人教A版数学必修一第三章3.1.1

合集下载

3.1.1函数的概念课件(一)高一上学期数学人教A版必修一

3.1.1函数的概念课件(一)高一上学期数学人教A版必修一
√B.A={1,2,3,4},B={0,1},对应关系如图:
C.A=R,B=R,f:x→y=x-1 2
D.A=Z,B=Z,f:x→y= 2x-1
2.函数y=f(x)的图象与直线x=2 023的公共点有
A.0个
B.1个
√C.0个或1个
D.以上答案都不对
3.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
问题3 通过对课本中的4个问题的分析,你能说出它们有什么不同点和 共同点吗? 不同点:课本中的问题1,2是用解析式刻画两个变量之间的对应关系,问 题3是用图象刻画两个变量之间的对应关系,问题4是用表格刻画两个变 量之间的对应关系. 共同点:①都包含两个非空数集,分别用A,B来表示; ②都有一个对应关系; ③对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确 定的数y和它对应. 函数的本质特征
知识梳理
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B,而是 集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积,f(x)也 不一定是解析式,还可以是图象或表格,或其他的对应关系(venn…). (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
由图象和表格呈现出来的变量间的对应关系比解析式更直观、形象.
年份y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔
系数 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57

3.1.1函数的概念(第一课时)课件 高一上学期数学人教A版(2019)必修一

3.1.1函数的概念(第一课时)课件 高一上学期数学人教A版(2019)必修一
2.如图所示,不可能表示函数的是( )
3.能否称f为集合A到集合B的一个函数?
f
f
18
6
二.函数的三要素
1. 定义域、对应关系、值域 为函数的三要素.
2.两函数相同,当且仅当
.
定义域和对应关系完全相同
练习:下列函数中,与y=x是同一函数的是(C )
例2 函数
的定义域是
.
练习:P97 A组第五题
一.函数的概念
设A、B是非空的数集,如果按照某种确定的对应关
系f,使对于集合A中的 任意一个数,x在集合B中都有
的唯数一f(确x)定和它对应,那么就称f:A→B为从集合A到集合B的
一叫函个数函定义的数域值,其域中,x{的值f(x取域)|x值∈是范A}围A叫函数的
,
集合B 的子集.
概念深化:
1.看电影的观众构成集合A,电影院的位置看作集合B,能否称f为集 合A到集合B的一个函数?
3.1.1 函数的概念
影院对以上三部电影票价五折优惠,则现在三部电影票价是:
志愿军:31元 熊猫计划:24 爆款好人:25
问题:我们对哪些数进行了运算,如何运算,运算结 果是什么?你能将运算过程抽象成一个函数模型吗?
问题:
能否体感温度看作是关于时间的函数?
以上三个函数例子的有什么共同点?请说出函数的概念.
例3. 已知函数 (1)求函数的定义域.
(2)求
的值.
(3)当 时,求 ,
的值.
例4.
小结: 1.函数概念 2.判断是否是同一函数 3.求函数定义域、函数值及值域
作业:
1.课后练习 2.教材P93 练习A
教材P98 练习B

新教材人教A版数学必修第一册课件:第三章3.1.1函数的概念

新教材人教A版数学必修第一册课件:第三章3.1.1函数的概念
闭区间 开区间 左开右闭区间 左闭右开区间
什么是区间? 常见区间的含义及表示方法如下表所示:
求函数的定义域和函数值 (1)求函数的定义域
什么是相同函数? 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.因为
值域是由定义域和对应关系决定的,如果两个函数的定义域相同,并且对应关系 完全一致,那么这两个函数就是同一个函数.
解析 ①f(x)=-x -2x,g(x)=x -2x,对应关系不同, 故 f(x)与 g(x)不是同一函数; ②f(x)=x,g(x)= x2=|x|,对应关系不同,
故 f(x)与 g(x)不是同一函数; ③f(x)=x0=1(x≠0),g(x)=x10=1(x≠0),对应关系与定义域均相同, 故是同一函数; ④f(x)=x2-2x-1 与 g(t)=t2-2t-1,对应关系和定义域均相同,
函数的四个特性
②任意性:即定义域中的每一个 元素都有函数值.
③唯一性:每一个自变量都有唯 一的函数值与之对应.
④方向性:函数是一个从定义域 到值域的对应关系.但是,从值域 到定义域的话,新的对应关系就 不一定是函数关系.
一次函数、二次函数、反比例函数的定义域、对应关系和值域
函数的应用
应用题出题的过程就是构建出一个情景,使它和我们已知 的数学模型和数学规律对应上.
3.在y=f(x)中,x是自变量,f代表对应关系,不要因为函数的定义而 认为自变量只能用x表示,其实用什么字母表示自变量都可以,关键 是符合定义,x只是一个较为常用的习惯性符号,也可以用t等表示自 变量.关于对应关系f,它是函数的本质特征,好比是计算机中的某个 “程序”,当在f( )中的括号内输入一个值时,在此“程序”作用下 便可输出某个数据,即函数值.如f(x)=3x+5,f表示“自变量的3倍加 上5”,如f(4)=3×4+5=17.我们也可以将“f”比喻为一个“数值加 工器”,当投入x的一个值后,经过“数值加工器f”的“加工”就得 到一个对应值.

