北邮大三下学期电磁场与电磁波实验

合集下载

北邮电磁场与电磁波实验三四五

北邮电磁场与电磁波实验三四五

北邮电磁场与电磁波实验三四五————————————————————————————————作者:————————————————————————————————日期:实验三、双缝干涉实验1. 实验目的掌握来自双缝的两束中央衍射波相互干涉的影响。

2. 实验设备S426型分光仪3. 实验原理图一 双缝衍射原理图如图1所示,当一平面波垂直入射到一金属板的两条狭缝上,则每一条狭缝就是次级波波源。

由两缝发出的次级波是相干波,因此在金属板的后面空间里,将产生干涉现象。

当然,光通过每个缝也有衍射现象。

因此本实验将是衍射和干涉两者结合的结果。

为了主要研究来自双缝的两束中央衍射波相互干涉的结果,设b 为双缝的距离,a 为缝宽,a 接入波长λ。

因此,取较大的b ,则干涉强度受单缝衍射的影响小;反之,当b较小时,干涉强度受单缝衍射影响大。

干涉加强的角度为:干涉加强的角度为:()干涉减弱的角度为:()本演示实验中,只对1级极大干涉角和极小干涉角作讨论。

4.实验内容与步骤仪器连接时,预先接需要调整双缝衍射板的缝宽,当该板放在支座上时,应使狭缝平面与支座下面的小圆盘某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。

转动小平台使固定臂的指针在小平台的180处,此时小平台的0就是狭缝平面的法线方向。

这时调整信号电平使表头指示接近满度。

然后从衍射角0开始,在双缝的两侧使衍射角每改变1度去一次表头读数,并记录下来。

由于衍射板横向尺寸太小,所以当b取得较大时,为了避免接收喇叭直接收到发射喇叭的发射波或通过板的边缘过来的波,活动臂的转动角度应小些。

5.实验数据与分析5.1.双缝衍射实验a=40mm;b=80mm,λ=32mm1)实验测量数据φ右侧电流强度(μA) 左侧电流强度(μA)平均电流强度(μA)0°90 90 901°96 100 98 2°100 94 97 3°100 61 80.5 4°98 39 68.5 5°68 20 44 6°36 15 25.5 7°16 18 17 8° 6 25 15.5 9° 4 38 21 10° 6 52 29 11°10 50 30 12°25 42 33.5 13°40 40 40 14°48 48 4815°56 56 56 16°55 78 66.5 17°47 96 71.5 18°38 100 69 19°23 100 61.5 20°10 99 54.5 21° 4 91 47.5 22° 2 82 42 23°0 74 37 24°0 60 30 25° 1 46 23.5 26° 4 24 14 27° 6 9 7.5 28°8 4 629°8 4 6 30°7 15 11 31° 5 52 28.5 32° 4 98 51 33° 3 100 51.5 34° 2 100 51 35° 1 100 50.5 36° 1 100 50.52)理论分析将双缝的参数a=40mm;b=80mm,λ=32mm代入方程中,得到下表:K 0 1 2 3 1(极0°15.47°32.23°53.13°大值)2(极7.66°23.58°41.81°68.96°小值)3)作图分析120100806040200°2°4°6°8°10°12°14°16°18°20°22°24°26°28°30°32°34°36°其中,蓝色的曲线代表原始数据,绿色的离散值代表极大值,红色的离散值代表极小值。

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。

本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。

实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。

电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。

磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。

实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。

然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。

在不同电流下,我们分别测量了电磁场的强度,并记录下来。

接下来,我们使用磁力计来测量电磁场的方向。

将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。

然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。

在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。

通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。

根据这些数据,我们可以绘制出电磁场的强度和方向分布图。

从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。

讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。

这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。

而我们的实验结果也验证了这一规律。

此外,我们还发现电磁场的强度和方向与测量位置和角度有关。

在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。

这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。

结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。

北邮电磁场与电磁波实验一

北邮电磁场与电磁波实验一

实验一:电磁波反射折射实验一、实验目的1、熟悉S426型分光仪的使用方法2、掌握分光仪验证电磁波反射定律的方法3、掌握分光仪验证电磁波折射定律的方法二、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

电磁波斜入射到两种不同媒介分界面上时会发生发射和折射现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。

