2018年四川省成都市中考数学试题含答案解析
2018年中考数学试题(含答案)
一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 2 14.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
历年四川省成都市中考数学试卷(A卷)(含答案)
2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
2年中考1年模拟2018年中考数学第四篇图形的性质专题17三角形及其性质(含解析)
第四篇图形的性质专题17 三角形及其性质☞解读考点算与证明☞2年中考【2017年题组】一、选择题1.(2017内蒙古包头市)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【答案】A.【解析】若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.2.(2017广西河池市)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【答案】A.【解析】试题分析:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.考点:1.三角形的面积;2.三角形的角平分线、中线和高;3.应用题.3.(2017贵州省遵义市)如图,△ABC的面积是12,点D,E,F,G 分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4。
5B.5C.5.5D.6【答案】A.【解析】考点:1.三角形中位线定理;2.三角形的面积.4.(2017南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【答案】B.【解析】试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B.考点:三角形内角和定理.5.(2017南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE ∥BC D.∠DAE=∠EAC【答案】D.【解析】考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.6.(2017广西贵港市)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.1【答案】B.【解析】试题分析:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,故选B.考点:1.列表法与树状图法;2.三角形三边关系;3.概率及其应用.7.(2017江苏省扬州市)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【答案】C.【解析】试题分析:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.考点:三角形三边关系.8.(2017四川省雅安市)一个等腰三角形的边长是6,腰长是一元二次方程27120x x-+=的一根,则此三角形的周长是()A.12B.13C.14D.12或14【答案】C.【解析】考点:1.解一元二次方程﹣因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.9.(2017四川省巴中市)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【答案】D.【解析】试题分析:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D.考点:1.三角形内角和定理;2.实数.10.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C.【解析】考点:1.三角形中位线定理;2.规律型:图形的变化类.二、填空题11.(2017四川省广安市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.【答案】6.【解析】试题分析:∵D、E分别为AC、AB的中点,∴AD=12AC=4,DE=12BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=12×AD×DE=6,故答案为:6.考点:三角形中位线定理.12.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM.当AM⊥BM时,则BC的长为.【答案】8.【解析】考点:1.三角形中位线定理;2.等腰三角形的判定与性质.13.(2017贵州省黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE 的度数是.【答案】40°.【解析】AD,试题分析:∵P是对角线BD的中点,E是AB的中点,∴EP=12BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,同理,FP=12故答案为:40°.考点:三角形中位线定理.14.(2017黑龙江省绥化市)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n .【解析】考点:1.三角形中位线定理;2.等腰直角三角形;3.综合题;4.规律型;5.操作型.15.(2017四川省成都市)在△ABC 中,∠A :∠B :∠C =2:3:4,则∠A 的度数为 . 【答案】40°. 【解析】试题分析:∵∠A :∠B :∠C =2:3:4,∴设∠A =2x ,∠B =3x ,∠C =4x ,∵∠A +∠B +∠C =180°,∴2x +3x +4x =180°,解得:x =20°,∴∠A 的度数为:40°.故答案为:40°. 考点:三角形内角和定理.16.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 . 【答案】1<m <4. 【解析】试题分析:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD 是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC 中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.考点:1.全等三角形的判定与性质;2.三角形三边关系.17.(2017贵州省黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.【答案】15.【解析】考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.18.(2017四川省巴中市)若a、b、c为三角形的三边,且a、b满2--=,第三边c为奇数,则c= .9(2)0a b【答案】9.【解析】试题分析:∵a、b满足2-+-=,∴a=9,b=2,∵a、b、c为三a b9(2)0角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为:9.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.19.(2017四川省泸州市)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【答案】45.【解析】试题分析:连接AO并延长,交BC于H,由勾股定理得,DE=22+OE OD =25,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=45,OBC=25,∵O 是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=12是△ABC的重心,∴AO=2OH=45,故答案为:45.考点:1.三角形的重心;2.勾股定理.20.(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1.交于点F1,得到四边形CD1F1E1,其面积S1=13如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=1;6如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1;10…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= ..【答案】2++n n(1)(2)【解析】考点:1.规律型:图形的变化类;2.三角形的面积;3.规律型;4.综合题.三、解答题21.(2017内蒙古呼和浩特市)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:B D=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案】(1)证明见解析;(2)四边形DEMN是正方形.【解析】试题解析:(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD=12AC,AE=12AB,∴AD=AE,在△ABD和△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=1BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,2BC,∴ED∥MN,ED=MN, MN是△OBC的中位线,∴MN∥BC,MN=12∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,∵BE=CD,CE=BD,BC=CB,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的BC,∴BD⊥CE,∴四边距离与底边长相等,∴O到BC的距离=12形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.