必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点

必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点
课前预习
课堂互动
课堂反馈
§3.1 函数与方程
3.1.1 方程的根与函数的零点
学习目标 1.理解函数零点的定义,会求某些函数的零点(重 点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与 方程的根的联系(重点).
课前预习
课堂互动
课堂反馈
预习教材 P86-P88,完成下面问题: 知识点 1 函数的零点
课前预习
课堂互动
课堂反馈
课堂小结
1.在函数零点存在性定理中,要注意三点:(1)函数是连续 的;(2)定理不可逆;(3)至少存在一个零点.
2.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐标, 也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.
3.函数与方程有着密切的联系,有些方程问题可以转化为函 数问题求解,同样,函数问题有时可以转化为方程问题, 这正是函数与方程思想的基础.
答案 C
课前预习
课堂互动
课堂反馈
题型三 判断函数零点所在的区间
【例3】 (1)二次函数f(x)=ax2+bx+c的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 y 6 m -4 -6 -6 -4 n 6
不求a,b,c的值,判断方程ax2+bx+c=0的两根所在区间
是( )
A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)
是 0,-12. 答案 0,-12
课前预习
课堂互动
课堂反馈
题型二 确定函数零点的个数
【例 2】 判断下列函数零点的个数. (1)f(x)=x2-34x+58; (2)f(x)=ln x+x2-3. 解 (1)由 f(x)=0,即 x2-34x+58=0,得 Δ=-342-4×58= -3116<0, 所以方程 x2-34x+58=0 没有实数根,即 f(x)零点的个数为 0.

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。

3(1).1函数的概念及其表示 3.1.1函数的概念(二)(第二课时) 教案

   3(1).1函数的概念及其表示 3.1.1函数的概念(二)(第二课时)   教案

3.1.1 函数的概念(二)本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第1课时。

函数的基本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学. 对于高一学生来说,函数不是一个陌生的概念。

但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻.高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。

所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。

所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法则、函数图象的特征、两个相同函数的条件等问题.学生在初中阶段,已经知道函数的定义域是使函数解析式有意义、实际问题要符合实际意义的自变量的范围,所以在教学中进一步强调定义域的集合表示.课程目标学科素养A.能根据函数的定义判断两个函数是否为同一个函数B.会求函数的定义域C.会求函数的值域1.逻辑推理:同一个函数的判断;2.数学运算:求函数的定义域,值域;1.教学重点:函数的概念,函数的三要素;2.教学难点:求函数的值域。

多媒体思考2:求二次函数2(0)y ax bx c a =++≠的值域时为什么分0a >和0a <两种情况?提示:当a >0时,二次函数的图象是开口向上的抛物线,观察图象得值域为{y |y ≥4ac -b 24a}. 当a <0时,二次函数的图象是开口向下的抛物线,观察图象得值域为{y |y ≤4ac -b 24a }.例1.判断正误(对的打“√”,错的打“×”)(1)f (x )=x 2x与g (x )=x 是同一个函数.( ) (2)若两个函数的定义域与值域都相同,则这两个函数是同一个函数.( )(3)函数f (x )=x 2-x 与g (t )=t 2-t 是同一个函数.( )[解析] (1)f (x )=x 2x与g (x )=x 的定义域不相同,所以不是同一个函数. (2)例如f (x )=3x 与g (x )=5x的定义域与值域相同,但这两个函数不是同一个函数. (3)函数f (x )=x 2-x 与g (t )=t 2-t 的定义域都是R ,对应关系完全一致,所以这两个函数是同一个函数.例2 (2019·江苏启东中学高一检测)下图中,能表示函数y =f(x)的图象的是( )[解析] 由函数定义可知,任意作一条垂直于x 轴的直线x =a ,则直线与函数的图象至多有一个交点,可知选项D 中图象能表示y 是x 的函数.例3.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为( A )A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3}例4.下表表示y 是x 的函数,则函数的值域是( )A .{y|-1≤y ≤1}B .RC .{y|2≤y ≤3}D .{-1,0,1}[解析] 函数值只有-1,0,1三个数值,故值域为{-1,0,1}.关键能力·攻重难题型一 函数的值域1、函数21,12y x x =-+-≤<的值域是( )A .(-3,0]B .(-3,1]C .[0,1]D .[1,5)[分析] 首先看二次函数的开口方向,再考虑二次函数的对称轴与限定区间的位置关系.[解析] 由21,12y x x =-+-≤<,可知当x =2时,min 413y =-+=-;当x =0时,max 1y =,因为x≠2,所以函数的值域为(-3,1].[归纳提升] 二次函数2(0)y ax bx c a =++>的值域(1)对称轴在限定区间的左边,则函数在限定区间左端点取最小值,右端点取最大值;(2)对称轴在限定区间的右边,则函数在限定区间左端点取最大值,右端点取最小值;(3)对称轴在限定区间内,则函数在对称轴处取最小值,限定区间中距离对称轴较远的端点取最大值.题型二 同一个函数2、判断下列各组函数是否是同一个函数,为什么?(1)y =x x与y =1; (2)y =x 2与y =x ;(3)y =x +1·1-x 与y =1-x 2.[分析] 判断两个函数是否是同一个函数,只须看这两个函数的定义域和对应关系是否函数概念理解有误1、设集合M ={x|0≤x ≤2},集合N ={y|0≤y ≤2},给出下列四个图形(如图所示),其中能表示集合M 到N 的函数关系的个数是( )A .0B .1C .2D .3[错解]函数的对应关系可以一对一,也可以多对一,故(1)(2)(3)正确,选D .[错因分析] 不但要考虑几对几的问题,还要考虑定义域中的元素x 在值域中是否有相应的y 值与之对应.[正解] 图(1)定义域M 中的(1,2]部分在值域N 中没有和它对应的数,不符合函数的定义;图(2)中定义域、值域及对应关系都是符合的;图(3)显然不符合函数的定义;图(4)中在定义域(0,2]上任给一个元素,在值域(0,2]上有两个元素和它对应,因此不唯一.故只有图(2)正确.答案为B .[方法点拨] 函数的定义中,从数的角度描述了函数的对应关系,首先它是两个非空数集之间的对应,它可以一对一,也可以多对一,除此之外,还要弄清定义域与数集A 、值域与数集B 之间的关系.学科素养求函数值域的方法——转化与化归思想及数形结合思想的应用1.分离常数法求函数y =3x +2x -2的值域. [分析] 这种求函数值域的问题,我们常把它们化为y =a +c x +b的形式再求函数的值域.[解析] ∵y =3x +2x -2=(3x -6)+8x -2=3+8x -2, 又∵8x -2≠0,∴y ≠3.∴函数y =3x +2x -2的值域是{y |y ∈R ,且y ≠3}. [归纳提升] 求y =ax +c x +b 这种类型的函数的值域,应采用分离常数法,将函数化为。

