4/2
22
5.2.4.3 应用
航空和航天材料;生物医学材料;坦克装 甲用耐磨材料;化工领域的抗腐蚀材料等.
耐磨零件: 碳化硅,氧化铝颗粒,晶须等
用作集电和电触头: SiC,金属丝,石墨颗粒增强铝,铜等
耐腐蚀电池极板: 石墨碳纤维增强铅合金等
2020/4/2
5
5.2.3 金属基复合材料
➢ 重要体系 Al2O3/(Al、Mg)
➢ 主要特点 ● 高的比强度、比模量; ● 好的韧性; ● 比聚合物高的使用温度。
2020/4/2
10
5.2.3.3 金属基复合材料 的应用
➢ Bf/Al 用作航天飞机部件; ➢ Cf/Al用作NASA空间望远镜的
天线支架;
➢ FP-Al2O3f/ (Al,Mg)用作汽车部 件和内燃机连杆等等
2020/4/2
11
铝合金在飞机上的应用
2020/4/2
12
5.3 陶瓷基复合材料

复合材料概论第2章--复合材料的基体材料ppt课件

复合材料概论第2章--复合材料的基体材料ppt课件
常见的陶瓷基体有:微晶玻璃、氧化物陶瓷、 非氧化物陶瓷等。
.
31
1 微晶玻璃
微晶玻璃是通过加入晶核剂等方法,经过热处理过程在玻璃中 形成晶核,再使晶核长大而形成的玻璃与晶体共存的均匀多晶 材料,又称为玻璃陶瓷。
微晶玻璃的结构与性能与陶瓷、玻璃均不同,其性质是由晶相 的矿物组成与玻璃相的化学组成以及它们的数量决定的,集中 了玻璃与陶瓷的特点。
碳化硼属于六方晶系。重量轻,硬度高(50GPa, 仅次于金刚石),耐磨性好,热稳定性好,耐酸。耐 碱性。可用作喷砂嘴,切削工具,高温热交换器、轻 型装甲陶瓷等。
B4C粉末一般用适量的碳还原氧化硼制得: B2O3+C→B4C
B4C陶瓷难以烧结,原因是烧成温度范围窄,温度 过低,烧结不致密,温度太高易导致B4C分解。
化性能,并且要施工简单,有良好的工艺性能。
.
45
2 辅助剂:
(1)交联剂(引发剂、促进剂)
交联剂:能在线型分子间起架桥作用从而使多个线型分子相互键合 交联成网络结构的物质。 促进或调节聚合物分子链间共价键或离子键形 成的物质。也称为固化剂。(为什么要用交联剂?常用的交联剂,p25)
引发剂:指一类容易受热分解成自由基的化合物,可用于引发烯类、 双烯类单体的自由基聚合和共聚合反应,也可用于不饱和聚酯的交联固 化和高分子交联反应。 (临界温度和半衰期,常用的引发剂,p26)
.
42
碳化硼和碳化钛陶瓷 —碳化钛陶瓷
碳化钛结晶为面心立方晶格(NaCl型)。晶格常数为 0.4319nm,密度为4.93~4.9 g·cm-3 ,熔点为3160~ 3250℃,1.15K时TiC呈现超导特性,TiC莫氏硬度9~ 10,弹性模量322MPa,可用作耐磨材料。 TiC粉末制 取方法:

第五章复合材料PPT课件

第五章复合材料PPT课件

增强的磨损比玻纤增强的约小10倍。碳纤维增强塑料
具有良好的自润性能,因此可用于制造无油润滑活塞
环、轴承和齿轮。如用石棉之类的材料与塑料复合,
则与上述情况相反,可得到摩擦系数大、制动效果好