将分界面的法线与入射波构成的平面定义为入射面,入射波与界面法线的夹角定义为入射角,反射波与界面法线的夹角定义为反射角,折射波与界面的法线的夹角定义为折射角。

电场E垂直于入射面的电磁波为垂直极化波。

垂直极化波的反射系数和折射系数:R⫠=η2cosθ−η1cosθ‘’η2cosθ+η1cosθ‘’T⫠=2η2cosθη2cosθ+η1cosθ‘’式中:η1=√μ1ε1η2=√μ2ε2三、实验内容与步骤1.熟悉分光仪的结构和调整方法2.连接仪器,调整系统如图1所示,仪器连接时,两喇叭口面应互相正对,它们各自的轴线应在一条直线上。

指示两喇叭位置的指针分别指于工作平台的900刻度处,将支座放在工作平台上,并利用Figure 1反射实验仪器的布置平台上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。

3.测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致。

这时小平台上的00刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。

为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。

本报告将详细介绍我们在北邮进行的电磁场实验及其结果。

实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。

实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。

此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。

实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。

实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。

当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。

实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。

实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。

根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。

此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。

实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。

实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。

此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。

结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。

我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。

这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。

同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。

北邮大三下学期电磁场与电磁波实验

北邮大三下学期电磁场与电磁波实验

电磁场与电磁波·实验报告信息与通信工程学院电磁场与电磁波实验报告题目:校医院4G信号场强特性的研究指导老师:日期:2015年6月目录一、实验目的 (1)二、实验原理 (1)三、实验内容 (3)四、实验步骤 (3)1、实验地点 (3)2、数据采集 (4)3、数据录入 (4)4、数据处理流程 (4)五、实验结果与分析 (4)1、磁场强度地理分布 (4)2、磁场强度统计分布 (4)3、建筑物的穿透损耗 (5)六、问题分析与解决 (5)1、测量误差分析 (5)2、场强分布的研究 (6)七、分工安排 (6)八、心得体会 (6)九、附录 (8)十、网络参量测量演示实验问卷 (19)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

北邮电磁场与电磁波实验 心得体会总结

北邮电磁场与电磁波实验 心得体会总结

电磁场与微波测量实验总结学院:班级:姓名:学号:一、实验建议八周的电磁场与微波实验让我收获了很多知识与经验,也培养了我实验动手的能力,但与此同时我也发现了实验的一些不足之处,下面是我对部分实验的看法和建议:1、课程安排不太合理微波工程是上学期学的,大家还有比较深刻的印象,对实验原理理解的比较快,实验进行得也比较顺利。

但电磁场是大二学的,已经基本都遗忘了,预习起来比较吃力,理解得也要慢一些。

2、希望学校能加强对实验器材的管理实验中,我们很多次发现许多器件不足,需要各个组之间相互借用,有时还需要等到其他组做完才能继续实验。

这不利于同学们完成实验,而且对于实验室的器材维护也会产生不利的影响。

建议实验室以后加强对于实验器材的管理与维护,同时也加强同学们对实验器材的重视和爱护,共同努力,创造一个更好的实验环境。

3、实验互相干扰太严重由于实验室较小,各组之间的干扰比较严重,几乎每次写实验误差分析的时候都要写上这一点。

其实可以通过合理安排小组进行实验的时间或者扩大实验场地。

二、提出新的实验用微波分光仪测量玻璃厚度1、实验目的深入理解电磁波的反射、折射和叠加2、实验仪器S426型分光仪的改进设备3、实验原理发射波在玻璃表面反射一次,透过玻璃后经反射板反射一次。

当两次反射博得路径相差波长的整数倍的时候,接受喇叭收到的信号最强。

设玻璃厚度为x,可以动板与玻璃距离为d,θ1和θ2分别为入射角和折射角,v1和v2分别为空气中速度和玻璃中速度。

其中θ2可由计算得出,λ、d、θ1均可以测量得到。

为减小实验误差可选取多个入射角进行测量。

玻璃的折射率可参考以下数据。

4、实验内容及步骤(1)将反射板紧贴玻璃,记下此时刻度d1;(2)移动反射板,观察接收信号,当信号出现一次最大值时记下此时刻度d2;(3)继续移动发射板,再次出现最大值时记下刻度d3;(4)更换入射角度,重复以上步骤;(5)将数据填入表格并进行计算。