人教A版数学高中选择性必修一《3.1.1椭圆及其标准方程》教学设计

人教A版数学高中选择性必修一《3.1.1椭圆及其标准方程》教学设计

课题:椭圆及其标准方程【教学内容分析】本节课是人教版选择性必修一第三章的第一课时,属于新授概念课。

本课作为圆锥曲线的第一课时,也是利用坐标法研究轨迹问题的起始课。

从圆锥曲线的发展史入手,让学生了解什么是圆锥曲线,再通过大量的圆锥曲线在科技、生产生活中的应用,解释学习圆锥曲线的必要性。

椭圆是圆锥曲线,通过类比学习圆的经历过程,继而对椭圆定义的探究和标准方程的推导,无不体现代数特征与几何特征互化的思想,而这种思想也是圆锥曲线整章内容的核心思想,为后续学习抛物线、双曲线提供了基本模式和理论基础。

通过本节内容的学习,可以为培养学生的动手操作、自主探究、归纳推理能力提供良好的素材。

学生已经在生活中掌握了一些椭圆图形,只是停留在感性没有上升到理性层面。

如何从数学的角度给椭圆以“定量”的描述正是本节课要解决的问题。

【学生情况分析】从基础能力看:物化生组合的学生基础相对较好,通过对圆的知识学习,已初步了解曲线轨迹的思想。

从认知的现状看:学生对双根式的处理比较陌生,如何化简问题通过教师的引导值得期待。

【教学目标分析】椭圆的定义及标准方程的推导。

“直观感知、操作确认”的过程,从而让学生亲身经历知识的形成,由感性认知升华到理性认知。

4.通过学生的自主探究、课堂的讨论、归纳总结、品味寻找表象世界背后规律的乐趣,特别是标准方程的推导,让学生感受数学中的对称美。

【教学重点、难点】教学重点:(1)椭圆的定义(2)椭圆标准方程(3)会根据条件求椭圆的标准方程。

教学难点:椭圆标准方程的推导【教学方法分析】用生活中学生感兴趣的实例引入,遵循:“直观感知—操作确认“的认识过程,用问题引领学生自主探究,形成感性认识与理性认知。

【教具准备】图钉、画板、纸张、多媒体课件【教学过程】(一)创设情境,导入新课情景一:介绍圆锥曲线发展史情景二:展示生活中的有关圆锥曲线应用的图片设计意图:通过对圆锥曲线史介绍,可以让学生了解圆锥曲线由来,再通过科技、生产、建筑等有关圆锥曲线的应用图片加以介绍,让学生理解研究圆锥曲线的必要性,为引入本节课课题做好铺垫。

高二数学人教A版(2019)选择性必修第一册第三章3.1.1椭圆及其标准方程 教学设计

高二数学人教A版(2019)选择性必修第一册第三章3.1.1椭圆及其标准方程 教学设计

椭圆及其标准方程(第一课时)教学设计一、教材分析:本节课是《普通高中教科书数学·选择性必修第一册》(人教A版)第三章第一节《椭圆及其标准方程》第一课时。

用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。

圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。

17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。

在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。

解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。

在第二章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在本章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。