【2016年题组】一、选择题1.(2016贵州省铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B. 2 C.4D.8【答案】B.【解析】考点:1.角平分线的性质;2.含30度角的直角三角形.2.(2016贵州省毕节市)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【答案】D.【解析】试题分析:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选D.考点:1.线段垂直平分线的性质;2.角平分线的性质.3.(2016广西河池市)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4 D.3,4,5【答案】A.【解析】考点:三角形三边关系.4.(2016广西百色市)三角形的内角和等于()A.90°B.180°C.300°D.360°【答案】B.【解析】试题分析:因为三角形的内角和为180度.所以B正确.故选B.考点:三角形内角和定理.5.(2016广西贵港市)在△ABC中,若∠A=95°,∠B=40°,则∠C 的度数为()A.35°B.40°C.45°D.50°【答案】C.【解析】试题分析:∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.6.(2016江苏省盐城市)若a、b、c为△ABC的三边长,且满足-+-=,则c的值可以为()420a bA.5B.6C.7D.8【答案】A.【解析】试题分析:∵420-+-=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2a b<c<4+2,2<c<6,5符合条件;故选A.考点:1.三角形三边关系;2.非负数的性质:绝对值;3.非负数的性质:算术平方根.7.(2016湖南省岳阳市)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【答案】D.【解析】考点:三角形三边关系.8.(2016贵州省安顺市)已知实数x,y满足480--=,则以x,yx y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B.【解析】试题分析:根据题意得:4080x y -=⎧⎨-=⎩,解得:48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.9.(2016湖北省荆门市)已知3是关于x 的方程2(1)20xm x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11【答案】D .【解析】考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.10.(2016湖北省襄阳市)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°【答案】C.【解析】试题分析:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.考点:1.平行线的性质;2.角平分线的定义;3.三角形的外角性质.11.(2016湖北省鄂州市)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【答案】B.【解析】考点:1.平行线的性质;2.三角形内角和定理.12.(2016湖北省黄石市)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【答案】B.【解析】试题分析:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选B.考点:1.三角形的外角性质;2.线段垂直平分线的性质.13.(2016湖南省湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.14.(2016青海省)已知等腰三角形的腰和底的长分别是一元二次方程2680x x-+=的根,则该三角形的周长为()A.8B.10C.8或10D.12【答案】B.【解析】考点:1.解一元二次方程—因式分解法;2.三角形三边关系;3.等腰三角形的性质.15.(2016宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F 分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD 的面积为()A.22B2C.62D.82【答案】A.【解析】试题分析:∵E,F分别是AD,CD边上的中点,EF=2,∴AC=2EF=22,又∵BD=2,∴菱形ABCD的面积S=12×AC×BD=12×22×2=22A.考点:1.菱形的性质;2.三角形中位线定理.16.(2016广东省广州市)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【答案】D.【解析】考点:1.线段垂直平分线的性质;2.勾股定理;3.勾股定理的逆定理;4.三角形中位线定理.17.(2016新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=12BC B.AD AEAB ACC.△ADE∽△ABCD.S△ADE:S△ABC=1:2【答案】D.【解析】试题分析:∵D 、E 分别是AB .AC 的中点,∴DE ∥BC ,DE =12BC ,∴12AD AE DE ABACBC===,△ADE ∽△ABC ,∴2ΔADE ΔABC 1:()4AD SS AB ==,∴A ,B ,C 正确,D 错误;故选D .考点:1.相似三角形的判定与性质;2.三角形中位线定理. 18.(2016广西梧州市)在△ABC 中,AB =3,BC =4,AC =2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11 【答案】B . 【解析】考点:三角形中位线定理.19.(2016陕西省)如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△A BC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B.【解析】试题分析:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22+=10,∵DE是△ABC的中位线,86+=22AB BC∴DF∥BM,DE=1BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,2AC=5,∴DF=DE+EF=3+5=8.故∴∠EFC=∠ECF,∴EC=EF=12选B.考点:1.三角形中位线定理;2.等腰三角形的判定与性质;3.勾股定理.20.(2016江苏省苏州市)如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.3【答案】C.【解析】考点:三角形的面积.21.(2016湖北省咸宁市)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC=;②ΔDOEΔCOB12SS =;③AD OE AB OB=;④ΔODE ΔADC 13S S = 其中正确的个数有( )A .1个B .2个C .3个D .4个 【答案】B . 【解析】故正确的是①③.故选B.考点:1.相似三角形的判定与性质;2.三角形的重心.22.(2016湖南省永州市)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短"的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】考点:1.圆的认识;2.线段的性质:两点之间线段最短;3.垂线段最短;4.三角形的稳定性.23.(2016内蒙古包头市)如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A3B.33C.32D.22【答案】A.【解析】试题分析:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO 平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°3A.考点:1.角平分线的性质;2.特殊角的三角函数值.24.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再MN的长为半径画弧,两弧交于点P,分别以点M,N为圆心,大于12作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【答案】B.【解析】考点:角平分线的性质.25.(2016福建省厦门市)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE【答案】B.【解析】试题分析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∠F,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.考点:1.三角形中位线定理;2.全等三角形的判定与性质。
2018年四川省中考数学真题汇编解析:数与式、方程不等式
2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。
2018年四川省中考数学试卷及详细答案解析
甲78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
③若再次用计算机模拟此实验,则当投掷次数为1 000时,“钉尖向上”的频率一定是0.620.
其中合理的是
A.①B.②C.①②D.①③
二、填空题(本题共18分,每小题3分)
11.写出一个比3大且比4小的无理数.
12.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.
