土的三轴剪切试验(优选材料)
三轴剪切试验
下圆盘之间,再用钢丝锯或削土刀紧靠侧板,由上往下细心切削,边切削边转动圆盘,直
到土样被削成规定直径为止。然后按试验要求的试样高度,截取试样,并削平上下两端,
见附图 10.7。 对于较硬的土样,先用削土刀或钢丝锯切取一稍大于规定尺寸的土样,上下两端削平,
3124来自5附图 10.6 饱和器
1.土样筒;2.紧箍;3.夹板; 4 一拉杆;5.透水石
1 3
2
3 附图 10.7 切土盘
1.轴 2.上盘 3.下盘
2 1
附图 10.8 切土器
1.土样 2.切土器 3.支架
附图 10.9 应变控制式三轴剪切仪
l.调压筒;2.周围压力表;3.周围压力阀;4.排水阀;5.体变管;6.排水管;7.变形量表;8.量力环;9.排气孔;10.轴向 加压设备;1l.压力室;12.量管阀;13.零位指示器;14.孔隙压力表;15.量管;16.孔隙压力阀;17.离合器;18.手轮
⑶反压力饱和:试样要求完全饱和时,应对试样施加反压力。反压力系统和周围压力 系统相同(对不固结不排水剪试验可用同一套设备施加),但应用双层体变管代替排水量管。 试样装好后,调节孔隙水压力等于大气压力,关闭孔隙水压力阀、反压力阀、体变管阀、 测记体变管读数。开周围压力阀,先对试样施加 10~50kPa 的周围压力,开孔隙水压力阀, 待孔隙水压力变化稳定,测记读数,关孔隙水压力阀。反压力应分级施加,同时分级施加 周围压力,以尽量减少对试样的扰动。周围压力和反压力的每级增量宜为 30kPa,开体变 管阀和反压力阀,同时施加周围压力和反压力,缓慢打开孔隙水压力阀,检查孔隙水压力 增量,待孔隙水压力稳定后,测孔隙水压力和体变管读数,再施加下一级周围压力和反压 力。计算每级周围压力引起的孔隙水压力增量,当与之比u/30.98 时,认为试样饱和。
土工试验直接剪切试验和三轴剪切试验的优缺点和适用范围
土工试验直接剪切试验和三轴剪切试验的优缺点和适用范围土工试验直接剪切试验和三轴剪切试验的优缺点和适用范围摘要:在建筑工程中,土的抗剪强度测试是一项十分重要的工作,土的抗剪强度关系到工程地基的稳定性与工程结构的稳固性。
当前常用的土的抗剪强度测试方法有直接剪切试验以及三轴压缩试验。
本文联系实际,对这两种试验方法的原理、优缺点与适用范围进行分析论述,以供参考。
关键词:土的抗剪强度;直接剪切试验;三轴剪切试验土的抗剪强度指的是土体抵抗剪切破坏的极限能力,抗剪强度是土的一大重要力学性质。
土的的抗剪强度并非固定不变,它是不断变化的,且这一变化具有规律。
研究证明,在土的破裂面上,抗剪强度随法向应力增长。
在测试土的抗剪强度时,要根据土的受力方式以及受力面选择相应的测试方法与仪器,方能保证测试结果科学准确【1】。
下面就土工试验直接剪切试验和三轴剪切试验的优缺点与适用范围做具体分析。
1土的直接剪切试验所谓直接剪切试验,是指直接在某一预定的面上剪切土的试件,在剪切过程中记录、测算这一预定面的抗剪强度与剪应力。
在进行土的直接剪切试验时,最常用的仪器是应变控制式直剪仪。
在试验时,通过该仪器向试样的预定面施加法向应力,等速推动下盒,试样在沿上下盒之间的水平面上受剪切直到被破坏。
试验过程中的剪应力通过与上盒接触的量力环确定。
在试验过程中,随着法向应力的增加会出现剪切位移,且剪切位移与剪应力之间会产生一个关系曲线,借助这一关系曲线了解试样在受剪切破坏时其性能的变化。
当前,直接剪切试验被具体分为不排水剪切试验也称为快剪试验、固结不排水剪切试验也称为固结快剪试验以及慢剪试验等几种。
这三种剪切试验的不同点是剪切时的排水条件、土的固结程度以及剪切加荷速度不同。
通过土的直接剪切试验可知,当剪应力与剪切位移关系曲线中有明显的峰值或是稳定值时,取其作为抗剪强度破坏值,此时试样发生的是脆性破坏。
随着剪切位移发生变化,剪应力不断增长,峰值消失或是峰值不再稳定,此时的剪切强度破坏值一般是取剪切位移为4mm 时的剪应力。
实验4:土的三轴剪切实验
实验4:土的三轴剪切实验实验4:土的三轴剪切实验实验目的:了解三轴剪切试验的特点。
掌握三轴剪切试验方法,运用库仑-莫尔理论确定土的抗剪强度参数、值,了解三轴剪切试验指标在工程中的应用。
基本原理:三轴剪切试验系指将土样制备成圆柱状的试件,放入三轴仪受压室内,先施加一定的周围压力,在恒定的周围压力下,施加轴向压力直至试样破坏,根据破坏时的大小主应力画出极限应力圆。
本试验方法适用于细粒土和粒径小于20mm的粗粒土。
试验时,应至少制备3个以上试样,分别施加不同的周围压力,得到相应的极限应力圆。
做各个应力圆的公切线,即得到强度包络线,从而确定土的抗剪强度指标c和Φ值。