5、数据记录λ=(d3-d2)*2 d=d2-d1带入公式(3),即可求出x三、实验总结电磁场与微波测量实验是通信工程、电子工程、自动控制、无线技术、微波工程、电磁兼容等专业的一门重要的基础实验课。

北京邮电大学 电磁场与电磁波实验3.3.6微波TV收发系统的基本原理

北京邮电大学 电磁场与电磁波实验3.3.6微波TV收发系统的基本原理

干扰 1
892.41
-55.75
CH1
干扰 2
901.11
-63.86
CH1
干扰 3
870.24
-62.44
CH1
四、 实验总结:
通过本次实验,我们小组经过亲身的实践,我们了解了微波 TV 收发系统的基本 原理,同时也明白了微波 TV 收发系统收到的干扰也会很多,所以在现实生活中, 我们也懂得了技术的优势和劣势,也能在之后的学习中更加理解这一点。
952
944
936
928
920
(MHz)
接收机本振频率
938
930
922
914
906
898
(MHz)
二、 内容及步骤
1、微波 TV 发射机系统的调试 1)传输信道的单载波调试 (1) 连接测试系统(断开调制器)
(2) 设置 DDS 信号发生器输出指定频率和功率的单载波信号(如 60MHz、 -30dBm)。
图记录在数据表格中。 (4) 测量并记录输出信号的主要频率分量和信号电平,测试数据记录在数
据表格中。 (5) 将信道选择器分别设置在 CH2~CH6,测量并记录的主要频率分量和信
号电平,测试数据记录在数据表格中。 2、微波 TV 接收机系统调试
1)接收信道的单载波调试 (1) 连接测试系统(断开调制器)。
天线
低噪声 放大器
下变 频器
中频 滤波 器
中频 放大 器
解调 器
输出信号
本振
图 3 无线收信机的组成框图 3. 天线
天线是无线通信系统不可缺少的重要组成部分之一。天线的主要作用是
把发信机送来的射频载波变换成空间电磁波并辐射出去(发射端)或者把收

北邮电磁场与电磁波实验报告材料

北邮电磁场与电磁波实验报告材料

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:目录一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4、建筑物的穿透损耗的定义 (3)三、实验内容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4、数据处理 (6)五、实验结果与分析 (6)1、磁场强度地理分布 (6)2、磁场强度统计分布 (8)3、建筑物的穿透损耗 (9)六、问题分析与解决 (9)1、测量误差分析 (9)2、场强分布的研究 (10)七、分工安排 (10)八、心得体会 (10)九、附录:数据处理过程 (12)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

北邮-电磁场与电磁波实验报告-无线信号场强特性研究

北邮-电磁场与电磁波实验报告-无线信号场强特性研究

电磁场与电磁波实验报告目录一、实验目的 (2)二、实验原理 (2)三、实验内容 (4)四、实验步骤 (5)(1)测量(数据采集) (5)(2)数据录入 (5)(3)数据处理 (5)五、实验数据整理及分析 (6)(1)阴影衰落的分布规律 (6)a)概率分布柱状图 (6)b)累积分布曲线 (9)c)具体分布参数 (12)(2)场强地理分布与拟合残差图 (13)(3)不同频率衰落的对比 (17)六、实验总结 (18)(1)分工安排 (18)(2)心得体会 (18)实验五校园内无线信号场强特性的研究一、实验目的1、 掌握在移动环境下阴影衰落的概念以及正确测试方法;2、 研究校园内各种不同环境下阴影衰落的分布规律;3、 掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;4、 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、 研究建筑物穿透损耗与建筑材料的关系。

二、实验原理无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。

因此,基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。

(1) 大尺度路径衰落在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

大尺度平均路径损耗:用于测量发射机和接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB )差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。

对任意的传播距离,大尺度平均路径损耗表示为:()[]()()010log /0PL d dB PL d n d d =+即平均接收功率为: 0000()[][]()10log(/)()[]10log(/)r t r P d dBm P dBm PL d n d d P d dBm n d d =--=-其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;d0为近地参考距离;d 为发射机与接收机(T-R)之间的距离。

北邮电磁场与电磁波测量实验报告7

北邮电磁场与电磁波测量实验报告7

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波天线方向图测试实验学院:电子工程学院班级:2010211203班学号:10210863姓名:张俊鹏2013年5月23日一、实验目的微波天线是微波通信设备中一个重要的组成部分,微波信息的质量与天线性能密切相关。