整理、描述数据按如下分数段整理、描述这两组样本数据:
(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)
分析数据两组样本数据的平均数、中位数、众数如下表所示:
13.如图,在△ABC中,M,N分别是AC,BC的中点,若 ,则 .
14.如图,AB为 的直径,C,D为 上的点, 。若∠CAB=40°,则∠CAD=°.
15.如图,在平面直角坐标系xOy中,△AOB可以看成是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.
D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多
9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中,
跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的
中考数学真题知识分类练习试卷:有理数(含答案)-word文档
有理数一、单选题1.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C2.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D8.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣【答案】A14.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B 两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B17.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。
初2018届成都市高新区中考数学九年级一诊数学试卷(含答案)
初2018届成都市高新区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列各数与﹣8 相等的是()A.|﹣8| B.﹣|﹣8| C.﹣42D.﹣(﹣8)2.2017年成都市经济呈现活力增强、稳中向好的发展态势.截止2017年12月,全市实现地区生产总值约14000亿元,将14000亿元用科学记数法表示是()A.14×1011元B.1.4×1011元C.1.4×1012元D.1.4×1013元3.如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.4.下列计算正确的是()A.a3•a2=a6B.a3﹣a2=a C.(﹣a3)2=a6D.a6÷a2=a35.在下列四个标志中,既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.1 9.1 9.1 9.1方差7.6 8.6 9.6 9.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁8.如图,四边形 ABCD 和A′B′C′D′是以点 O 为位似中心的位似图形,若 OA′:A′A=2:1,四边形A′B′C′D′的面积为12cm2,则四边形 ABCD 的面积为()A.24cm2B.27cm2C.36cm2D.54cm29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a<0 B.c<0 C.a+b+c<0 D.b2﹣4ac<010.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.在二次根式中,x的取值范围是.12.用反证法证明“若a>b>0,则a2>b2”,应假设.13.将抛物线y=x2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)解不等式组:16.(6分)关于x的方程x2﹣ax+a+1=0有两个相等的实数根,求的值.17.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.18.(8分)如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>的x的取值范围;(3)若点P在x轴上,且S△ACP=,求点P的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,作CD⊥AB,垂足为D,E为弧BC的中点,连接AE、BE,AE交CD于点F.(1)求证:∠AEC=90°﹣2∠BAE;(2)过点E作⊙O的切线,交DC的延长线于G,求证:EG=FG;(3)在(2)的条件下,若BE=4,CF=6,求⊙O的半径.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.22.有9张卡片,分别写有0﹣8这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为m,能使关于x的分式方程的解为正数的概率为.23.如图,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC的长为2m,现准备打掉部分墙体,使其变成以AC为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段BC)为.24.如图,点A是反比例函数y=的图象上位于第一象限的点,点B在x轴的正半轴上,过点B作BC⊥x 轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=.25.如图,在△ABC中,∠C=60°,点D、E分别为边BC、AC上的点,连接DE,过点E作EF∥BC交AB于F,若BC=CE,CD=6,AE=8,∠EDB=2∠A,则BC=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.27.(10分)【问题背景】在平行四边形ABCD中,∠BAD=120°,AD=nAB,现将一块含60°的直角三角板(如图)放置在平行四边形ABCD所在平面内旋转,其60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).【发现】如图1,当n=1时,易证得AE+AF=AC;【类比】如图2,过点C作CH⊥AD于点H,(1)当n=2时,求证:AE=2FH;(2)当n=3时,试探究AE+3AF与AC之间的等量关系式;【延伸】将60°角的顶点移动到平行四边形ABCD对角线AC上的任意点Q,其余条件均不变,试探究:AE、AF、AQ 之间的等量关系式(请直接写出结论).28.(12分)如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A 和第一象限内一点B,该抛物线顶点H的纵坐标为5.(1)求抛物线的解析式;(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,ⅰ)求点P的坐标;ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.参考答案与试题解析1.【解答】解:A.|﹣8|=8,与﹣8不相等,故此选项不符合题意;B.﹣|﹣8|=﹣8,与﹣8相等,故此选项符合题意;C.﹣42=﹣16,与﹣8不相等,故此选项不符合题意;D.﹣(﹣8)=8,与﹣8不相等,故此选项不符合题意;故选:B.2.【解答】解:14000亿元用科学记数法表示是1.4×1012元,故选:C.3.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.4.【解答】解:A、a3•a2=a5,故此选项错误;B、a3﹣a2,无法计算,故此选项错误;C、(﹣a3)2=a6,正确;D、a6÷a2=a4,故此选项错误;故选:C.5.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.6.【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.8.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA′:A′A=2:1,∴OA′:OA=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:9:4,∵四边形A′B′C′D′的面积为12cm2,∴四边形 ABCD 的面积为:27cm2.故选:B.9.【解答】解:∵抛物线开口向上,∴a>0,故A错误;∵抛物线与y轴交于负半轴,∴c<0,故B正确;由图象可得:当x=1时,y>0,故C错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故D错误;故选:B.10.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:由题意可知:4﹣2x≥0,∴x≤2故答案为:x≤212.【解答】解:用反证法证明“若a>b>0,则a2>b2”的第一步是假设a2≤b2,故答案为:a2≤b2,13.【解答】解:y=x2+2x+3=(x+1)2+2,此抛物线的顶点坐标为(﹣1,2),把点(﹣1,2)向下平移3个单位长度,再向左平移2个单位长度后所得对应点的坐标为(﹣3,﹣1),所以平移后得到的抛物线的解析式为y=(x+3)2﹣1.故答案为:y=(x+3)2﹣1.14.【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2+2×+﹣1﹣1=2++﹣1﹣1=2;(2)由不等式①得x≤8.由不等式②得x>﹣1;∴不等式组的解集为﹣1<x≤8.16.【解答】解:=×=×=﹣,∵关于x的方程x2﹣ax+a+1=0有两个相等的实数根,∴△=0,即(﹣a)2﹣4(a+1)=0,∴a2﹣4a=4,∴原式=﹣=﹣.17.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.18.