[1] p为滑动轴承投影面的压强(MPa),v为滑动
线速度(m/s),各种塑料及其复合材料均有一个允
许最高承载能力的p值;与允许最高滑动线速度的v值。
金属基复合材料非金属基复合材料铝基复合材料钛基复合材料铜基复合材料塑料基复合材料橡胶基复合材料陶瓷基复合材料纤维增强塑料玻璃钢纤维增强橡胶轮胎纤维增强陶瓷纤维增强金属金属陶瓷弥散强化金属纤维增强复合材料颗粒增强复合材料叠层复合材料双层金属复合材料三层复合材料复合材料二复合材料的性能特点二复合材料的性能特点纤维增加材料的比强度及比模量远高于金属材料特别是碳纤维环氧树脂复合材纤维增强复合材料对缺口及应力集中的敏感性小纤维与基体界面能阻止疲劳裂纹的扩展改变裂纹扩展的方向
复合材料种类繁多,目前尚无统一的分类方法。

金属基复合材料

铝基复合材料

钛基复合材料

铜基复合材料


非金属基复合材料

塑料基复合材料

橡胶基复合材料
陶瓷基复合材料
第11页/共60页
纤维增强复合材料

纤维增强塑料(玻璃钢)

纤维增强橡胶(轮胎)

纤维增强陶瓷

纤维增强金属

颗粒增强复合材料

态 分
纤维增强复合材料对缺口及应力集中的敏感性小,纤维与基体界面能阻止 疲劳裂纹的扩展,改变裂纹扩展的方向。

金属基复合材料MMC课件

金属基复合材料MMC课件

高性能结构件
金属基复合材料具有高强度、高刚性和轻量化的特点,适用于制 造航空航天领域的高性能结构件。
耐高温性能
金属基复合材料能够承受高温环境,适用于制造飞机和火箭的燃烧 室和喷嘴等部件。
减振降噪性能
金属基复合材料的减振降噪性能较好,可用于制造飞机和火箭的起 落架和机身等部件。
电子封装材料的应用
散热性能
新材料与新技术的研发
1 2 3
高性能增强相的研发 利用新材料如碳纳米管、陶瓷纳米颗粒等,提高 金属基复合材料的力学性能和热稳定性。
金属基复合材料的制备技术 研究新的制备方法,如原位合成、喷射沉积、激 光熔覆等,以实现高效、低成本的生产。
多功能金属基复合材料 开发具有导电、导热、磁性等功能的新型金属基 复合材料,满足不同领域的应用需求。
分类
根据增强体的不同,金属基复合材料可分为连续增强金属基复合材料和非连续 增强金属基复合材料。
金属基复合材料的特性
高比强度和比模量
可设计性强
金属基复合材料具有较高的比强度和 比模量,能够满足轻量化设计的需求。
通过选择不同的增强体和金属基体, 可以定制金属基复合材料的性能,满 足各种应用需求。
良好的热稳定性和耐磨性
车、高尔夫球杆等。
医疗器械
用于制造医疗器械,如 手术刀、牙科工具等, 提高医疗器械的耐用性
和可靠性。
02
金属基复合材料的制备方法
粉末冶金法
粉末冶金法是一种常用的制备金属基复合材料的方法,通过将增强体(如碳纤维、陶瓷颗粒 等)与金属粉末混合,经过压制、烧结和热等静压等工序,制备出具有优异性能的金属基复 合材料。
界面设计与优化
01
02
03
界面类型

