图形的平移,对称与旋转的知识点复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,在边长为 的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF= 的点P的个数是()
A.0B.4C.8D.16
【答案】B
【解析】
【分析】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM= ,进而即可得到结论.
A.4B.4 C.2D.2
【答案】D
【解析】
【分析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
【详解】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
P′Q′=P′H,
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【答案】C
【解析】
【分析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC= ∠1,再根据三角形内角和定理可得.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC= ∠1=22°
∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、是轴对称图形,是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A、不能通过平移得到,故不符合题意;
B、不能通过平移得到,故不符合题意;
C、不能通过平移得到,故不符合题意;
A. B.5C.4D.
【答案】B
【解析】
【分析】
【详解】
由题意易知:∠CAB=45°,∠ACD=30°,
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=6,则AC=BC= .
同理可求得:AO=OC=3.
在Rt△AOD1中,OA=3,OD1=CD1-OC=4,
∴四边形ABFD的周长等于9+1+1=11.
故答案为C.
【点睛】
本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.
14.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】
解:平行四边形不是轴对称图形,
菱形、矩形、正方形都是轴对称图形.
故选:C.
【点睛】
本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.
5.已知点P(a+1, )关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
故选:C.
【点睛】
正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.
10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66°B.104°C.114°D.124°
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
【详解】
由轴对称的性质知,①②③④都正确.
故选D.
12.下列图案中既是轴对称又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点 顺时针旋转 到 的位置.
四边形 的面积等于正方形 的面积等于20,


中,
故选: .
【点睛】
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.
11.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )
图形的平移,对称与旋转的知识点复习
一、选择题
1.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD.
【详解】
由旋转得到AD=AB=1,∠BAD=90°,
∴BD= = = ,
A. B.
C. D.
【答案】C
【解析】
试题分析:∵P( , )关于原点对称的点在第四象限,∴P点在第二象限,∴ , ,解得: ,则a的取值范围在数轴上表示正确的是 .故选C.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.
6.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P,Q分别是BD,AB上的动点,则AP+PQ的最小值为()
∴OB'= =1= AB',
∴∠OAB'=30°,
∴∠C'AD=∠AB'O=60°,
在△AC'D和△AB'O中, ,
∴△AC'D≌△B'AO(AAS),
∴AD=OB'=1,C'D=AO= ,
∴OD=AO﹣AD= ﹣1,
∴点C′的坐标为(﹣ , ﹣1);
故选:ห้องสมุดไป่ตู้.
【点睛】
本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图形性质、旋转的性质、直角三角形的性质、勾股定理等知识;熟练掌握旋转的性质,证明三角形全等是解题的关键.
A.(﹣ , ﹣1)B.(﹣ , ﹣1)
C.(﹣ , +1)D.(﹣ , ﹣1)
【答案】D
【解析】
【分析】
作C'D⊥OA于D,设AO交BC于E,由等腰直角三角形的性质得出∠B=45°,AE= BC= ,BC=2 = AB,得出AB=2,OA= ,由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,由勾股定理得出OB'= =1= AB',证出∠OAB'=30°,得出∠C'AD=∠AB'O=60°,证明△AC'D≌△B'AO得出AD=OB'=1,C'D=AO= ,求出OD=AO﹣AD= ﹣1,即可得出答案.
∴在BC边上,只有一个点P满足PE+PF= ,
同理:在AB,AD,CD边上都存在一个点P,满足PE+PF= ,
∴满足PE+PF= 的点P的个数是4个.
故选B.
【点睛】
本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.
4.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
【详解】
解:作C'D⊥OA于D,设AO交BC于E,如图所示:
则∠C'DA=90°,
∵∠CAB=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴∠B=45°,
∵BC∥x轴,点B( , ﹣ ),
∴AE= BC= ,BC=2 = AB,
∴AB=2,OA= ,
由旋转的性质得:AB'=AB=AC=AC'=2,∠C'AB'=∠CAB=90°,
【详解】
作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.
∵正方形ABCD中,边长为 ,
∴AC= × =15,
∵点E,F是对角线AC的三等分点,
∴EC=10,FC=AE=5,
∵点M与点F关于BC对称,
∴CF=CM=5,∠ACB=∠BCM=45°,
∴∠ACM=90°,
∴EM= ,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
∴AH=BH=2 .
故选:D.
【点睛】
考查了轴对称-最短路线问题,解题关键是从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
7.如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B .将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为( )
故选:C.
【点睛】
本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.
17.如图,点 是正方形 的边 上一点,把 绕点 顺时针旋转 到 的位置.若四边形AECF的面积为20,DE=2,则AE的长为()
A.4B. C.6D.
【答案】D
【解析】
【分析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求
C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;
D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
16.如图,将 沿射线 方向平移 得到 .若 的周长为 ,则四边形 的周长为()
13.如图,将 沿 方向平移1个单位长度后得到 ,若 的周长等于9,则四边形 的周长等于()
A.13B.12C.11D.10
【答案】C
【解析】
【分析】
先利用平移的性质求出AD、CF,进而完成解答.
【详解】
解:将△ABC沿BC方向平移1个单位得到△DEF,
∴AD=CF=1,AC=DF,
又∵△ABC的周长等于9,
【详解】
如图,连接AD,AO,DO
∵ 绕圆心 按逆时针方向旋转 得到 ,
∴AB=DE, ,
∴ (同弧所对应的圆周角等于圆心角的一半),
即 ,
又∵DB=BD,∴ (同弧所对应的圆周角相等),
在△ADB和△DBE中
∴△ADB≌△EBD(ASA),
∴AD=EB=BC=1.
故答案为A.
【点睛】
本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.
故选:B.
【点睛】
此题考查了旋转的性质,勾股定理,找到直角是解题的关键.
2.如图, 是 的内接三角形, , ,把 绕圆心 按逆时针方向旋转 得到 ,点 的对应点为点 ,则点 , 之间的距离是()
A.1B. C. D.2
【答案】A
【解析】
【分析】
连接AD,构造△ADB,由同弧所对应的圆周角相等和旋转的性质,证△ADB和△DBE全等,从而得到AD=BE=BC=1.
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的特点得AD=BE=CF=2,将四边形ABFE的周长分解为AB+BC+DF+AD+CF的形式,其中AB+BC+DF=AB+BC+AC为△ABC的周长.
【详解】
∵△DEF是△ABC向右平移2个单位得到
∴AD=CF=BE=2,AC=DF
四边形ABFD的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17
由勾股定理得:AD1=5.故选B.
15.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;
B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;
相关文档
最新文档