仪器设备:1.应变控制式三轴仪(图7—1):由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成;2.附属设备:包括击样器、切土器饱和器、原状土分样器、切土盘、承膜筒和对开圆膜; 3.天平:称量200g,最小分度值0.01g;称量1000g,最小分度值0.1 g;实验步骤:1.在压力室的底座上,依次放上不透水板、试样及不透水试样帽,将橡皮膜用承膜筒套在试样外,并用橡皮圈将橡皮膜两端与底座及试样帽分别扎紧;2.将压力室罩顶部活塞提高,放下压力室罩,并均匀地拧紧底座连接螺母。
向压力室内注满纯水,待压力室顶部排气孔有水溢出时,拧紧排气孔,并将活塞对准测力计和试样顶部;3. 当试样帽与活塞及测力计接近时,将测力计和变形指示计调至零位;4.关排水阀,开周围压力阀,施加周围压力,周围压力宜根据工程实际确定,一般可按50、100、200、300、400 kPa施加;5.剪切应变速率宜为每分钟应变0.5%,1.0%;6.启动电动机,开始剪切。
试样每产生0.3%,0.4%的轴向应变(或0.2mm变形值),测记一次测力计读数和轴向变形值。
当轴向应变大于3%时,试样每产生0.7%,0.8%的轴向应变(或0.5mm变形值),测记一次;7.当测力计读数出现峰值时,剪切应继续进行到轴向应变为15%,20%;8.试验结束,关电动机,关周围压力阀,脱开离合器,将离合器调至粗位,转动粗调手轮,将压力室降下,打开排气孔,排除压力室内的水,拆卸压力室罩,拆除试样,描述试样破坏形状,称试样质量,并测定含水率。
土力学实验三轴剪切实验
3.记录与计算:
4.讨论
意义:①根据实际的工程需要选择合适的试验方 法,提供合理的强度指标。②为有限元等数值分 析提供所需的参数 三轴试验与直剪试验的比较
优点: ①可测孔隙水压力,反映有效应力原理 ②可测体积变化,反映剪胀剪缩;算出较为真实的受力面积 ③全面反映抗剪强度情况,破坏面为最薄弱面 ④可整理出应力应变关系的本构参数,应用于数值计算 缺点:记录和整理数据繁琐
实验四 三轴剪切试验
1.试验目的、原理及意验的特点,增加感性认识,学会整理三轴试验 数据,并求出砂土的固结排水剪强度指标 Cd d Ccu cu Cu u
试验原理:采用3~4个圆柱形试样,分别在不同的恒定周围压力 (即小主应 3力 )下,施加轴向压力[即产生主应力1差 3 ],进行 剪切直至破坏;然后根据摩尔-库伦理论求得抗剪强度参数。
三轴剪切试验
试验九三轴剪切试验一、概述三轴剪切试验是试样在某一固定周围压力下 逐渐增大轴向压力 直至试样破坏的一种抗剪强度试验 是以摩尔-库仑强度理论为依据而设计的三轴向加压的剪力试验。
三轴剪切试验是测定土体抗剪强度的一种比较完善的室内试验方法 通常采用3~4个圆柱形试样 分别在不同的周围压力下测得土的抗剪强度 再利用摩尔-库仑破坏准则确定土的抗剪强度参数。
三轴剪切试验可以严格控制排水条件 可以测量土体内的孔隙水压力 另外试样中的应力状态也比较明确 试样破坏时的破裂面是在最薄弱处 而不像直剪试验那样限定在上下盒之间 同时三轴剪切试验还可以模拟建筑物和建筑物地基的特点以及根据设计施工的不同要求确定试验方法 因此对于特殊建筑物 构筑物 、高层建筑、重型厂房、深层地基、海洋工程、道路桥梁和交通航务等工程有着特别重要的意义。
二、试验方法根据土样固结排水条件和剪切时的排水条件 三轴试验可分为不固结不排水剪试验 UU 、固结不排水剪试验 CU 、固结排水剪试验 CD 以及K0固结三轴试验等。
以下仅对不固结不排水剪 UU 试验进行详细介绍。
1、不固结不排水剪试验 UU试样在施加周围压力和随后施加偏应力直至剪坏的整个试验过程中都不允许排水 这样从开始加压直至试样剪坏 土中的含水量始终保持不变 孔隙水压力也不可能消散 可以测得总应力抗剪强度指标cu υu。
2、固结不排水剪试验 CU试样在施加周围压力时 允许试样充分排水 待固结稳定后 再在不排水的条件下施加轴向压力 直至试样剪切破坏 同时在受剪过程中测定土体的孔隙水压力 可以测得总应力抗剪强度指标ccu υcu和有效应力抗剪强度指标c’ υ’。
3、固结排水剪试验 CD试样先在周围压力下排水固结 然后允许试样在充分排水的条件下增加轴向 压力直至破坏 同时在试验过程中测读排水量以计算试样体积变化 可以测得有效应力抗剪强度指标cd υd。
4、K0固结三轴剪切试验常规三轴试验是在等向固结压力 σ1=σ2=σ3 条件下排水固结 而K0固结三轴试验是按σ3=σ2= K0σ1施加周围压力 使试样在不等向压力下固结排水 然后再进行不排水剪或排水剪试验。