由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。

本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。

因此,教学时应重视体现数学的思想方法及价值。

二、教学目标:按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:1.知识与技能目标:①理解椭圆的定义。

②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。

2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。

②巩固用坐标化的方法求动点轨迹方程。

③对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3.情感态度价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识②重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣③通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风④通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美⑤利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三、教学重难点:重点:椭圆定义的形成过程、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用四、教法分析:新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。

3.1.1函数的概念及其表示课件高一上学期数学人教A版(2019)必修一

3.1.1函数的概念及其表示课件高一上学期数学人教A版(2019)必修一

【对点练清】 1.下列对应或关系式中是 A 到 B 的函数的是
A.A=R ,B=R ,x2+y2=1 B.A={1,2,3,4},B={0,1},对应关系如图: C.A=R ,B=R ,f:x→y=x-1 2
()
D.A=Z ,B=Z ,f:x→y= 2x-1
解析: A 错误,x2+y2=1 可化为 y=± 1-x2,显然对任意 x∈A,y 值不 唯一.B 正确,符合函数的定义.C 错误,2∈A,在 B 中找不到与之相对 应的数.D 错误,-1∈A,在 B 中找不到与之相对应的数. 答案:B
区间可以用数轴表示,在数轴表示时,用实心点表示包括在区间内的端点, 用空心点表示不包括在区间内的端点.
定义
名称
区间
数轴表示
{x|a≤x≤b}
闭区间
_[a_,___b_]
{x|a<x<b}
开区间
(a,_b_)_
{x|a≤x<b} 半开半闭区间 [a,_b_)_
续表
{x|a<x≤b} 半开半闭区间 (a,b]
函数的定义域. 推理素养.
4.能够正确使用区间表示数集.
பைடு நூலகம்
知识点一 函数的有关概念 (一)教材梳理填空 1.函数的概念:
定义
一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意一个数x ,按照某种确定的对应关系f,在集合B中都有 _唯__一__确__定__的__数__y_和它对应,那么就称 f:A→B 为从集合A到集 合B的一个函数
(2)f(x)与f(a)有何区别与联系?
提示:(1)这种看法不对. 符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加 的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以 是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变 量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研 究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.

3.1.1 椭圆及其标准方程备课笔记

3.1.1 椭圆及其标准方程备课笔记

3.1.1 椭圆及其标准方程本小节内容选自《普通高中数学选择性必修第一册》人教A 版(2019)第二章《圆锥曲线的方程》的第一节《椭圆》。

以下是本节的课时安排:第三章 圆锥曲线的方程课时内容 3.1.1椭圆及其标准方程3.1.2椭圆的简单几何性质所在位置 教材第105页教材第109页新教材 内容 分析 椭圆是生产生活中的常见曲线,教材在用细绳画椭圆的过程中,体会椭圆的定义,感知椭圆的形状,为选择适当的坐标系,建立椭圆的标准方程、研究椭圆的几何性质做好铺垫。

通过对椭圆标准方程的讨论,使学生掌握标准方程中的a,b,c,e 的几何意义及相互关系,体会坐标法研究曲线性质的基本思路与方法,感受通过代数运算研究曲线性质所具有的程序化、普适性特点。

核心素养培养 通过椭圆的标准方程的推导,培养数学运算的核心素养;通过对椭圆的定义理解,培养数学抽象的核心素养。

通过椭圆的几何性质的研究,培养数学运算的核心素养;通过直线与椭圆的位置关系的判定,培养逻辑推理的核心素养。

教学主线 椭圆的标准方程、几何性质学生已经学习了直线与圆的方程,已经具备了坐标法研究解析几何问题的能力。

本章学习圆锥曲线方程及几何性质,进一步提升用代数方法研究解析几何问题的方法。

1.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义,培养数学抽象的核心素养.2.掌握椭圆的标准方程,培养数学运算的核心素养.3.掌握用定义和待定系数法求椭圆的标准方程,培养逻辑推理的核心素养.重点:椭圆的定义及椭圆的标准方程 难点:运用标准方程解决相关问题(一)新知导入椭圆是圆锥曲线的一种具有丰富的几何性质,在科研生产和人类生活中具有广泛的应用,那么椭圆到底有怎样的几何性质,我们该如何利用这些特征建立椭圆的方程,从而为研究椭圆的几何性质奠定基础。

探究取一条定长的细线,把它的两端都固定在图板的同一点套上铅笔拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。