金属基复合材料的制备工艺原理PPT课件

金属基复合材料的制备工艺原理PPT课件

6
第6页/共104页
制造技术应具备的条件
(1) 使增强材料均匀地分布金属基体中,满足复合材料结构和强度要求; (2) 能使复合材料界面效应、混杂效应或复合效应充分发挥; (3) 能够充分发挥增强材料对基休金属的增强、增韧效果; (4) 设备投资少,工艺简单易行,可操作性强;便于实现批量或规模生产; (5) 能制造出接近最终产品的形状,尺寸和结构,减少或避免后加工工序.
积法以及电解法。 不锈钢真空球磨罐
QM-星行球磨机
第13页/共104页
2、压制成坯块
成型的目的是 制得一定形状和 尺寸的压坯,并 使其具有一定的 密度和强度。成 型的方法基本上 分为加压成型和 无压成型。加压 成型中应用最多 的是模压成型。
第14页/共104页
液压机原理图
15
第15页/共104页
第26页/共104页
热等静压法
• 热等静压(Hot Isostatic Pressing,简称HIP)工艺是将 制品放置到密闭的容器中,向制品施加各向同等的压力, 同时施以高温,在高温高压的作用下,制品得以烧结和致密 化。
• 也是热压法的一种。采用惰性气体加压,工件在各个方向 上受到均匀压力的作用。
第34页/共104页
在热等静压机中处理的人工 关节 , 用于消除在铸造过程中 形成的内部微空和缺陷 .
第35页/共104页
三种热等静压工艺
• 先升压后升温:其特点是无需将工作压力开到最高压力, 随着温度升高,气体膨胀,压力不断升高,直至达到需 要压力,适用于金属包套的工艺制备;
• 先升温后升压:适用于玻璃包套制备复合材料; • 同时升温升压:适合于低压成形、装入量大、保温时间
温度,时间,气氛.
第16页/共104页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(b)损伤后纤维形貌
碳纤维与铝基体发生严重反应后纤维的损伤
Cf/Al复合材料中Cf与Al基体发生界面反应,生成Al4C3。
Cf/Al的界面反应及反应产物Al4C3
❖ 准I类界面
出现准Ⅰ类界面有两种情况:
◆ 属Ⅰ类界面中的增强材料与基体, 从热力学分析会可能发生界面反应, 但当采用固态法制备时,形成Ⅰ类界 面;而当采用液态法制备时就可能形 成第Ⅲ类界面;
界面产生互溶后,受温度和时间的影响,界面会出现 不稳定。
例如:Wf/Ni中,采用扩散结合制备时,界面互溶并不严 重,但随着使用温度的提高和使用时间的增长,如在 1100℃下经过50h,Wf的直径仅为原来50%,这样就严重 影响了Wf/Ni复合材料的使用性能和可靠性。
界面反应
界面反应是影响具有第Ⅲ类界面的复合材料界面稳 定性的化学因素。增强材料与基体发生界面反应时,当 形成大量脆性化合物,削弱界面的作用,界面在应力作 用下发生,引起增强材料的断裂,从而影响复合材料性 能的稳定性。界面反应的发生与增强材料和基体的性质 有关,与反应的温度、时间有关。
1、金属基复合材料的使用要求
1、金属基复合材料的使用要求
航天飞机主货舱 支柱
50 vol.% 硼纤维/6061
哈勃太空望远镜 天线波导桅杆
P100碳纤维/6061铝合金
1、金属基复合材料的使用要求
航天、航空领域的发动机构件
要求复合材料不仅有高比强度和比模量,还要具有优良的 耐高温性能,能在高温、氧化性气氛中正常工作。
◆ 增强材料的表面未处理,存在有 吸附的氧,在制备时也会与基体产生 界面反应。
如SiCf/Al,Bf/Al属于此类。 为此把这类界面称之为准Ⅰ类界面。
②界面的稳定性
长时间在使用高温度下使用 影响界面稳定性的因素主要有物理因素和化学因素,即: ❖ 界面溶解与析出 ❖ 界面反应
界面溶解与析出
界面溶解与析出是影响MMC第Ⅱ类界面稳定性的主要 物理因素。典型例子是Cf/Ni和Wf/Ni复合材料。
主要考察:
❖ 界面类型与界面结合 ❖ 界面稳定性 ❖ 界面浸润 ❖ 界面反应控制
①界面类型
❖ 第Ⅰ类界面
基体与增强材料界面 既不相互反应,也不互溶。 微观上界面是平整或光滑, 而且只有分子层厚度。界 面两侧分别为基体和增强 材料,不含其它物质。
如SiCw/Al的界面。
❖ 第II类界面
增强材料和基体之 间相互扩散-渗透, 相互溶解而形成的 界面。这类界面往 往在增强材料(如 纤维)周围,形成 环状,界面呈犬牙 交错的溶解扩散层。
金属复合材料界面反应分为: ❖ 连续界面反应; ❖ 交换式界面反应; ❖ 暂稳态界面变化。
❖ 连续界面反应
MMC在制备过程中,或在热处理过程,也可在高温使 用过程,增强材料与基体的界面反应连续进行。连续界面 反应可以发生在基体或增强材料一侧,也可以在基体和增 强材料界面上同时进行。
影响MMC连续界面反应的因素主要有温度、时间。反 应的量会随温度的变化和时间的长短发生变化。这类界面 反应的典型如Cf/Ni、Bf/Ti、Cf/Al以及SiCf/Ti等。
例2:Cf/Al连续界面反应
Cf/Al的连续界面反应,根据微观观察界面反应产物出 现的位置,以及Cf表面变化情况,说明界面反应是发生在 Al基体一侧。而且与温度有明显的关系。
■■降降低低整整车车油油耗耗的的标标准准途途径径
提高性能10% 发动机效率 汽车重量 滚动阻力 动力传动效率
对整车油耗的影响 10% 5% 2-3% 1-2%
奥迪A6七代车型重量的变化历程
1790Kg 1545Kg
1990Kg
2050Kg
1160Kg
1230Kg
1980Kg
2012
因对汽车安全性、功能性要求的增加,整车重量逐渐增加。但进 入21世纪后,越来越严格的环保和排放法规要求,目前整车重量 呈明显现下降的趋势。
批量生产。
铝合金 + 陶瓷颗粒、短纤维、 如碳化硅
大众汽车公司Lupo汽车 后制动鼓
20 vol.% SiC/A359铝合金
1、金属基复合材料的使用要求
■汽车结构件
轻量化与油耗、性能的关系(逸动实际试验结果) : 1.实际油耗:减重100kg,油耗降低约0.4L/100km; 2.加速性能:减重100kg,0-100km/h加速性提升8-10%; 3.制动性能:减重100kg,制动距离缩短2~7m。
例1:Bf/Ti-6Al-4V连续界面反应
Bf/Ti-6Al-4V的连续界面反应,一般是发生在Bf一侧。 Bf表面B原子通过界面层向Ti基体扩散(在Bf内部留下空 洞),并与Ti反应生成TiB2界面反应产物。在一定温度和 时间条件下,界面反应是连续进行的。
Bf/Ti-6Al-4V,经850℃100h后界面反应
钛合金、镍
合金以及金