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CHcot68°=0.4x,由AB=49知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BEsin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.19.【解答】解:(1)将A(m,3)代入反比例解析式得:m=2,则A(2,3),将B(﹣6,n)代入反比例解析式得:n=﹣1,则B(﹣6,﹣1),将A与B的坐标代入y=kx+b得:,解得:,则一次函数解析式为y=x+2;(2)由图象得:x+2>的x的取值范围是:﹣6<x<0或x>2;(3)∵y=x+2中,y=0时,x+2=0,解得x=﹣4,则C(﹣4,0),OC=4∴△BOC的面积=×4×1=2,∴S△ACP==×2=3.∵S△ACP=CP×3=CP,∴CP=3,∴CP=2,∵C(﹣4,0),∴点P的坐标为(﹣2,0)或(﹣6,0).20.【解答】证明:(1)连接AC、BC,∴∠CEA=∠CBA,∵E为的中点,∴=,∴∠CAE=∠BAE,∴∠CAB=2∠BAE,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∴2∠BAE+∠AEC=90°,∴∠AEC=90°﹣2∠BAE;(2)连接EO,∵OA=OE,∴∠OEA=∠OAE,设∠OEA=∠OAE=α,∵EG为切线,∴OE⊥EG,∴∠OEG=90°,∴∠GEA=90°﹣∠AEO=90°﹣α,∵DG⊥AB,∴∠FDA=90°,∴∠FAD+∠AFD=90°,∴∠AFD=90°﹣α=∠GFE,∴∠GFE=∠GEF=90°﹣α,∴GE=GF;(3)如图3,连接CE、CB、OE、OC,CB与AE交于点N,CB与OE交于点M,∵E为的中点,∴∠COM=∠BOM,∵OC=OB,∴OM⊥BC,∴∠OMB=90°,由(2)得∠GEM=90°,∴CM∥EG,∴∠GEF=∠CNF,∵∠GFE=∠GEF,∴∠CFE=∠CNF,∴CF=CN=6,设MN=x,则CM=BM=6+x,cos∠EBM=,∴=,解得:x1=2,x2=﹣11(舍),MB=6+x=6+2=8,由勾股定理得:ME===4,在△OBM中,设OM=m,则OE=OB=m+4,OM2+MB2=OB2,即m2+82=(m+4)2,∴OM=m=6,∴OE=OB=6+4=10.则⊙O的半径为10.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵3<+<4,∴[+]的值为3.故答案为:3.22.【解答】解:解方程得x=m﹣2,因为方程的解为正数,所以m﹣2>0,且m﹣2≠1,解得:m>2且m≠3,则在0﹣8这九个数字中符合条件的有5个,所以使关于x的分式方程的解为正数的概率为,故答案为:.23.【解答】解:设矩形外接圆的圆心为O,连接OB,∵矩形ABCD的AC=2m,BC=1m,∴OB=OC=BC=1m,∴△OBC是等边三角形,∴∠BOC=60°.∴弧形门洞的周长(含线段BC)为:+1=+1,故答案为:(+1)m.24.【解答】解:如图,连接OD,∵AD垂直平分OC,∴CD=OD,设A(a,b),则C(2a,2b),∴BC=2b,OB=2a,∴D(2a,b),∴BD=b,CD=b,∴OD=b,∵Rt△BOD中,BD2+OB2=OD2,∴(b)2+(2a)2=(b)2,∴b2=2a2,又∵Rt△BOC中,OC==2,∴sinC====.故答案为:.25.【解答】解:连接BE,在EC上截取EH=CD=6,作DM⊥EC于M.∵CB=CE,∠C=60°,∴△BCE是等边三角形,∴BE=EC,∠BEH=∠C=60°,∵EH=CD,∴△BEH≌△ECD,∴∠EHB=∠EDC,BH=ED∴∠BHC=∠BDE,∵∠BHC=∠A+∠ABH,∠EDB=2∠A,∴∠A=∠ABH,∴AH=BH=8+6=14,∴DE=BH=14,在Rt△DCM中,∵CD=6,∠CDM=30°,∴CM=3,DM=3,在Rt△DEM中,EM==13,∴EC=3+13=16,∴BC=EC=16,故答案为16.26.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,∴由题意可得出,第x天生产空调y台,y与x之间的函数解析式为:y=40+2x(1≤x≤10);(2)当1≤x≤5时,W=(2920﹣2000)×(40+2x)=1840x+36800,∵1840>0,∴W随x的增大而增大,∴当x=5时,W最大值=1840×5+36800=46000;当5<x≤10时,W=[2920﹣2000﹣20(40+2x﹣50)]×(40+2x)=﹣80(x﹣4)2+46080,此时函数图象开口向下,在对称轴右侧,W随着x的增大而减小,又天数x为整数,∴当x=6时,W最大值=45760元.∵46000>45760,∴当x=5时,W最大,且W最大值=46000元.综上所述:W=.27.【解答】解:【发现】:如图1,当n=1时,AD=AB,∴▱ABCD是菱形,∴AB=BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∴△ABC、△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∵,∴△BCE≌△ACF(ASA),∴BE=AF,∴AE+AF=AE+BE=AB=AC;【类比】:(1)如图2,当n=2时,AD=2AB,设DH=x,由题意得:CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,由勾股定理得:AC===2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴,∵AC=2CH,∴AE=2FH;(2)如图3,当n=3时,AD=3AB,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于H,∴∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴,∵S▱ABCD=AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴,∵EM=3FN,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHD=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC===a,∴AE+3AF=(EM﹣AM)+3(AH+HN﹣FN),=EM﹣AM+3AH+3HN﹣3FN,=3AH+3HN﹣AM,=3×a+3a﹣a,=a,∴==;【延伸】如图4,AD=nAB,过Q作QG∥AD,作QH∥AB,则四边形AGQH是平行四边形,且AH=nAG,过C作CN⊥AD于N,过C作CM⊥AB于M,交AD于P,同理可得:△QFN∽△QEM,∴=,∵S▱AGQH=AG•QM=AH•QN,AH=nAG,∴QM=nQN,∴=,∵EM=nFN,设QN=a,FN=b,则QM=na,EM=nb,∵∠MAH=60°,∠M=90°,∴∠APM=∠QPD=30°,∴PQ=2a,PM=na﹣2a,PN=a,∴AM=(na﹣2a),AP=2AM,∴AQ===,∴AE+nAF=(EM﹣AM)+n(AP+PN﹣FN),=EM﹣AM+nAP+nPN﹣nFN,=nAP+nPN﹣AM,=2n•(na﹣2a)+an﹣(na﹣2a),=a(n2﹣n+1),∴==.28.【解答】解:(1)∵抛物线y=ax2﹣4ax+c与直线y=kx+1交于y轴上一点A ∴A(0,1),即c=1∵抛物线y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c∴顶点坐标为(2,c﹣4a)∴c﹣4a=5∴a=﹣1∴抛物线解析式y=﹣x2+4x+1=﹣(x﹣2)2+5(2)∵抛物线与直线相交∴kx+1=﹣x2+4x+1∴x1=0,x2=4﹣k∴B点横坐标为4﹣k∵点B在第一象限∴4﹣k>0即k<4∵S△AHB=HK×(4﹣k)=∴(5﹣2k﹣1)×(4﹣k)=解得:k1=,k2=(不合题意舍去)(3)ⅰ)如图:将AB绕B点顺时针旋转90°到BC位置,过B点作BD⊥x轴,过点C点作CD⊥BD于D,过A点作AE⊥BD于E∵k=,∴B(,)∵A(0,1),B(,)∴AE=,BE=∵旋转∴BC=AB,∠ABC=90°∴∠CAB=45°,∠CBD+∠ABE=90°且∠CBD+∠DCB=90°∴∠ABE=∠DCB且AB=BC,∠D=∠AEB=90°∴△ABE≌△BCD∴AE=BD=,BE=CD=∴C(,)设AC解析式y=bx+1∴=b+1∴b=3∴AC解析式y=3x+1∵P是直线AC与抛物线的交点∴3x+1=﹣x2+4x+1∴x1=0,x2=1∴P(1,4)ⅱ)如图2:设PM与BN的交点为H∵四边形PBMN为平行四边形∴PH=NH,BH=MH∵设点M坐标为(x,y)∴=∴y=﹣∴﹣=﹣(x﹣2)2+5解得:x1=﹣,x2=∴点M坐标为(﹣,﹣),(,﹣)。
2018年中考数学真题知识分类练习试卷:代数式(有答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。
2018年3月四川省成都市锦江区初2018届初三中考一诊数学试题参考答案
( (
#*)%7
$%)(
1
$*)%7
%) *)
+
)( %)
( (
7%). +)()*!
(
.解=四边 形 #$%& 是 平 行 四 边 形7#$4 %&7 ##$( + #*!又 =&* +&%7&* +
( ( (
#$!又= ##($+ #&(*7 $#$( 3 $&*( (
!!?7#(+&(7#( + * .#& + * .$%!又
#$!解*在 56$,%& 中=,& +.689#&%, +
. (
7,%
+(点
&
0.点
%&(0!将
点
&0.点 % &(0代 入 -* +/" ,6得
6+.
解
&(/,6+0!
得)*/+
. (
7-*
+6+.!
+
.(" ,.!
如图过 点 # 作 #) "" 轴 于 点 )过 点 $ 作
( (
=#(&$%7$#)(1 $%)$7$))( +%#$( +
( ( (
* .
7)( +
* .$) +
* .
-)+(!
( (
#*!解过点 % 作%& "#$ 于点 &!