土力学三轴试验
土力学三轴试验土力学三轴试验三轴试验中土的剪切性状分析摘要:按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。
文中将讨论正常固结饱和黏性土在剪切时将具有不同的强度特性。
关键词:不固结不排水抗剪强度,固结不排水抗剪强度,固结排水抗剪强度作者简介:Triaxial shear Characters of Middle-earthLI Jia-chun(shanghai University,department of civil engineering,08124240)Abstract: Consolidation by the state before shear and shear when the drainage is divided into three types: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear. This article will discuss the normally consolidated saturated clay in the shear strength will have different characteristics.Key words: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear.0 引言广义黏性土包括粉土,黏性土。
黏性土的抗剪强度远比无粘性土复杂。
要准确掌握原状土的强度特性,也就非常困难。
对土的强度研究,大多数用均匀的重塑土。
原状土和重塑土之间在结构上和应力历史存在重大差异,且原状土的取样扰动对其实际强度也有较大影响。
按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。
土的三轴试验研究及土的应力路径.
3 稳定土三轴剪切试验研究
对掺入不同稳定剂的粉土进行了UU 和CU 试验,以研究在 变掺量、变龄期条件下土体的强度和变形特性。试样的制备 采用击实制样,掺稳定剂的粉土分别进行7,14,28 d 标准 养护[3,4]。为方便与前面试验结果的对比,同时也为合理地 选择稳定剂提供更充分的依据,分别选用了不同种类的稳定 剂: 4 %石灰、2 %水泥+2 %石灰、4 %SEU-2 型固化剂、 8 %SEU-2 型固化剂。
引言
稳定土[2]是采用一定的物理化学方法及其相应的技术措施使土 的物理力学性能得到改善以适应工程技术的需要。稳定土的方 法有多种,但目前国内外仍以无机结合料稳定为主,改善土性 质的产品主要有石灰、水泥、粉煤灰或这些材料的混合物,在 几十年的发展过程中,已形成了比较成熟的无机结合料稳定方 法,但从实践效果来看,不同的结合料,其稳定的效果有着明 显的差异。针对江苏地区粉土的特殊性,从提高粉土体系本身 的强度着手,同时考虑水稳定性、抗收缩性等性能进行研究。 使掺入到粉土中的固化材料不仅起到胶凝和填充的作用,最好 能激发粉土自身的活性,或者与土粒发生相互作用,基于这样 的研究思路,提出粉土固化材料的可能组分,研制成功SEU-2 型固化剂,并将其应用到高速公路的路基填筑中[5]。本文一方 面借鉴以往的研究成果,采用传统的无机结合料(石灰、水泥 +石灰)的方法;另一方面采用SEU-2 型固化剂的稳定方法, 从力学性能的角度出发,研究粉土作为路基填料的可行性。
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.2 掺2 %水泥+2 %石灰的粉土三轴剪切试验结果
经验表明,用水泥固化稳定土体能有效增加土体的内摩擦角和凝聚力,用 一部分水泥代替石灰也能起比单纯掺石灰更好的固化稳定效果,这在稳定 粉土的直剪试验和无侧限强度试验中已有所体现,三轴剪切的结果进一步 说明了这一点。图7 和图8分别是掺2 %水泥+2 %石灰的UU 和CU 试验结 果,试样干密度1.72 g/cm3,标准养护7 d, u c =114.75 kPa,u φ =29°; cu c =91.1 kPa, cu φ =29°。CU 试验土样在围压下固结的效 果在总应力指标上未体现出来,可由有效强度指标体现c′ =77.3 kPa,φ ′ =31°。
土力学三轴压缩试验资料
(4)重复以上步骤。用同一种土样的若干个 试件(三个以上)按以上所述方法分别进行试验, 每个试件施加不同的周围压力σ3 ,可分别得出剪 切破坏时的大主应力σ1 ,将这些结果绘成一组极 限应力圆,如图3—9c中的圆I、Ⅱ和Ⅲ。由于这 些试件都剪切至破坏,根据莫尔—库伦理论,作 一组极限应力圆的公共切线,即为土的抗剪强度 包线(图3—9c),通常可近似取为一条直线,该直 线与横座标的夹角即土的内摩擦角φ,直线与纵 坐标的截距即为土的粘聚力c