如果把细绳的两端拉开一段距离,分别固定在图板中的两点F 1,F 2,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 在这一过程中,移动的笔尖(动点)满足的几何条件是什么?(二)椭圆及其标准方程 知识点一 椭圆的定义◆椭圆的定义把平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点之间的距离叫做椭圆的焦距,焦距的一半称为半焦距. 集合语言表示:P ={M ||MF 1|+|MF 2|=2a,2a >|F 1F 2|}【思考】(1)椭圆定义中将“大于|F 1F 2|”改为“等于|F 1F 2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F 1F 2|”改为“小于|F 1F 2|”的常数,其他条件不变,动点的轨迹是什么?【做一做】下列说法正确的是( )A .到点12(4,0),(4,0)F F 的距离之和等于8的点的轨迹是椭圆B .到点12(4,0),(4,0)F F -的距离之和等于6的点的轨迹是椭圆C .到点12(4,0),(4,0)F F -的距离之和等于12的点的轨迹是椭圆D .到点12(4,0),(4,0)F F -距离相等的点的轨迹是椭圆知识点二 椭圆的标准方程【探究2】根据椭圆的形状,我们怎样建立坐标系可能使椭圆的方程形式简单呢?你能推导出椭圆的标准方程吗?椭圆的标准方程√(x +c)2+y 2+√(x −c)2+y 2=2a . ①为了化简方程①,我们将其左边一个根式移到右边,得√(x +c)2+y 2=2a −√(x −c)2+y 2,②对方程②两边平方,得(x +c)2+y 2=4a 2 −4a√(x −c )2+y 2+(x −c)2+y 2, 整理得a 2−cx =a√(x −c )2+y 2, ③对方程③两边平方,得a 4−2a 2cx +c 2x 2=a 2x 2−2a 2cx +a 2c 2+a 2y 2, 整理得 (a 2−c 2)x 2+a 2y 2= a 2(a 2−c 2) , ④ 将方程④两边同除以a 2(a 2−c 2),得x 2a 2+y 2a 2−c 2=1. ⑤ 由椭圆的定义可知2a >2c >0 ,即a >c >0,所以a 2−c 2>0. 观察下图,你能从中找出表示a ,c ,√a 2−c 2的线段吗?由图可知,|PF 1|=|PF 2|=a ,|OF 1|=|OF 2|=c , |PO |=√a 2−c 2 令b = |PO |=√a 2−c 2,那么方程⑤就是x 2a 2+y 2b 2=1 (a >b >0) ⑥称焦点在x 轴上的椭圆方程.类似的方法,将焦点置于y 轴时,可得焦点在y 的椭圆的标准方程:y 2a 2+x 2b2=1(a >b >0).◆椭圆的标准方程【做一做1】已知椭圆中a =5, c =3, 焦点在x 轴上,则椭圆标准方程为________. 【做一做2】椭圆x 216+y 225=1的焦点坐标是( )A .(±4,0)B .(0,±4)C .(±3,0)D .(0,±3)【做一做3】(教材P109练习1改编)设P 是椭圆x 216+y 225=1上的点.若F 1,F 2是椭圆的两个焦点,若P 到焦点F 1的距离是3,则P 到另一焦点F 2的距离等于( )A .10B .8C .7D .51.求椭圆的标准方程例1.求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点坐标分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝ ⎛⎭⎪⎫-1,142.【类题通法】1.用待定系数法求椭圆标准方程的一般步骤(1)定位置:根据条件判断椭圆的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设方程x 2a 2+y 2b 2=1(a >b >0)或x 2b 2+y 2a2=1(a >b >0).(3)找关系:根据已知条件建立关于a ,b ,c 的方程组.(4)得方程:解方程组,将解代入所设方程,写出标准形式即为所求.2.求椭圆方程时,若没有指明焦点位置,一般可设所求方程为x 2m +y 2n=1(m >0,n >0,且m ≠n ).再根据条件确定m 、n 的值.3.当椭圆过两定点时,常设椭圆方程为Ax 2+By 2=1(A >0,B >0,且A ≠B ).将点的坐标代入解方程组求得系数.【巩固练习1】求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆的标准方程.2.椭圆标准方程的判定例2.若方程x 216-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <16B .-9<m <72C.72<m <16 D .m >72【类题通法】方程x 2m +y2n=1表示椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m ≠n ,表示焦点在x 轴上的椭圆的条件是⎩⎪⎨⎪⎧ m >0,n >0,m >n ,表示焦点在y 轴上的椭圆的条件是⎩⎪⎨⎪⎧m >0,n >0,m <n .【巩固练习2】命题p :方程x 25-m +y 2m -1=1表示焦点在y 轴上的椭圆,则使命题p 成立的充分不必要条件是( )A .3<m <5B .4<m <5C .1<m <5D .m >13.椭圆的定义及应用例3.设P 是椭圆x 225+y 2754=1上一点,F 1、F 2是椭圆的焦点,若∠F 1PF 2=60°,求△F 1PF 2的面积.[分析] 先根据方程求出a 、b 、c 的值,再利用椭圆的定义和余弦定理求出|PF 1|·|PF 2|的值.最后利用三角形的面积公式求出S △F 1PF 2.【类题通法】1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a . 2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解. 【拓展】椭圆焦点三角形的性质1.椭圆上一点P 与椭圆的两焦点F 1、F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时,要充分利用椭圆的定义、解三角形中的正弦定理、余弦定理等知识.如求△F 1PF 2的面积问题,|PF 1|·|PF 2|的最值问题.2.对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1|·|PF 2|看成一个整体,利用定义|PF 1|+|PF 2|=2a 及余弦定理求出|PF 1|·|PF 2|,这样可以减少运算量.3.关于椭圆中的焦点三角形△F 1PF 2,常出现的结论有: (1)△F 1PF 2的周长为2a +2c ;(2)若点P (x 0,y 0)是椭圆x 2a 2+y 2b2=1(a >b >0)上任一点,且∠F 1PF 2=θ,则△F 1PF 2的面积S =b 2tan θ2.在选择题、填空题中可以直接使用此公式求椭圆焦点三角形的面积.(3)对于椭圆上的点P ,∠F 1PF 2随着点P 从长轴端点向短轴端点的移动而变大,当点P 在短轴端点时,∠F 1PF 2最大.【巩固练习3】如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.[分析] 由椭圆的定义和余弦定理分别建立关于|PF1|和|PF2|的方程,解方程组求得|PF1|,再用面积公式求解.4.与椭圆有关的轨迹问题例4.