(
(
(
四川成都市中考数学试题含答案及解析
2018 年中考四川省成都市中考数学试题A 卷(共100 分)第Ⅰ卷(共30 分)一、选择题:本大题共10 个小题, 每小题 3 分, 共30 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 实数a,b,c, d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B .b C .c D .d2.2018 年5 月21 日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200 公里、远地点高度为40 万公里的预定轨道. 将数据40 万用科学记数法表示为()A.0.4 106 B .4 10 C .4 10 D .0.4 103. 如图所示的正六棱柱的主视图是()A. B . C . D .4. 在平面直角坐标系中,点P 3, 5 关于原点对称的点的坐标是()A.3, 5 B .3,5 C. 3,5 D .3, 55. 下列计算正确的是()A.x2 x2 x 4 2 2 2 2 36 2 3 5B .x y x y C. x y x y D .x x x6. 如图,已知ABC DCB ,添加以下条件,不能判定ABC≌DCB 的是()A. A D B .ACB DBC C. AC DB D .AB DC5 6 67. 如图是成都市某周内日最高气温的折线统计图,关于这7 天的日最高气温的说法正确的是()A.极差是8℃ B .众数是28℃ C. 中位数是24℃ D .平均数是26℃8. 分式方程x 1x11的解是()x 2A.y B .x 1 C. x 3 D .x 39. 如图,在ABCD 中, B 60 ,⊙C 的半径为3,则图中阴影部分的面积是()A. B .2 C. 3 D .610. 关于二次函数y 2 x2 4 x1,下列说法正确的是()A.图像与y 轴的交点坐标为0,1 B .图像的对称轴在y 轴的右侧C.当x 0 时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70 分)二、填空题(每题 4 分,满分16 分,将答案填在答题纸上)11. 等腰三角形的一个底角为50 ,则它的顶角的度数为.12. 在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16 个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是.围.13. 已知 ab b 54c,且 ab 2c 6 ,则 a 的值为.14. 如图, 在矩形 ABCD 中,按以下步骤作图: ①分别以点 A 和 C 为圆心, 以大于 1 AC 的2长为半径作弧, 两弧相交于点 M 和 N ;②作直线 MN 交 CD 于点 E . 若 DE 2 ,CE 3 ,则矩形的对角线AC 的长为.三、解答题 (本大题共 6 小题,共 54 分. 解答应写出文字说明、证明过程或演 算步骤. )15. ( 1) 22382sin 60 3 . (2)化简 11 x.x 1x2116. 若关于 x 的一元二次方程2x2a 1 x 2a0 有两个不相等的实数根, 求 a 的取值范17. 为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为,表中m 的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600 人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018 年5 月成功完成第一次海上试验任务. 如图,航母由西向东航行,到达 A 处时,测得小岛 C 位于它的北偏东70 方向,且于航母相距80 海里,再航行一段时间后到达处,测得小岛 C 位于它的北偏东37 方向. 如果航母继续航行至小岛 C 的正南方向的 D 处,求还需航行的距离BD 的长.(参考数据:sin70 0.94 ,cos70 0.34,tan70 2.75,sin37 0.6 ,cos37 0.80 ,tan37 0.75 )19. 如图,在平面直角坐标系xOy 中,一次函数y x b的图象经过点 A 2,0 ,与反比例函数y kxx 0 的图象交于 B a,4 .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN / / x 轴,交反比例函数y kxx 0 的图象于点N ,若A, O, M , N 为顶点的四边形为平行四边形,求点M 的坐标.20. 如图,在Rt ABC 中, C 90 ,AD 平分BAC 交BC 于点D ,O 为AB 上一点,经过点 A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O的切线;(2)设AB x ,AF y ,试用含x, y 的代数式表示线段AD 的长;(3)若BE8 ,sin B5,求DG 的长.13B 卷(共50 分)一、填空题(每题 4 分,满分20 分,将答案填在答题纸上)21. 已知x y0.2 ,x 3 y 1 ,则代数式x2 4 x y 4 y2 的值为.22. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝. 如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3 ,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23. 已知a0,S11,S2 S1a1,S31,S4 S3S21,S51,(即当n 为S4大于 1 的奇数时,Sn1Sn 1;当n 为大于 1 的偶数时,S n S n 1 1 ),按此规律,S2018.24. 如图,在菱形ABCD 中,tan A 4,M3, N 分别在边AD , BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点 D ,当EF AD 时,BNCN的值为.25. 设双曲线y kk 0x与直线y x 交于 A ,B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移(2)广场上甲、 乙两种花卉的种植面积共 1200 m 2,若甲种花卉的种植面积不少于200 m 2,且不超过乙种花卉种植面积的 2 倍,那么应该怎忙分配甲、 乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸” , PQ 为双曲线的“眸径”当双曲线 yk xk 0 的眸径为 6 时, k 的值为.二、解答题 (本大题共 3 小题,共 30 分. 解答应写出文字说明、证明过程或演 算步骤. )26. 为了美化环境, 建设宜居成都, 我市准备在一个广场上种植甲、 乙两种花卉 . 经市场调查, 甲种花卉的种植费用 y (元)与种植面积 x m 2之间的函数关系如图所示,乙种花卉的种 植费用为每平方米 100 元.(1)直接写出当0 x 300 和 x 300 时, y 与 x 的函数关系式;27. 在Rt ABC 中,ABC 90 ,AB7 ,AC 2 ,过点B 作直线m / / AC ,将ABC 绕点C 顺时针得到A′B′C (点A ,B 的对应点分别为A′,B′)射线CA′,CB′分别交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;(3)在旋转过程时,当点P, Q 分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q 的面积是否存在最小值. 若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.28. 如图,在平面直角坐标系xOy 中,以直线x5为对称轴的抛物线122y ax bx c 与直线l : y kx m k 0 交于A 1,1 ,B 两点,与y 轴交于 C 0,5 ,直线l 与y 轴交于 D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为 F 、G 是抛物线上位于对称轴右侧的一点,若AF FB 34,且BCG 与BCD 面积相等,求点G 的坐标;(3)若在x 轴上有且仅有一点P ,使APB 90 ,求k 的值.一、选择题1-5: DBACD 6-10: CBACD 二、填空题试卷答案A 卷11. 80 12.6 13.12 14. 30三、解答题15. (1)解:原式12 2331 92 3 3 =4 2 4 4(2)解:原式x 1 1x 1 x 1 x 1xx x 1 x 1x 1x 1 x16. 解:由题知: 2 22a 1 4a 24a 4a 21 4a 4a 1 .原方程有两个不相等的实数根,17. 解:(1)120,45%;∴4a 1 0 ,∴a1.4(2)比较满意;120 40%=48 (人)图略;(3)3600 12+54120=1980 (人).答:该景区服务工作平均每天得到1980 人的肯定.18. 解:由题知:ACD 70 ,BCD 37 ,AC 80 .在Rt ACD 中,cos 在Rt BCD 中,tan ACDBCDCD,∴0.34ACBD,∴0.75CD,∴CD80BD,∴BD27.2 (海里).20.4 (海里).CD答:还需要航行的距离BD 的长为20.4 海里.27.219. 