常规的三轴压缩试验是取3-4个圆柱体试样, 分别在其四周施加不同的恒定周围压力,随后逐 渐增加轴向压力,直至破坏为止。根据破坏时的 大主应力与小主应力分别绘制莫尔圆,莫尔圆的 切线就是剪应力与法向应力的关系曲线,通常近 似的以直线表示,其倾角为φ,在纵轴上的截距 为c。
二、试地基强度和稳定 使用的土的强度指标内摩擦角φ和内聚力c。
缺点:
①剪切破坏面人为的固定为 上下盒之间的水平面,不符 合实际情况。 ②试验中不能严格控制排水 条件,不能量测土样的孔隙 水压力。
目前,较为完善的一种方法是三轴压缩试验。
三轴压缩试验优点: ①试验中能严格控制试样排水条件, 受力状态明确。 3 ②试验中可以控制大小主应力,剪 切面不固定,能准确地测定土的孔 3 隙压力和体积变化。
六、绘图
根据试验结果绘制莫尔应力圆,抗剪强度包线,查 出相应的C和φ值
300
τ(KPa)
200
100
0 0 100 200 300 400 500 600
σ (KPa)
七、思考题
1、如何测定土样的饱和度?
2、三种测定方法分别适用在什么情况下?
3、试讨论一下常规三轴试验的不足之处。
△ 3
3
三轴剪切试验ppt课件
试验目的
测定土的抗剪强度指标:内摩擦角和粘聚力。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
试验原理
1f 3f 2
f ctan
c
O
3f
1f 3f 2
1f
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
仪器设备
1.三轴剪力仪。常用的为应变控制式三轴剪力仪,由压力 室、轴向加压设备、周围压力系统、反压力系统、孔隙水 压力量测系统、轴向变形和体积变化量测系统组成。 2.附属设备。包括击样器、饱和器、切土盘、切土器、切 土架、分样器、承模筒、天平(称量 200g,感量0.01g, 称量1000g,感量)、量表(百分表)(量程3mm或 10mm, 分度值0.01mm)、橡皮膜等,除此以外还要 用到含水率试验的所有设备。
组试样间的干密度差值以及与要求干密度的差值均不得大于 0.02g/cm3。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
试验步骤
(三)试样饱和
常用的试样饱和方法有如下两种: 1.抽气饱和法:将试样装入饱和器,置于抽气缸内盖紧后抽气。 当抽气缸内真空度达到接近一个大气压后,对粉土再抽30min 以上,粘土再抽1h以上,然后徐徐注入清水,并使真空度保持 稳定。待饱和器完全淹没水中后,解除真空,让试样在抽气缸 内静置10h以上。 2.水头饱和法:对于粉土或砂土,可直接在仪器上用水头饱和。 方法是在试样安装完毕后 ,给试样施加20kPa的围压,提高试 样底部进水管(可用孔压管)的水面,降低顶部排水管的水面, 使试样两端水位差在1米左右,水自下向上通过试样,从而使 空气从顶部排出,达到饱和的目的。
土的三轴压缩试验(优良建筑)
土的三轴压缩试验三轴压缩试验主要是用来测定土的抗剪强度,土的抗剪强度是土的一个重要力学性质,在计算地基承载力,评价地基稳定性,以及计算挡土墙的土压力时都要用到土的抗剪强度指标,因此正确的测定土的抗剪强度在工程上有非常重要的意义试验原理:三轴压缩试验最常用的是把土削成圆柱体,放到压力室内十三、三轴压缩试验提示:双击自动滚屏(一)试验目的三轴压缩试验是测定土的抗剪强度的一种方法。
对堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。
(二)试验原理土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。
常规的三轴压缩试验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。
根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。
三轴压缩试验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水试验(uu);固结不排水试验()和固结排水试验(CD)。
(三)试验设备1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。