通常,微波天线都为面式天线,验证这类天线的性能,首先是通过测量来实现的。

本次实验的主要目的就是研究天线发射微波信号后接受的状况,并通过矢量网络分析仪来分析接受电磁波的特点,给出矢量分析图形,直观的得到各方向的长枪分布特点,从而进一步研究微波天线的通信状况。

二、微波天线的主要技术参数1.方向性(1)方向性图天线的基本功能是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(或场强)在空间各点分布的情况,它是描述天线的主要传输之一。

天线的方向性图是一个立体图形。

它的特性可以用两个互相垂直的平面(E平面和H平面)内方向性图来描述。

如下图1所示。

图1 天线方向性图天线方向性图能直观地反映出天线辐射能量集中程度、方向性图越尖锐,表示辐射能量越集中,相反则能量分散。

若天线将电磁能量均匀地向四周辐射,方向性图就变成一球面,称作无方向性,这就是一理想点源在空中辐射场。

天线方向性图可通过测试来绘制,如测得的是功率,即可绘出功率方向性图,如测得的是场强,则绘出场强方向性图,但两者图形形状是完全一样的。

通常图形方向性图有多个叶瓣,其中最大辐射方向的是叶瓣,称主瓣,其余称副瓣(或旁瓣)。

在方向性图中主瓣信息是我们最关心的。

●方向性图主瓣宽度方向性图主瓣宽度是指半功率点(功率下降为最大辐射方向功率一半之点)之间宽度,它是由主瓣最大值“1”下降到“0.5”处两点与零点连接形成的夹角,用2θ0.5来表示,如图2所示。

图2 方向性图主瓣副瓣示意●方向性图主瓣零点角如图2所示,方向性图零点角是指主瓣两侧零辐射方向之间夹角,用2θ0来表示。

北京邮电大学 电磁场与电磁波实验 3.2.2衰减器的特性

北京邮电大学 电磁场与电磁波实验 3.2.2衰减器的特性

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:报告撰写人:学号:微波实验单元项目3.3.1 衰减器的特性测量一、实验目的(1)熟练掌握频谱分析仪的使用(2)了解衰减器对微波信号的衰减机理以及相关特性。

二、实验仪器微波信号发生器、衰减器(10db),频谱分析仪三、实验内容及数据处理以下实验按照图1连接测试。

1.衰减器的测量(1)设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-10dBm和-20dBm)。

(2)将输入输出电缆短接。

用频谱分析仪测量衰减器的输入信号电平,测试数据记录到表格1中。

(3)接入被测衰减器。

用频谱分析仪测量衰减器的输出信号电平,计算衰减器的衰减量以及与标称值得误差,测试数据记录到表格1中。

(4)改变微波信号发生器的输出频率,重复以上测量,测试数据记录到表格1中标称值(10dBm)表1 衰减器的衰减量测量分析:因为我们本次实验并没有对应的衰减器,因此使用的衰减器是PIN衰减器,上面标明的衰减量为>=10dB,而实际上要求用的衰减器其衰减量为10dB,因此在计算标称误差的时候,是以标准衰减量10dB来计算的。

相应的数据计算过程如下:850MHz:衰减量=-10.29-(-20.87)=10.58;标称误差=10.58-10=0.58;误差率5.8%900MHz:衰减量=-11.21-(-21.24)=10.03 ;标称误差=10.03-10=0.03;误差率0.3%950MHz:衰减量=-10.98-(-21.79)=9.81 ;标称误差=10.98-10=0.98。

误差率9.8%可见:误差在允许的范围内可以被接受。

2.幅频特性测量(1)设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-20dBm)。

(2)将输入和输出电缆短接。

用频谱分析仪测量并记录衰减器的输入信号电平。

(3)接入被测衰减器。

设置频谱分析仪的中心频率为指定频率(如850MHZ),设置合适的扫描带宽(如100MHZ),适当调整参考电平使频谱图显示在合适的位置。

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、实验目的1.了解谐振腔的基本知识。

2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。

选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。

2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。

这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。

北京邮电大学 电磁场与电磁波实验 3.3.1频谱分析仪的使用

北京邮电大学 电磁场与电磁波实验 3.3.1频谱分析仪的使用

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:报告撰写人:学号:微波实验单元项目3.3.1 频谱分析仪的使用一、实验目的熟练掌握频谱分析仪的使用。