解:(1)一次函数的图象经过点 A 2,0 ,∴ 2 b 0 ,∴b 2 ,∴y x 1.一次函数与反比例函数y kxx0 交于B a,4 .∴a 2 4 ,∴a 2 ,∴B 2,4 ,∴y 8xx 0 .(2)设M m 2,m ,N 8, m m.当MN / / AO 且MN AO 时,四边形AOMN 是平行四边形.即:8mm 2 2 且m 0 ,解得:m 2 2 或m 2 3 2 ,∴M 的坐标为 2 2 2, 2 2 或 2 3, 2 3 2 .20.2B 卷21.0.36 22.12 1323. a 1 24.2 a725.3 226. 解:( 1) y130 x , 0 x 300 80x 15000. x 300(2)设甲种花卉种植为am 2,则乙种花卉种植1200 a m .a 200, ∴a 2 1200∴200 a a800 .当 200a 300时, W 1 130a 100 1200 a30a 120000 .当 a200 时, W min126000 元.当 300a 800 时, W 2 80a 15000 100 200 a135000 20a .当 a800 时, W min119000 元.119000 126000,∴当 a 800 时,总费用最低,最低为 119000 元.此时乙种花卉种植面积为 1200 800 400m 2.答:应分配甲种花卉种植面积为800m2 ,乙种花卉种植面积为400 m2 ,才能使种植总费用最少,最少总费用为119000 元.27. 解:(1)由旋转的性质得:AC A' C 2 .ACB 90 ,m/ / A C ,∴A' BC 90 ,∴cos A ' C B BC 3,A 'C 2∴A'CB 30 ,∴ACA' 60 .(2)M 为A' B' 的中点,∴A'CM MA ' C.由旋转的性质得:MA ' C A,∴ A A'CM .∴tan PCB tan A3 3 3,∴PB BC .2 2 2tan Q tan PCA3 2,∴BQ BC2 73 2 ,∴PQ PB BQ .2 3 3 2(3)SPA' B ' Q SPCQSA ' CB 'SPCQ3 ,∴S PA' B 'Q 最小,S PCQ 即最小,∴SPCQ 1PQ BC3PQ .2 2法一:(几何法)取PQ 中点G ,则PCQ 90 . ∴C G 1PQ . 2当CG 最小时,PQ 最小,∴CG PQ ,即CG 与CB 重合时,CG 最小.∴CG min 3 ,PQ min 2 3 ,∴S PCQmin 3 ,SPA ' B ' Q3 3 .法二:(代数法)设PB x ,BQ y .由射影定理得:xy 3 ,∴当PQ 最小,即x y 最小,2∴x y x2 y2 2 x y x2y2 6 2 xy 6 12 .当x y 3 时,“”成立,b2a ∴PQ5,23 3 2 3 .28. 解:(1)由题可得: c 5, 解得a 1 ,b 5 ,c 5 .a b c 1.∴ 二次函数解析式为: y x25 x 5 .(2) 作 AMx 轴, BN x 轴,垂足分别为 M , N ,则AF MQ 3 .FBQN43MQ, ∴NQ 22 , B 9 11, , 2 4k m 1,k 1 , ∴ ,解得2 , 1 11 .9 k m 1 , ∴y t1 x , D 0,2 4m , 22 22同理, y B C1x 5 . 21 1 S BCDS BCG , ∴ ①DG / / BC ( G 在 BC 下方), y DG x,221 12 ∴ x x 2 2 5 x 5 ,即 2x 29x 9 0 ,∴x 13, x 2 3 .2x 5 , ∴x 23 ,∴G 3, 1 .② G 在 BC 上方时,直线 G 2G 3 与 DG 1 关于 BC 对称 .∴ y1x 19,∴ 1 x 19 x25 x 5 ,∴2 x29 x 9 0 .G 1G 22 2 2 2x 5, ∴x 9 3 17 , ∴G 9 3 17 67 3 17 ,.2 4 4 8综上所述,点G 坐标为 G 1 3, 1 ; G 2 9 3 17 , 67 3 17 .44(3) 由题意可得:k m 1.∴m 1 k ,∴ y 1kx 1 k ,∴kx 1 k x 25x 5 ,即 xk 5 x k 4 0 .∴ x 1 1, x 2k 4 ,∴B k 4, k 23k 1 .设 AB 的中点为 O ' ,P 点有且只有一个, ∴以 AB 为直径的圆与 x 轴只有一个交点,且 P 为切点 . ∴OP x 轴, ∴P 为 MN 的中点, ∴ P k 5 ,0 .2AMP ∽ PNB ,∴ AM PNPMBN,∴ AM BN PN PM ,2∴1 k23k 1k 5 k 5k 42 21 ,即3k 26k 5 0 ,96 0 .k 0 ,∴k 6 4 6 1 2 6 .6 3。
2018年中考数学真题知识分类练习试卷:代数式(含答案)
代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。
2018年成都市中考数学试题及答案详解
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
(完整版)2018四川成都市中考数学试题含答案及解析
2018年中考四川省成都市中考数学试题A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD Y 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G . (1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.ADB 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x+-=⨯+1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.Q 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)Q 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. Q 一次函数与反比例函数()0k y x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒Q ,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M Q 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=Q,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=Q ''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =Q ,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q , ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >Q ,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >Q,x =∴96748G ⎛+- ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O ,P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点. OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫⎪⎝⎭∴. AMP PNB ∆∆Q ∽,AM PN PM BN =∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >Q ,6163k -+==-+∴.。
四川省成都市2018年中考数学试题(含答案)
成都市2018年中考数学试题及答案A 卷(共 100 分) 第Ⅰ卷(共 30分)一、选择题:本大题共 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.实数 a ,b ,c ,d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A . aB .bC . cD . d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近 地点高度为 200 公里、远地点高度为 40万公里的预定轨道.将数据40 万用科学记数法表示为( ) A .0.4106B . 4105C . 4106D .0.41063. 如图所示的正六棱柱的主视图是( )4. 在平面直角坐标系中,点 P (-3,-5)关于原点对称的点的坐标是( )5. 下列计算正确的是(C . A .(3,-5)B . (-3,5) C.(3,5) D .(-3,-5)A . x 2 +x 2 =x 4B .(x - y )22= x 2- y 2C.(x 2y ) = x 6yD .(-x 2)•x 3 = x 56.如图,已知ABC = DCB ,添加以下条件,A =DACB =DBC不能判定ABC ≌DCB 的是( )C. AC = DB D . AB = DC)x + 118.分式方程 x +1+1=1的解是( )xx -2A . yB . x =-1 C. x = 3 D . x =-3A .B . D .9.