2.其它:击样器、饱和器、切土盘、分样器、承膜筒等。
(四)试验步骤1.切取土样:先用钢丝锯或切土刀切取一稍大于规定尺寸的土柱,放在切土架上,用钢丝锯或切土刀紧靠侧板,由上往下细心切削,边切削边转动圆盘,按规定的高度将两端削平、称量;并取余土测定试样的含水率。
2.试样饱和:试样有抽气饱和、水头饱和及反压力饱和三种方法,最常用的是抽气饱和。
即将试样装入饱和器内,放入真空缸内,与抽气机接通,开动抽气机,连续真空抽气2~4h,然后停止抽气,静止12h左右即可。
3.试样安装:将压力室底座的透水石与管路系统以及孔隙水测定装置充水并放上一张滤纸,然后再将套上乳胶膜的试样放在压力室的底座上,最后装上压力筒,并拧紧密封螺帽,同时使传压活塞与土样帽接触。
水泥固化土的室内三轴试验分析
水泥固化土的室内三轴试验分析结合水泥固化土的力学性能分析需求,本文通过开展室内三轴试验对固化剂掺量和养护时间给土体力学性能带来的影响展开了分析。
从试验结果来看,相较于素土,水泥固化土拥有更高的应力、强度和刚度,力学性能得到了明显改善。
随着固化剂掺量和养护时间的增加,土体轴向应力、破坏应力、强度提高系数和刚度均有所增加,因此能够使土体力学性能得到改善。
标签:水泥固化土;室内测试;三轴试验1 试验材料与方法1.1 试验材料试验采用水泥固化剂为固化材料,用土为铁路路基土,属于粗颗粒土,含水量9.5%,最大干密度为2.12g/cm?。
在试验过程中,按照《公路土工试验规程》,需要对土样进行重塑制备,先将样品捣碎风干[1]。
过2mm筛后,按含水量要求进行闷料,经过一昼夜后使样品中水分保持均匀。
采用所需水泥进行搅拌,然后分三层进行击实。
各层需要利用拉毛器进行刨毛处理,避免分层问题的发生。
在制样期间,需要将干密度控制在2.12g/cm?。
在试块制作阶段,需要按照95%压实度进行,尺寸为80mm×39.1mm。
脱模后,需要采用聚乙烯塑料袋进行封装,然后在20±2℃、湿度55%±2%的条件下利用养护室养护,分别开展3d、7d、28d 的三轴试验。
水泥固化土的强度变化速度较快,在28d能够达到最大强度的95%,因此可用于开展三轴试验。
1.2 试验方法开展三轴试验,可选用TSZ30-2.0型应变控制型三轴剪切仪。
由于试验采用的土样并非是饱和土,所以可以保持1.25mm/min速率进行试件剪切。
在对试件进行加载时,需要采用不固结不排水的方法,围压达到200kPa。
等压固结2h后,可以对围压进行加载,然后利用计算机实现轴向应力、强度提高系数等数据的采集、分析和处理。
为对试验结果进行客观分析,采用素土作为空白试样进行试验结果对比。
对比结果固化剂掺量取值分别为0%、3%、4%、5%、6%和7%,养护时间分别为3d、7d、28d。
土的静三轴剪切试验
土的静三轴剪切试验一、基本原理三轴压缩试验是测定土的抗剪强度的一种方法。
它通常用3-4个圆柱形试样,分别在不同的恒定周围压力(O3)下,施加轴向压力,即主应力差(。
1-03),进行剪切直到破坏;然后根据摩尔-库伦理论,求得抗剪强度参数。
适用于测定细粒土及砂类土的总抗剪强度参数及有效抗剪强度参数。
本次试验主题词:周围压力;轴向压力;不固结不排水剪;固结不排水剪;固结排水剪。
二、仪器设备1.三轴压缩议:应变控制式,由周围压力系统、反压力系统、孔隙水压力量测系统和主机组成。
2.附属设备:包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆模。
3.天平:称量200g,感量0.019;称量1000g,感量O.lg。
4.橡皮膜:应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气孔。
三、操作步骤试样的制备:(1)将制备成大于试样直径和高度的毛坯,放在切土器内用钢丝锯和修土刀,制备成所要求规格的试样(2)试样饱和一般采用真空抽气饱和法,将切好的试样装入饱和器后,先浸没在带有清水的真空饱和缸内,连续真空抽气2-4小时(粘土),然后停止抽气,静置12小时左右即可。
(3)原状试样制备,应将土切成圆柱形试样,试样两端应平整并垂直于试样轴,当试样侧面或端部有小石子或凹坑时,允许用削下的余土修整,试样切削时应避免扰动,并取余土测定试样的含水量。
(4)扰动试样制备,应根据预定的干密度和含水量,在击实器内分层击实,粉质土宜为3一5层,粘质土宜为5一8层,各层土料数量应相等,各层接触面应刨毛。
(5)对于砂性土应先在压力室底座.全依次放上不透水板,橡皮膜和对开圆膜。
将砂料填入对开圆膜内,分三层按预定干密度击实。