二、实验仪器微波信号发生器、频谱分析仪三、实验内容及数据处理以下实验按照图1连接测试。

1.单载波信号的频谱测量(1)设置微波信号发生器输出指定频率和功率的单载波信号(如900MHz、-10dBm)。

(2)设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽(实际实验中设置为10MHz),适当调整参考电平使频谱图显示在合适的位置(如图2所示)。

图2 单载波信号的频谱图(3)用峰值搜索功能测量信号的频率和电平,测试数据记录到表1中。

(4)用差值光标功能测量信号和噪声的相对电平(信噪比),同时记录频谱分析仪的分辨表1 单载波信号的频谱图2.带载波信号的杂散测量(1)设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-20dBm)。

(2)设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置。

(3)用频谱分析仪测量信号的频率和电平,测试数据记录到表2中。

(4)增加频谱分析仪的扫描带宽(如100MHz),用手动设置功能适当减小频谱分析仪的分辨率带宽,观察频谱图的变化,直到观测到杂散信号(或噪声低于信号79dB)为止(如图3所示)(5)在频谱图中确定最大杂散信号,用差值光标功能测量信号和最大杂散信号的相对电平(杂散抑制度)。

(6)改变输出频率,重复以上测量。

表2 杂散波测量2.相位噪声测量(1)设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-10dBm)。

(2)设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置扫描带宽为50KHz,设置合适的分辨率带宽和视频带宽,适当调整参考电平使频谱图显示在合适的位置(如图4所示)。

(3)用峰值搜索功能测量信号的频率和电平,测试数据记录到表3中。

北邮电磁场与电磁波实验天线部分实验报告一

北邮电磁场与电磁波实验天线部分实验报告一

电磁场与微波实验天线部分实验报告班级:2011211104姓名:序号:学号:指导老师:陈文成实验二网络分析仪测试八木天线方向图一.实验目的1. 掌握网络分析仪辅助测试方法;2. 学习测量八木天线方向图方法;3. 研究在不同频率下的八木天线方向图特性。

注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;二.实验原理:实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可)引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。

此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。

反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。

发射状态作用过程亦然。

三.实验步骤:1. 调整分析仪到轨迹(方向图)模式;2. 调整云台起点位置270°;3. 寻找归一化点(最大值点);4. 旋转云台一周并读取图形参数;5. 坐标变换、变换频率(f=600Mhz、900MHz、1200MHz),分析八木天线方向图特性;四.实验测量及数据1.频率为600MHz:(1)测量图(百分比):(2)测量数据:网络分析仪测得最大值:36.8最大值点:最大值对称:方位幅度方位(Max) 幅度(Max) 宽度(3db)279度 1 274度 1 95度方位幅度方位(Max) 幅度(Max) 宽度(3db)99度 1 274度 1 95度半功率点(1):半功率点(2):零点(1):零点(2):2.频率为900MHz: (1)测量图(百分比):方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 36度 0.497274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 176度 0.499274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 38度 0.405274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 183度 0.407274度195度(2)测量数据:网络分析仪测得最大值:100.2最大值点:最大值对称:半功率点(1):半功率点(2):零点(1):零点(2):2.频率为1200MHz: (1)测量图(百分比):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 75度0.99319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 255度0.27319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 2度0.49019度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 133度0.49919度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 327度0.16119度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 162度0.01619度1117度(2)测量数据:网络分析仪测得最大值:37.8最大值点:最大值对称:半功率点(1):半功率点(2):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 295度1270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 115度0.706270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 14度0.448270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 198度0.510270度198度零点(1):零点(2):五.实验结果分析:实验数据对比:由以上实验数据及对比可以看出:900MHz 时的天线主瓣宽度较大,侧瓣和后瓣均很小,而600MHz 和1200MHz 时的天线的方向性很不明显,后瓣和侧瓣很大。

北邮电磁场与电磁波实验一二

北邮电磁场与电磁波实验一二

实验一频谱分析仪的使用1.实验目的1)了解频谱分析仪的工作原理,熟悉它的使用方法;2)了解微波信号发生器的使用方法。

2.实验设备1)频谱分析仪2)微波信号发生器3.实验原理频谱分析仪是研究电信号频谱结构的仪器,主要的功能是在频域里显示输入信号的频谱特性。

输入信号经衰减器直接外加到混波器,可调变的本地振荡经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。

较低的RBW固然有助于不同频率信号的分辨与测量,低的RBW将滤出较高的频率的信号成分,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助于宽频带信号的侦测,将增加杂讯底层值,降低量测灵敏度,对于侦测低强度的信号易于产生障碍,因此适应的RBW宽度是正确使用频谱分析仪重要的概念。