如图,一动圆过定点A(2,0),且与定圆B:x2+4x+y2-32=0内切,求动圆圆心M的轨迹方程.[分析] 根据两圆内切的特点,得出|MA|+|MB|=6>|AB|=4,所以点M的轨迹是以A,B为焦点的椭圆,进而求出a2,b2即可得点M的轨迹方程.【类题通法】定义法求轨迹方程如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.【巩固练习4】已知B、C是两个定点,|BC|=8,且△ABC的周长为18,求这个三角形顶点A的轨迹方程.1.已知点A (-3,0),B (0,2)在椭圆x 2m 2+y 2n2=1上,则椭圆的标准方程为( )A.x 23+y 22=1B.x 29+y 24=1C.x 23+y 2=1 D.x 25+y 24=1 2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6 C .7 D .83.若方程x 2m +y 22m -1=1表示椭圆,则实数m 满足的条件是________.4.如图所示,圆C :(x +1)2+y 2=25及点A (1,0),Q 为圆上一点,AQ 的垂直平分线交CQ 于点M ,求点M 的轨迹方程.(五)课堂小结,反思感悟 1.知识总结:2.学生反思:(1)通过这节课,你学到了什么知识?(2)在解决问题时,用到了哪些数学思想?3.1.1椭圆及其标准方程 -A 基础练一、选择题 1.(2020·全国高二课时练习)下列说法正确的是( )A .到点12(4,0),(4,0)F F -的距离之和等于8的点的轨迹是椭圆B .到点12(4,0),(4,0)F F -的距离之和等于6的点的轨迹是椭圆C .到点12(4,0),(4,0)F F -的距离之和等于12的点的轨迹是椭圆D .到点12(4,0),(4,0)F F -距离相等的点的轨迹是椭圆2.(2020·沙坪坝·重庆一中月考)若椭圆22:184x y C +=的右焦点为F ,过左焦点F '作倾斜角为60︒的直线交椭圆C 于P ,Q 两点,则PQF △的周长为( )A .B .C .6D .83.(2020·天津一中期中)若椭圆2a 2x 2-ay 2=2的一个焦点是(-2,0),则a =( )A B C D 4.(2020·浙江丽水高二月考)已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)5.(多选题)已知椭圆22:13620x y E +=的左、右焦点分别为12,F F ,定点(1,4)A ,若点P是椭圆E 上的动点,则1||PA PF +的值可能为( )A .7B .10C .17D .196.(多选题)(2020全国高二课时练习)已知P 是椭圆2214x y +=上一点,12,F F 是其两个焦点,则12F PF ∠的大小可能为( )A .34πB .23πC .2πD .4π二、填空题7.(2020全国高二课时练)已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为2√15,则此椭圆的标准方程为 .8.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点M 的纵坐标为 .9.(2020河北石家庄二中高二月考)已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______.10.(2020·江西南昌二中高二月考)如图所示,12F F 分别为椭圆2222x y 1a b+=的左右焦点,点P 在椭圆上,2POF 2b 的值为 .三、解答题11.求满足下列条件的椭圆的标准方程. (1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)c ∶a=5∶13,且椭圆上一点到两焦点的距离的和为26.12. (2020·富平县富平中学高二月考)已知某椭圆C ,它的中心在坐标原点,左焦点为F (﹣,0),且过点D (2,0). (1)求椭圆C 的标准方程;(2)若已知点A (1,),当点P 在椭圆C 上变动时,求出线段PA 中点M 的轨迹方程.3.1.1 椭圆的标准方程 -B 提高练一、选择题1.(202010=的化简结果为( )A .2212516x y += B .2212516y x +=C .221259x y +=D .221259y x +=2.如果方程x 24−m +y 2m -3=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.(3,4)B.(72,+∞) C.(3,72)D.(72,4)3.(2020全国高二课时练习)“15m <<”是“方程22215x y m m+=--表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2020·东辽县第一高级中学校高二期中)已知在ABC ∆中,点()2,0A -,点()2,0B ,若tan tan 2CAB CBA ∠⋅∠=,则点C 的轨迹方程为( )A .22148x y +=B .22148x y +=(2x ≠±) C .22148x y -=D .22184x y +=(2x ≠±)5.(多选题)已知P 是椭圆22194x y +=上一点,椭圆的左、右焦点分别为12,F F ,且121cos 3F PF ∠=,则( )A .12PF F △的周长为12B .12PF F S ∆=C .点P 到xD .122PF PF ⋅=6.(多选题)设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( )A.|PF 1|+|PF 2|=2√2B.-2<|PF 1|-|PF 2|<2C.1≤|PF 1|·|PF 2|≤2D.0≤PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ ≤1 二、填空题 7.(2020怀仁市高二月考)在平面直角坐标系xOy 中,已知ABC 顶点(3,0)A -和(3,0)C ,顶点B 在椭圆2212516x y +=上,则sin sin 2sin A C B+=_ _. 8. (2020·九江市第三中学期中)已知圆221:(2)36F x y ++=,定点2(20)F ,,A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是__.9.(2020全国高二课时练)如图把椭圆2212516x y +=的长轴AB 分成8等分,过每个分点作x轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|= .10.(2020·宁夏银川一中期中)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若2232AF BF =,122BF BF =,则椭圆C 的方程为 . 三、解答题11.(2020全国高二课时练)(2020全国高二课时练)已知椭圆M 与椭圆N :x 216+y 212=1有相同的焦点,且椭圆M 过点(-1,2√55). (1)求椭圆M 的标准方程;(2)设椭圆M 的左、右焦点分别为F 1,F 2,点P 在椭圆M 上,且△PF 1F 2的面积为1,求点P 的坐标.12.如图,椭圆C :x 2a 2+y 2b 2=1(a>b>0)经过点M (43,13),且点M 到椭圆的两焦点的距离之和为2√2.(1)求椭圆C 的标准方程;(2)若R ,S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:P ,O ,M 三点共线.。