当制备饱和试样时,在对开圆膜内注入纯水至1/3高度,将煮沸的砂料分三层填入,达到预定高度。
放上不透水板、试样帽,扎紧橡皮膜。
对试样内部施加5KPa负压力使试样能站立,折除对开圆膜。
(6)对制备好的试样,应量测其直径和高度。
土三轴压缩试验报告完整版
土三轴压缩试验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验六土三轴压缩试验实验人:学号:(一)、试验目的1、了解三轴剪切试验的基本原理;2、掌握三轴剪切试验的基本操作方法;3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理;4、进一步巩固抗剪强度的基本理论。
(二)、试验原理三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。
三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。
1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU?;2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU?或有效抗剪强度指标和C???及孔隙水压力系数;3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd?。
(三)、试验仪器设备1、三轴剪力仪(分为应力控制式和应变控制式两种)。
应变控制式三轴剪力仪有以下几个组成部分(图8-1):图8-1 应变控制式三轴剪切仪1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。
(1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。
土工直接剪切试验和三轴剪切试验优缺点及适用范围研究黄立丕
土工直接剪切试验和三轴剪切试验优缺点及适用范围研究黄立丕发布时间:2021-10-14T07:12:38.477Z 来源:《防护工程》2021年20期作者:黄立丕[导读] 随着现代化发展不断加快,人们对于建筑工程整体质量也提出了更高的要求。
在此过程中,土的抗剪强度测试无疑是十分重要的一项内容,该方面的性质对于工程结构及地基的稳定性有着很大的影响。
就目前而言,建筑工程施工中测试土的抗剪强度的方法主要有以下两种,分别是直接剪切试验和三轴剪切压缩试验。
本文中就针对土工直接剪切试验和三轴剪切试验两种方法的原理进行论述,经比较后,充分了解二者的优缺点及具体的适用范围,从而有效的调整不同级别建筑物对于这类实验方法的选择,也使得最终的试验结果更符合岩土工程运行的实际工况。
黄立丕地矿梧州地质工程勘察公司广西梧州 543002摘要:随着现代化发展不断加快,人们对于建筑工程整体质量也提出了更高的要求。
在此过程中,土的抗剪强度测试无疑是十分重要的一项内容,该方面的性质对于工程结构及地基的稳定性有着很大的影响。
就目前而言,建筑工程施工中测试土的抗剪强度的方法主要有以下两种,分别是直接剪切试验和三轴剪切压缩试验。
本文中就针对土工直接剪切试验和三轴剪切试验两种方法的原理进行论述,经比较后,充分了解二者的优缺点及具体的适用范围,从而有效的调整不同级别建筑物对于这类实验方法的选择,也使得最终的试验结果更符合岩土工程运行的实际工况。
关键词:土工直接剪切试验、三轴剪切试验、优缺点分析、适用范围研究引言土的抗剪强度即是指土体抵抗剪切破坏的极限能力,作为土的重要力学性质,其抗剪强度往往呈现出不断变化的趋势,且这方面的变化也有着一定的规律性。
经过多方面实验研究表明,土体发生破裂的表面,其抗剪强度会随着法向应力的增加而增长,这也在一定程度上给土的抗剪强度测试带来了难题。
就目前而言,对于土的抗剪强度的测试也需要选择合适的设备及方法,主要是依据土的受力面以及受力的基本方式,这也是确保最终测试结果准确性的重要保障。
土的三轴试验研究及土的应力路径解析
以粉土和4 %石灰、2 %水泥+2 %石灰、4 %SEU-2 型固化剂、 8%SEU-2 型固化剂处理的粉土为研究对象,通过不固结不排
பைடு நூலகம்
水三轴剪切试验(UU)和固结不排水三轴剪切试验(CU)对变掺量、
变龄期条件下粉土及稳定土的强度和变形特性进行了研究。试 验结果表明:粉土及其稳定土的应力-应变曲线主要为软化型。 SEU-2 型固化剂在改善粉土的凝聚力方面起了很好的作用, 综合考虑了不同稳定方法的强度指标,表明掺SEU-2 型固化 剂是稳定粉土的最有效的方法。
Thank you!