4.实验内容4.1.单载波信号的频谱测量4.1.1. 实验操作步骤 1. 按照下图连接测试2. 设置微波信号发生器输出指定频率和功率的单载波信号(900MHz ,-10dBm )。

3. 设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描宽带,适合调整参考电平使频谱图显示在合适的位置。

4. 用峰值搜索功能测量信号的频率和电平,测试数据记录在表4.1中。

5. 用差值光标功能测量信号和噪声的相对电平(信噪比),同时记录频率分析仪的分辨率和带宽设置。

4.1.2. 实验数据记录4.2.带载波信号的杂散测量4.2.1.实验操作步骤1.设置微波信号发生器输出指定频率和功率的正弦波(850MHz,-20dBm);2.设置频谱分析仪的中心频率为微波信号发生率的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置;3.用频谱分析仪测量输出信号的频率和电平,测量数据记录到表4.2中;4.增加频谱分析仪的扫描带宽,用手动设置功能适当减小频谱分析仪的分辨率带宽,观察频谱图的变化,直到观测到杂散信号为止。

北京邮电大学电磁场与电磁波实验报告

北京邮电大学电磁场与电磁波实验报告

电磁场与电磁波实验报告无线信号场强特性的研究2013/5/13一、实验目的:1、掌握在移动环境下阴影衰落的概念以及正确的测试方法;2、研究国家体育馆——鸟巢周围各种不同环境下阴影衰落的分布规律;3、掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4、通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、研究建筑物穿透损耗与建筑材料的关系。

二、实验内容:利用DS1131场强仪,实地测量信号场强(单位:dBmW)。

1、研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何。

2、研究在国家体育馆鸟巢周围电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何。

三、实验步骤:1、实验内容与研究对象的选择:我们想要研究学校外的建筑物的衰落现象,经过讨论,我们选择了国家体育馆鸟巢作为实验场所。

测量时,我们按照地图上逆时针方向沿着鸟巢边缘测量,具体路线见以下分布图:2、在选频方面,由于中央三套信号比较强,所以我们决定采用之,其图像信号的频率为487.25MHz,伴音信号的频率为493.75MHz,此时的波长约为0.616m,于是我们大约1m(也即2步左右)读取一个数据。

3、将测量得到的数据录入Excel表格,得到12个表格文件:即以每个入口之间测量段的字母来分类,如上图所示,共有:A、B、C、D、E、F、G、H、J、K、L、M等12个测量段。

文件截图如下:4、D文件里的数据截图:5、 数据处理过程:采集到的数据有512多组,需要对数据进行细致的处理以便得到明确的结论。

下图所示为数据处理的流程图。

四、 实验结果:1、 空间场强大小分析:图1是用Matlab 画的所有数据的大小起伏,虽然有大有小,但是难以确定空间场强的大小分布,所以再使用Mathematica 进行改进绘图,如图3、4:图1以下是图3是场强大小的图像分量空间分布图,扇形区域的半径表示大小。

图4是伴音信号大小的分布图,测量数据是按照六块区域划分的,具体划分图可以见图2;图2、所有数据研究区域划分图注:图中数字表示区域名,字母表示入口,命名方式如:AB入口,BC入口……图3、图像信号强弱的空间分布表3、图像信号强弱的空间分布根据上述结果,可以发现6区的图像信号最强,均值为-29dBmW,而3区最弱,为-40dBmW;我们组分析了原因,认为原因如下:1)6区附近比较开阔,所以信号受到的阻挡更小,衰减小,而2、3区附近面临闹市,所以受到干扰大;2)信号源在6区的方向,因为6区朝向信号源,所以6、1区的信号最强,而其他区域,由于信号要穿过鸟巢建筑有穿透损耗,因此衰减比较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波·实验报告信息与通信工程学院电磁场与电磁波实验报告题目:校医院4G信号场强特性的研究指导老师:日期:2015年6月目录一、实验目的 (1)二、实验原理 (1)三、实验内容 (3)四、实验步骤 (3)1、实验地点 (3)2、数据采集 (4)3、数据录入 (4)4、数据处理流程 (4)五、实验结果与分析 (4)1、磁场强度地理分布 (4)2、磁场强度统计分布 (4)3、建筑物的穿透损耗 (5)六、问题分析与解决 (5)1、测量误差分析 (5)2、场强分布的研究 (6)七、分工安排 (6)八、心得体会 (6)九、附录 (8)十、网络参量测量演示实验问卷 (19)一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的( dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。