如图,在Y ABCD 中,B =60,⊙C 的半径为 3,则图中阴影部分的面积是( )C.当 x0 时, y 的值随 x 值的增大而减小D . y 的最小值为-3第Ⅱ卷(共 70分)二、填空题(每题 4分,满分16分,将答案填在答题纸上) 11.等腰三角形的一个底角为50 ,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共 16 个,从中随机摸出一个乒乓球,若摸到3黄色乒乓球的概率为3 ,则该盒子中装有黄色兵乓球的个数是 .8abc13.已知 ==,且 a + b - 2c = 6,则 a 的值为 .b 5414.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于1 AC 的长为半径作弧,2两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE =2,CE =3,则矩形的对角线AC 的长 为 . 三、解答题 (本大题共 6 小题,共 54分.解答应写出文字说明、证明过程或演算步骤.)15. (1) 22 + 3 8 - 2sin 60+ - 3.16. 若关于x 的一元二次方程 x 2-(2a +1)x +a 2= 0有两个不相等的实数根,求a 的取值范围.17. 为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并 根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题: (1)本次调查的总人数为 ,表中m 的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约 3600 人,若将“非常满意”和“满意”作为游客对景区服务工 作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于 2018年 5 月成功完成第一次海上试验任务.如图,A .B . 2 C.3D .610.关于二次函数y =2x 2 +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧 2)化简1-x + 1 x 2 -1航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70方向,且于航母相距 80 海里,再航行一段时间后到达处,测得小岛C位于它的北偏东37方向.如果航母继续航行至小岛C的正南方向的D 处,求还需航行的距离BD的长.(参考数据:sin 700.94 ,cos700.34,tan 70 2.75 ,sin370.6 ,cos370.80,tan370.75 )19. 如图,在平面直角坐标系xOy中,一次函数y = x + b的图象经过点A(-2, 0),与反比例函数y = k(x0)的图象交于B(a,4).x(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN / /x轴,交反比例函数y = k(x0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.如图,在Rt ABC中,C =90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D 的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB = x,AF = y,试用含x, y的代数式表示线段AD的长;(3)若BE = 8,sin B = 5,求DG的长.13B 卷(共 50 分)一、填空题(每题 4分,满分20分,将答案填在答题纸上)21.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .S 2 =-S 1 -1,S 3 = 1 ,S 4=-S 3-1,S 5 = 1 ,…(即当n 为大于1的奇数时,S n = 1 ;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2018 = S n -124.如图,在菱形ABCD 中,tan A = 4 ,M , N 分别在边AD , BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥ AD 时, BN 的值为CN25.设双曲线y = k (k0)与直线y = x 交于A , B 两点(点A 在第三象限),将双曲线在第一象限的一 支沿射线BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过 点B ,平移后的两条曲线相交于点P , Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分) 为双曲线的“眸”, PQ 为双曲线的“眸径”当双曲线y = k (k0)的眸径为6时, k 的值为二、解答题 (本大题共 3 小题,共 30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的 种植费用 y (元)与种植面积x(m 2 )之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0x 300和x 300时, y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2 ,且不超过乙 种花卉种植面积的 2 倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用 为多少元?23.已知 a0 , S =27.在Rt ABC中,ABC = 90,AB = 7 ,AC = 2 ,过点B作直线m / / AC ,将ABC绕点C 顺时针得到A′B′C(点A,B的对应点分别为A′,B′)射线CA′,CB′分别交直线m于点P,Q.1)如图1,当P与A′重合时,求ACA′的度数;2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;3)在旋转过程时,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy中,以直线x = 5为对称轴的抛物线y = ax2+bx +c与直线l:y=kx+m (k 0 )交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于D点.(1)求抛物线的函数表达式;AF 3 (2)设直线l与抛物线的对称轴的交点为F、G是抛物线上位于对称轴右侧的一点,若AF = 3,且FB 4 BCG与BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P ,使APB = 90,求k的值.试卷答案A卷一、选择题1-5: DBACD6-10:CBACD二、填空题11.80三、解答题12.6 13.12 14. 3015.(1)解:原式 = + 2 - 2 + 342= + 2- 3 + 349 4(2)解:原式=x +1-1(x +x(x +1)(x -1) x + 1 x=x -116.解:由题知:= ( 2a +1) - 4a = 4a + 4a +1 - 4a = 4a +1.Q 原方程有两个不相等的实数根,∴4a +10,∴a-1.17.解:(1)120,45%; (2)比较满意;12040%=48(人)图略;12+54 (3)360012+54=1980 (人).120答:该景区服务工作平均每天得到 1980人的肯定.18.解:由题知: ACD = 70 , BCD = 37 , AC = 80 .cos ACD =CD ,∴0.34= CDAC 80在RtBCD 中,tanBCD = C B D D ,∴0.75 =2B 7D .2答:还需要航行的距离BD 的长为 20.4海里.19. 解:(1)Q 一次函数的图象经过点 A (-2,0),∴-2+b =0,∴b =2,∴y =x +1. Q 一次函数与反比例函数 y =k (x0) 交于 B (a ,4) . x8∴a +2=4,∴a = 2 ,∴B (2,4),∴y = (x 0) .x(2)设M (m -2,m ),N8,m.当MN //AO 且MN = AO 时,四边形AOMN 是平行四边形. 即: 8 -(m -2) =2且m0,解得:m =22或m =2 3+2, m∴M 的坐标为(2 2 -2,2 2)或(2 3,2 3+2).x + 1x在 Rt ACD 中, ∴CD = 27.2 (海里). ∴BD = 20.4 (海里).1323.2 24.7 25.220.B 卷21.0.36 22.12a + 1 a 3130x ,(0 x 300) 26.解:(1) y =80x +15000.(x 300)(2)设甲种花卉种植为am 2 ,则乙种花卉种植(1200-a )m 2.a 200, ∴ ∴200a 800 .a 2(1200 - a )当200a300时,W =130a +100(1200-a )=30a +120000.当a = 200时,W = 126000元. 当300a800时,W = 80a +15000 +100 (200 - a ) = 135000 - 20a .当a = 800时,W = 119000元.Q119000126000,∴当a = 800时,总费用最低,最低为 119000 元. 此时乙种花卉种植面积为1200 -800 = 400m 2 .