碳化硅、钨丝
属间化合物
1、金属基复合材料的使用要求
镍基变形高温合金广泛地用来制造航空喷气发动机、各种工业 燃气轮机的热端部件,如工作叶片,导向叶片、涡轮盘和燃烧 室等。
燃气轮机涡轮零件
高温合金 汽车Leabharlann 压器喷嘴环叶片1、金属基复合材料的使用要求
汽车发动机、刹车片:
要求其零件耐热、耐磨、导 热、一定的高温强度等,同 时又要求成本低廉,适合于
Cf/Ni复合材料界面
❖ 第III类界面
基体与增强材料的界面发生界面反应,界面存在有微米 和亚微米级的界面反应产物。最典型是Bf/Ti,Cf/Al复合材 料。在高温下 Bf/Ti在界面形成TiB2界面反应物层。
Bf/Ti-6Al-4V中TiB2反应层 (850℃,100h)
❖ 第III类界面
(a)原始纤维形貌
1、金属基复合材料的使用要求
❖ 电子工业:集成电路基板和元件需要高导热、低 膨胀、具有一定耐热性的金属基复合材料。
基体:高导热率的银、铜、铝等金属为基体 增强体:高导热性、低热膨胀的超高模量石墨纤维、金刚石纤维
2、金属基复合材料的界面
金属基复合材料中金属基体和增强体之间的界面对复合材 料的性能起着决定性的作用。
1、金属基复合材料的使用要求 2、金属基复合材料的界面 3、金属基复合材料的制备
1、金属基复合材料的使用要求
航天、航空领域的结构件
高比强度和比模量以及尺寸稳定性是最重要的性能要求。
密度小的轻金 属合金—镁合 金和铝合金作 为基体
高强度、高模量的
﹢ 石墨纤维、硼纤维
等组成石墨/镁、石 墨/铝、硼/铝
相关文档
最新文档