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.2 掺2 %水泥+2 %石灰的粉土三轴剪切试验结果
经验表明,用水泥固化稳定土体能有效增加土体的内摩擦角和凝聚力,用 一部分水泥代替石灰也能起比单纯掺石灰更好的固化稳定效果,这在稳定 粉土的直剪试验和无侧限强度试验中已有所体现,三轴剪切的结果进一步 说明了这一点。图7 和图8分别是掺2 %水泥+2 %石灰的UU 和CU 试验结 果,试样干密度1.72 g/cm3,标准养护7 d, u c =114.75 kPa,u φ =29°; cu c =91.1 kPa, cu φ =29°。CU 试验土样在围压下固结的效 果在总应力指标上未体现出来,可由有效强度指标体现c′ =77.3 kPa,φ ′ =31°。
粉土的强度特性及应力-应变特性
粉土的 CU 试验结果与UU 试验类似,在不同围压条件 下土样都有破坏峰值,且在较低围压应力水平下表现 得更明显,应力-应变曲线主要为软化型,低围压时残 余强度比峰值强度降低得更多,高围压时残余强度与 峰值强度相比降低得不明显。与UU 试验类似,剪切过 程中孔压变化与剪切偏应力之间的关系也表现出先增 后减,先正后负的剪胀特点。
岩土三轴实验报告
岩土三轴实验报告引言岩土力学是研究岩石和土壤中应力与应变关系的一门学科,岩土三轴实验是岩土力学中最常用的试验之一。
通过此实验可以研究材料的力学性质,如抗剪强度、应力-应变关系等。
本实验旨在探究不同岩土样品在不同应力作用下的力学性质。
实验目的1. 了解岩土三轴实验的原理和方法;2. 掌握岩土三轴仪的操作流程;3. 研究不同岩土样品在不同应力作用下的力学性质。
实验原理岩土三轴实验是通过施加不同的垂直应力和剪应力,研究岩土样品在不同应力作用下的力学性质。
主要包括以下三个步骤:1. 加压阶段:施加垂直于试样的轴向应力,使试样处于初次压缩状态。
2. 剪切阶段:在施加轴向应力的同时,施加水平的剪切应力,使试样发生剪切破坏。
3. 卸载阶段:在试样剪切破坏后,卸除应力,观察试样的剪切破坏特征。
实验步骤1. 准备工作:清洁试样、校准仪器;2. 准备试验样品:根据实验要求,采集不同类型的岩土样品;3. 安装试样:将试样放入岩土三轴仪中,并进行固定;4. 设置应力:根据实验需要,设定施加在试样上的垂直和水平应力;5. 施加应力:按照实验计划,逐步加压及剪切,记录各个应力下的试样变形情况;6. 剪切破坏:在试样达到剪切破坏时,记录破坏状态;7. 卸载:卸除应力,观察试样的剪切破坏特征;8. 实验结束:清理仪器,整理数据。
实验结果与分析根据实验数据,我们绘制了不同应力下的剪切应变曲线,并计算了抗剪强度、弹性模量等力学性质。
根据实验结果,我们可以得出以下结论:1. 不同岩土样品在相同应力下的剪切特性不同;2. 随着应力的增加,岩土样品的抗剪强度增加;3. 岩土样品在剪切破坏后,形成明显的剪切面和裂缝。
结论通过岩土三轴实验,我们探究了不同岩土样品在不同应力作用下的力学性质。
实验结果表明,岩土样品的抗剪强度受到应力的影响,剪切破坏形成明显的剪切面和裂缝。
本实验对于岩土工程设计和施工具有重要意义。
参考文献1. 李明. 岩土力学与岩土工程实验方法[M]. 中国建筑工业出版社, 2014.2. 王兆霞. 土力学实验与试验方法[M]. 人民交通出版社, 2004.注:本报告为模拟实验报告,内容仅供参考。
土工直接剪切试验和三轴剪切试验优缺点及适用范围
试 验 ,每 个 试 件 施 加不 同 的周 围压力 o r , ,可分 别
得 出剪 切 破 坏 时 的 大 主应 力 。 ,将 这些 结 果 绘 成
一
( 3 ) 在剪 切 过 程 中 ,土 样 剪 切面 逐 渐缩 小 ,而 在计 算 抗 剪 强 度 时 却 是 按 土样 的 原 截 面 计 算 的 ; ( 4 ) 试 验 时不 能 严 格 控 制 排 水 条 件 ,不 能 测 量 孔 隙水
盒 之 间 的 平 面 ,而 不 是 沿 土 样 最 薄 弱 的 面 剪 切 破
O
( b )
( c )
图 1 直 接 剪 切 试 验 结 果
孙 莉 萍 等 ・土 工 直 接 剪 切 试 验 和 三 轴 剪 切 试 验 优 缺 点 及 适 用 范 围
・ 4 1・
坏 ;( 2 ) 剪 切 面 上剪 应 力 分布 不 均 匀 ,土 样 剪 切破
直 接 剪 切试 验 最 大 的 优 点 就 在 于 其 设 备 构 造 简单 、操 作 容 易 和 试 验 历 时短 ,这 也 是 目前 各 个 项 目在 工 期 紧 的情 况 下 被 广 泛 应 用 的 主 要 原 因 。