对任意的传播距离,大尺度平均路径损耗表示为:()[]()()=+(式1)PL d dB PL d n d d010log/0即平均接收功率为:(式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d 为发射机与接收机之间的距离。

公式中的横杠表示给定值d的所有可能路径损耗的综合平均。

坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。

n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。

为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。

人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。

下边介绍几种常用的描述大尺度衰落的模型。

常用的电波传播模型:1) 自由空间模型2) 布灵顿模型3) EgLi 模型4) Hata-Okumura 模型在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。

在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象。

由于这种原因造成的衰落也叫“阴影效应”或“阴影衰落”。

在阴影衰落的情况下,移动台被建筑物所遮挡,它收到的信号是各种绕射反射,散射波的合成。

所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,对任意的d 值,特定位置的接受功率为随机对数正态分布即:()[]()[][]Pr Pr s Pr(0)10log(/0)d dBm d dBm X d dBm n d d X σ=+=-+ (式3) 其中,X σ 为0 均值的高斯分布随机变量,单位dB ;标准偏差σ ,单位dB 。

对数正态分布描述了在传播路径上,具有相同T-R 距离时,不同的随机阴影效应。

这样利用高斯分布可以方便地分析阴影的随机效应。

正态分布,也叫高斯分布,概率密度函数为:22()())2x f x μσ-=- (式4) 应用于阴影衰落时,上式中的x 表示某一次测量得到的接收功率,μ表示以dB 表示的接收功率的均值或中值,表示接收功率的标准差,单位是dB 。

阴影衰落的标准差同地形,建筑物类型,建筑物密度等有关,在市区的150MHz 频段其典型值是5dB 。

除了阴影效应外,大气变化也会导致阴影衰落。

比如一天中的白天,夜晚,一年中的春夏秋冬,天晴时,下雨时,即使在同一个地点上,也会观察到路径损耗的变化。

但在测量的无线信道中,大气变化造成的影响要比阴影效应小的多。

下面是阴影衰落分布的标准差,其中s σ(dB)是阴影效应的标准差。

表1. 阴影衰落分布的标准差s (dB )建筑物穿透损耗的大小对于研究室内无线信道具有重要意义。

穿透损耗又称大楼效应,一般指建筑物一楼内的中值电场强度和室外附近街道上中值电场强度dB 之差。

发射机位于室外,接收机位于室内,电波从室外进入到室内,产生建筑物的穿透损耗,由于建筑物存在屏蔽和吸收作用,室内场强一定小于室外的场强,造成传输损耗。

室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去同一位置室内测量的信号平均场强。

用公式表示为:()()1111N Moutside inside i j i j P P P NM ==∆=-∑∑ (式5) P 是穿透损耗,单位是dB ; j P 是在室内所测的每一点的功率,单位是dB v μ,共M 个点; i P 是在室外所测的每一点的功率,单位是dB v μ,共N 个点。

三、实验内容利用E8000手持频谱分析仪,实地测量校医院4G 信号场强。

四、实验步骤1、实验地点校医院一到四楼及一楼外一周2、数据采集利用E8000手持频谱分析仪测量联通4G无线信号(频率2555~2575MHz)的强度(单位:dBmw),分别对一到四楼以及一楼外进行测量,以半个波长(约0.68米,大约一步)为测量周期,记录该点读数。

实验中,我们在校医院内外采集数据的走向如下:由于校医院内部很多房间我们不方便进去,所以我们一到四楼我们就只在我们能活动的走廊里沿着走廊两边进行了测量,在校医院外部我们从校医院西北角开始,依次走了西侧、南侧、东侧、北侧。

3、数据录入将测量得到的数据录入Excel表格,一个地点用一列,在用matlab处理时我是每次处理一楼,然后把相应的列贴进a.xlsx文件(自己的MATLAB的导入文件),具体数据见附件1. 4、数据处理流程采集到的数据有600多组,需要对数据进行细致的处理以便得到明确的结论。