人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题

人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题

3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。

2020新版教材人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法

2020新版教材人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法

当a<0时,值域为:
{ y | y 4ac b2 4a
}
一.函数定义域
例1 求下列函数的定义域:
⑴(1) f (x) 1 x2
⑵(2) f (x) 3x 2
(3)
⑶f
(
f
x)
(x)
x
x 1
1
1
1 2.
x
2 x
求函数定义域应注意的问题:
(1)如果y=f (x)是整式,则定义域是 实数集R
2 0 2x 5
y1 2
故函数的值域为 (, 1 ) ( 1 ,)
2
2
练习.求下列函数的值域
(1)y=3x+2(-1≤x≤1)
(2) y x 1 x
解:(1) ∵-1≤x≤1 ∴-3≤3x≤3
∴-1≤3x+2≤5
即-1≤y≤5 ∴值域是[-1,5]
解:(2) ∵y= x 1 1 1

( 2y -1 )x 2 + 2( y + 1 )x + ( y + 3 ) = 0
当y 1 时, 0 2
4( y 1)2 4(2 y 1)( y 3) 0
y 2 3 y 4 0 4 y 1且y 1
2
当y 1 时, x 7 有 解 y 1
2
6
2
故函数的值域为 [-4,1 ]
(3)y =
2 x2
值域为 _____(_-__∞_,_0_)_∪__(_0_, _+_∞__)____
(4)y = x 3 值域为 _[_0_, _+_∞__)_____
例2、求下列函数的值域: y = 1 x
2x 5
解:由
y