剪 切 位 移关 系 曲线 中有 明显 峰值 或稳 定 值 时 ,取
可 用库 仑 公 式 ( 1 ) 表示。图 1 ( c ) 表 明对 于 黏 性 土 ,
抗 剪 强 度 与法 向 应 力 之 间也 基 本 成 直线 关 系 ,该
和无 侧 限抗 压 试 验 等 。本 文 主 要 对 土 工试 验 的力
学 试 验 中 的直 接 剪 切 试 验 与 三 轴 剪 切 试 验 进 行 了 优 缺 点 的对 比分 析 .为今 后 不 同 等级 的工 程 选 择 什 么样 的试验 方法 提供 部分 参 考意见 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 土的三轴剪切试验
学 时:2学时
实验性质:综合型实验
一、目的要求:
土的三轴剪切试验是综合性试验,通过对试验的设计,能获得在不同的排水条件下土的应力与应变的关系和强度参数。
通过试验加深对土力学基本理论的理解,培养学生的动手能力和创新能力。
掌握土的三轴剪切试验基本原理和试验方法,了解试验的仪器设备,熟悉试验的操作步骤,掌握三轴剪切试验成果的整理方法,根据试验成果绘制应力与应变的关系曲线,计算土的内聚力和摩擦角。
二、试验原理:
一般认为,土体的破坏条件用莫尔-库仑(Mohr-Coulomb )破坏准则:土体在各向主应力作用下,作用在某一应力面上的剪应力τ与法向应力σ之比达到某一比值,土体将沿该面发生剪切破坏。
莫尔-库仑破坏准则的表达式为:φσσφσσsin 2
cos 23131++=-C 。
1σ大主应力,3σ小主应力,C 土的粘聚力,φ土的内摩擦角。
三轴剪切试验就是根据莫尔-库仑破坏准则测定土的强度参数粘聚力c 和内摩擦角φ。
三、试验方法:
根据加载类型的不同,三轴剪切试验又可分为三种试验方法:不固结不排水剪(UU);固结不排水剪(CU);固结排水剪(CU)。
四、仪器设备:
1.应变控制式三轴仪(图5. 1—1):由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成。
2.附属设备:包括击样器、饱和器、切土器、原状土分样器、切土盘、承膜筒和对开圆膜,应符合下图要求:1)击样器(图5. 1-2),饱和器(图5. 1-3)。
2)切土盘、切土器和原状土分样器(图5. 1-4)。
3)承膜筒及对开圆模(图5. 1—5及图5. 1—6)。
3.天平:称量200g ,最小分度值0. 0lg ;称量1000g ,最小分度值0. 1g 。
4.橡皮膜:应具有弹性的乳胶膜,对直径39. 1和61. 8mm 的试样;厚度以0. 1~0. 2mm 为宜,对直径101mm 的试样,厚度以0. 2~0. 3为宜。
图5.1-1 应变控制式三轴仪
图5.1-2 击样器图5.1-3 饱和器
1-套环;2-定位螺丝;3-导杆;4-击锤;1-圆模(3片);2-紧箍
5-底板;6-套筒;7-击样筒;8-底座3-夹板;4-拉杆;5-透水板
图5.1-4 原装土和土盘分样器
图5.1-5 承膜筒图5.1-6 对开圆模
全自动三轴仪
TSZ10-1.0应变控制式三轴仪
土样饱和器 QI-1型切土机
五、试验步骤:
(一)不固结不排水剪试验步骤
1 试样的安装步骤:
I 在压力室的底座上,依次放上不透水板、试样及不透水试样帽,将橡皮膜用承膜筒套在试样外,并用橡皮圈将橡皮膜两端与底座及试样帽分别扎紧。
Ⅱ 将压力室罩顶部活塞提高,放下压力室罩,将活塞对准试样中心,并均匀地拧紧底座连接螺母。
向压力室内注满纯水,待压力室顶部排气孔有水溢出时,拧紧排气孔,并将活塞对准测力计和试样顶部。
Ⅲ 将离合器调至粗位,转动粗调手轮;当试样帽与活塞及测力计接近时,将离合器调至细位,改用细调手轮,使试样帽与活塞及测力计接触,装上变形指示计,将测力计和变形指示计调至零位。
Ⅳ 关排水阀,开周围压力阀,施加周围压力。
2 剪切试样应按下列步骤进行:
I 剪切应变速率宜为每分钟应变0. 5%~1. 0%。
Ⅱ 启动电动机,合上离合器,开始剪切。
试样每产生0. 3%~0. 4%的轴向应变(或0. 2mm 变形值),测记一次测力计读数和轴向变形值。
当轴向应变大于3%时,试样每产生0. %~0. 8%的轴向应变(或0.5mm 变形值),测记一次。
Ⅲ 当测力计读数出现峰值时,剪切应继续进行到轴向应变为15%~20%。
Ⅳ 试验结束,关电动机,关周围压力阀,脱开离合器,将离合器调至粗位,转动粗调手轮,将压力室降下,打开排气孔,排除压力室内的水,拆卸压力室罩,拆除试样,描述试样破坏形状,称试样质量,并测定含水率。
3 轴向应变应按下式计算:100011⨯∆=h h ε。
式中,1ε轴向应变(%);1h 剪切过程中。