下图所示为数据处理的流程图。

具体的Matlab代码和拟合方法在附录中进行了详细叙述。

五、实验结果与分析1、磁场强度地理分布在这儿只对各个地点的平均功率进行分析,从上图可以看出在一楼外与一楼楼道之间的穿透损耗还是很明显的,大约有5.87dBmw,(其实这里说是穿透损耗不是很准确,因为校医院南侧东侧外有花坛植物,有的地方还停的有车,东侧有很多小棚子,在楼内的话我们也不是在靠近墙壁内一周,而是在楼道里面,这样算下来平均得有10~20米的距离,所以这个值应该还包含一定的衰落值,包括阴影衰落和距离衰落)。

从一楼到四楼,随着楼层的升高可以看出信号强度是有缓慢升高的,但幅度不大,一共升高了0.62dBmw,一楼到二楼升高的幅度最大为0.33dBm,之上每层的升高就不是很明显了。

2、磁场强度统计分布起初我以为信号分布应该为正态分布,但是画完条形分布图之后发现怎么看都像瑞利分布,所以就画了条瑞利分布的曲线,果然感觉比正态分布好看多了(虽然我用KSTEST2函数检验出来结果在0.95的置信区间内既不是正态分布也不是瑞利分布,但我还是觉得应该是瑞利分布)累计概率分布图上图中蓝色是实际的累计概率图,红色的是B=1的瑞利分布概率累计曲线一楼的概率分布和累计概率分布一楼的数据到是挺符合正态分布的,基本都集中在-67.4附近,累计概率分布也拟合的挺好可以出二楼的数据更集中,基本所有数据都集中在67.2附近,基本就是均匀分布了,从右侧的概率累计分布曲线可以看出来,在-67.5~-67之间的斜率非常大,几乎就是垂直的无穷大,所以我估计二楼应该是有吸顶天线的(但是后来我专门跑去校医院看了一下,没有发现楼道里有吸顶天线)。

三楼的分布跟二楼差不多,标准差还要小一些,也是主要集中在-67.2一点,但是这个用正态拟合的图就要比二楼好看一些四楼的实验数据是看起来最不像正态分布的,主要集中在-67.2和-66.3两个地方,其实老师应该能看出来,除了一楼,其余的额二楼三楼四楼的数据都有两个峰,起初我也想不明白为什么会这样,就猜测应该是吸顶天线的位置可能和其他楼层不太一样,然后我就专门又跑校医院看了一下,楼道里居然没有吸顶天线,一楼到四楼都没有(也可能是有但我没有看到,毕竟我只在楼道里看了一下,没有到各个房间里去看),但是也有其他的发现,四楼长楼道里大部分是玻璃墙,短楼道是混凝土墙,导致这一段的数据会偏大而集中在-66.3附近。

而其他楼层都是混凝土墙,所以我觉得应该是这个原因才导致了四楼的分布会有两个峰,而不是呈现出一个峰的正态分布。

具体看下图。

由于一楼的测量路线和其他楼层不一样,这个相对来说比较均匀,所以应该是正态分布,而其他楼层基本都是小楼道加大楼道,所以基本都是两个峰。

3、建筑物的穿透损耗由室外磁场强度分布值,由磁场强度均值定义可求得室外磁场强度均值为P1= -61.54dBmw,其标准差为。

σ=3.26。

同理可求得室内一层的磁场强度均值为P2= -67.41dBmw,标准差σ=0.44。

根据穿透损耗的定义可求穿透损耗P∆:∆=P1-P2=5.87dBmw.P六、问题分析与解决1、测量误差分析低频段的电磁波传播特性较好,绕射能力强,穿透性好,研究起来相对容易。

移动通信频段呈现的趋势是不断提升,4G已经在2000MHz左右了,此频段信号呈现出的地理位置的依赖性增强,通信的复杂性增加,可研究的点很多,但高频设备较为昂贵。

我们有幸能在本实验中使用能够测量高频的设备,选取的频段是信号强度相对较高的联通4G 2555~2575MHz频段。

中心频率2565MHz。

高频的测量需要密集踩点,记录的数据量需要很大,步长是需要人为控制的,可能会出现误差。

读数时,由于数值一直在跳动,所以读数也会产生一些误差。

2、场强分布的研究场强的分布研究可从两方面着手,一是地理位置分布,二是统计值分布。

相关文档
最新文档