答:应分配甲种花卉种植面积为800m 2,乙种花卉种植面积为400m 2 ,才能使种植总费用最少,最少总 费用为 119000 元.27.解:(1)由旋转的性质得: AC = A ' C = 2 .Q ACB = 90 , m / / AC ,∴A ' BC =90,∴cosA 'CB = BC = 3 ,∴A 'CB =30, A 'C2∴ACA ' =60.(2)Q M 为A ' B '的中点,∴ A 'CM =MA 'C . 由旋转的性质得:MA 'C =A ,∴A =A 'CM . ∴tanPCB = tanA = 3 ,∴PB = 3BC =3.2 22∴BQ = BC2= 32 = 2 ,∴PQ = PB + BQ = 7 .= SPCQ - 3 ,∴SPA 'B 'Q 最小, SPCQ即最小,∴S PCQ =1PQBC = 3PQ .法一:(几何法)取PQ 中点G ,则PCQ = 90. ∴CG = 1 PQ .2当CG 最小时, PQ 最小,∴CG ⊥ PQ ,即CG 与CB 重合时,CG 最小. ∴CG min = 3 , PQ min =2 3,∴(SPCQ) =3,SPA 'B 'Q =3-3.Q tanQ = tanPCA = 3 , 3)Q SPA 'B 'Q = SPCQ- SA 'CB '∴①DG //BC (G 在BC 下方),y =-1x +1,11 3∴- x + = x - 5x + 5,即 2x - 9x + 9 = 0 ,∴x =,x =3.22 12 2Q x5 ,∴x = 3 ,∴G (3, -1) .② G 在BC 上方时,直线G G 与DG 关于BC 对称.1 19 1 19- x + ,∴- x + = x - 5x + 5,∴2x - 9 x - 9 = 0 . 22 223)由题意可得: k + m = 1.法二:(代数法)设PB = x , BQ = y . 由射影定理得: xy = 3 ,∴当PQ 最小,即x + y 最小, ∴(x + y ) =x 2 +y 2 +2xy = x 2+ y 2 +62xy +6=12. 当x = y = 3时,“ =”成立,∴PQ = 3+ 3=2 3. 28.解:(1)由题可得: b 5 -2a =2, c =5, 解得a =1, a + b + c = 1.b =-5,c =5. ∴二次函数解析式为: y = x 2 -5x +5. (2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,则 A F F B =Q M N Q =43. 3 9 11Q MQ = 3,∴NQ =2,B 9,11, k +m =1, ∴ 91 k +m =24 ,解得 同理, y BC = - x + 5. k =11 =x +, 22 D Q x , 2∴x = 9 + 3 174 ∴G 9+3 17 67 4,综上所述,点G 坐标为G 1(3,-1);G 2 9+3 17 67-3 17∴m =1- k,∴y =kx+1-k,∴kx+1-k = x2-5x+5,即x2-(k+5)x+k+4=0.∴x =1,x=k+4,∴B(k + 4,k +3k +1).设AB的中点为O' ,Q P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点. ∴OP⊥x 轴,∴P为MN的中点,∴P k+5,0.Q AMP ∽PNB,∴PM = BN,∴AM•BN =PN•PM,+ 3k + 1) = k k+5k+5-1,即3k2+6k-5=0,=960.。
2018年四川成都中考数学试卷(含解析)
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
中考数学专项复习、中考真题分类解析:专题4.2 三角形(第01期)(解析版)
C. D.浙江省温州市2018年中考数学试卷C..如图,已知,添加以下条件,不能判定的是(A. B. C. D.)作线段,分别以为圆心以长为半径作弧两弧的交点为;)以为圆心仍以长为半径作弧交的延长线于点;)连接A. B.点是的外心 D.BD=AB=ABAC=CD,=AB、C.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能判定(A. B. C. D..已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹A. B.C. D.∴弦为.在中,,于,平分交于,则下列结论一定成立的是(A. B. C. D.如图,,且.、是上两点,,.若,,,则A. B. C. D..如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大A. C. D.【来源】陕西省2018【答案】证明见解析..如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.)线段,,之间的数量关系是)若,求的度数);(ADB=,年中考数学试卷BC=,cos ADB= cos∠ABE=cos ADB==AC=AB=3BC=CD= AB=3本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化,当点在菱形内部或边上时,连接,与的数量关系是,与的位置)当点在菱形外部时,,当点在线段的延长线上时,连接,若,求四边形的面积) .,,∴,是等边三角形,∴,∵,∴,===,的面积是 .在中,,为的中点,,垂足分别为点,且.求证:是CE=∴,FC==,CE==.MC=BD EM=BDCM=ME=BD=DM DE=EM=DM,等腰三角形中,,求的度数(答案:)等腰三角形中,,求的度数(答案:或或)等腰三角形中,,求的度数)后,小敏发现,的度数不同,得到的度数的个数也可能不同如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围)或或;()当且,有三个不同的度数)分为顶角和为底角,两种情况进行讨论)分①当时,②当时,两种情况进行讨论.在中,,平分,平分,相交于点,且,则__________【答案】EF=,∴AE=,即+2-aa=,CH=FH=,AC=AE+EH+HC=,故答案为:.是正方形,和都是直角,且点三点共线,,则阴影部分的.等腰三角形的一个底角为,则它的顶角的度数为【答案】的网格中,的顶点,,均在格点上)的大小为)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求;)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求AC=,BC=,AB=,的等边中,,分别为,的中点,于点,为的中点,连接,则的长为【答案】分析:连接.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.,则__________.【答案】.如图,五边形是正五边形,若,则__________交于点,根据得到∠根据五边形是正五边形得到∠交于点∵,∵五边形是正五边形,.如图,为的平分线.,..则点到射线的距离为.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度【答案】或,此时正方形的边长为时,正方形。
2018年中考数学真题知识分类练习试卷:方程(含答案)
方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考四川省成都市中考数学试题A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=- C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 .13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭.16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交于点G . (1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长.ADB 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x+-=⨯+1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. 一次函数与反比例函数()0k y x x =>交于(),4B a .24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷 21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==. 90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =.法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=, ∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,x =∴,967,48G ⎛⎫+- ⎪ ⎪⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PN PM BN =∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,6163k -+==-+∴.。