高中数学第三章函数概念与性质3.1.1函数的概念教师用书新人教A版必修第一册

高中数学第三章函数概念与性质3.1.1函数的概念教师用书新人教A版必修第一册

3.1.1 函数的概念考点学习目标核心素养函数的概念理解函数的概念,了解构成函数的三要素数学抽象求函数的定义域会求一些简单函数的定义域,并会用区间表示数学运算同一个函数掌握同一个函数,并会判断数学抽象求函数值和值域会求简单函数的函数值和值域,并会用区间表示值域数学运算问题导学预习教材P60-P66,并思考以下问题:1.函数的定义是什么?2.函数的自变量、定义域是如何定义的?3.函数的值域是如何定义的?4.区间的概念是什么?如何用区间表示数集?1.函数的有关概念■名师点拨对函数概念的3点说明(1)当A,B为非空数集时,符号f:A→B表示从集合A到集合B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.2.区间的概念及表示(1)区间定义及表示设a,b是两个实数,而且a<b.定义名称符号数轴表示{x|a≤x≤b} 闭区间[a,b]{x|a<x<b} 开区间(a,b){x|a≤x<b} 半开半闭区间[a,b){x|a<x≤b} 半开半闭区间(a,b](2)无穷概念及无穷区间表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a} 符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a) ■名师点拨关于无穷大的2点说明(1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号.判断正误(正确的打“√”,错误的打“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)已知定义域和对应关系就可以确定一个函数.( )(3)根据函数的定义,定义域中的每一个x可以对应着不同的y.( )(4)区间可以表示任何集合.( )答案:(1)×(2)√(3)×(4)×已知函数g(x)=2x2-1,则g(1)=( )A.-1 B.0C.1 D.2解析:选C.因为g(x)=2x2-1,所以g(1)=2-1=1.函数f(x)=14-x的定义域是( )A.(-∞,4) B.(-∞,4]C.(4,+∞) D.[4,+∞)解析:选A.由4-x>0,解得x<4,所以此函数的定义域为(-∞,4).已知全集U=R,A={x|1<x≤3},则∁U A用区间表示为________.解析:∁U A={x|x≤1或x>3},用区间可表示为(-∞,1]∪(3,+∞).答案:(-∞,1]∪(3,+∞)下图中能表示函数关系的是________.解析:由于③中的2与1和3同时对应,故③不是函数. 答案:①②④函数的概念(1)如图可作为函数y =f (x )的图象的是( )(2)下列三个说法:①若函数的值域只含有一个元素,则定义域也只含有一个元素; ②若f (x )=5(x ∈R ),则f (π)=5一定成立; ③函数就是两个集合之间的对应关系. 其中正确说法的个数为( ) A .0 B .1 C .2D .3(3)已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作是从A 到B 的函数关系的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x【解析】 (1)观察图象可知,A ,B ,C 中任取一个x 的值,y 有可能有多个值与之对应,所以不是函数图象.D 中图象是函数图象.(2)①错误.若函数的值域只含有一个元素,则定义域不一定只含有一个元素; ②正确.因为f (x )=5,这个数值不随x 的变化而变化,所以f (π)=5; ③错误.函数就是两个非空数集之间的对应关系.(3)对于A 中的任意一个元素,在对应关系f :x →y =18x ;f :x →y =14x ;f :x →y =12x 下,在B 中都有唯一的元素与之对应,故能构成函数关系.对于A 中的元素8,在对应关系f :x →y=x 下,在B 中没有元素与之对应,故不能构成函数关系.【答案】 (1)D (2)B (3)D(1)判断所给对应关系是否为函数的方法 ①先观察两个数集A ,B 是否非空;②验证对应关系下,集合A 中x 的任意性,集合B 中y 的唯一性. (2)根据图形判断对应关系是否为函数的步骤 ①任取一条垂直于x 轴的直线l ; ②在定义域内平行移动直线l ;③若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.1.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C.由函数的定义知选C.2.下列对应关系是集合P 上的函数的是________.①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对P 中的三角形求面积与集合Q 中的元素对应.解析:②显然正确,由于①中的集合P 中的元素0在集合Q 中没有对应元素,并且③中的集合P 不是数集,从而①③不正确.答案:②求函数的定义域求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =3-x |x |-5.【解】 (1)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数式有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧3-x ≥0,|x |-5≠0,解得x ≤3,且x ≠-5,即函数的定义域为{x |x ≤3,且x ≠-5}.(1)求函数定义域的常用方法①若f (x )是分式,则应考虑使分母不为零; ②若f (x )是偶次根式,则被开方数大于或等于零;③若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合; ④若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集; ⑤若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.(2)第(1)题易出现化简y =x +1-1-x ,错求定义域为{x |x ≤1},在求函数定义域时,不能盲目对函数式变形.求下列函数的定义域.(1)f (x )=x -1·4-x +2; (2)y =(x +1)|x |-x ;(3)f (x )=x +3+1x +2. 解:(1)要使此函数有意义,应满足⎩⎪⎨⎪⎧x -1≥0,4-x ≥0,解得1≤x ≤4,所以此函数的定义域是{x |1≤x ≤4}. (2)因为00无意义,所以x +1≠0, 即x ≠-1.①作为分母不能为0,二次根式的被开方数不能为负, 所以|x |-x >0,即x <0.②由①②可得函数y =(x +1)|x |-x 的定义域是{x |x <0且x ≠-1}.(3)要使此函数有意义,则⎩⎪⎨⎪⎧x +3≥0,x +2≠0⇒⎩⎪⎨⎪⎧x ≥-3,x ≠-2⇒x ≥-3且x ≠-2.所以f (x )的定义域为{x |x ≥-3且x ≠-2}.同一个函数(1)给出下列三个说法:①f (x )=x 0与g (x )=1是同一个函数;②y =f (x ),x ∈R 与y =f (x +1),x ∈R 可能是同一个函数;③y =f (x ),x ∈R 与y =f (t ),t ∈R 是同一个函数.其中正确说法的个数是( )A .3B .2C .1D .0(2)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3.其中表示同一个函数的是________(填上所有同一个函数的序号).【解析】 (1)①错误.函数f (x )=x 0的定义域为{x |x ≠0},函数g (x )=1的定义域是R ,不是同一个函数;②正确.y =f (x ),x ∈R 与y =f (x +1),x ∈R 两函数定义域相同,对应关系可能相同,所以可能是同一个函数;③正确.两个函数定义域相同,对应关系完全一致,是同一个函数.所以正确的个数有2个.(2)①定义域不同,f (x )的定义域为{x |x ≠0},g (x )的定义域为R .不相等. ②对应关系不同,f (x )=1x,g (x )=x .不是同一个函数.③定义域、对应关系都相同.同一个函数.④对应关系不同,f (x )=|x +3|,g (x )=x +3.不是同一个函数. 【答案】 (1)B (2)③判断两个函数为同一个函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是同一个函数,即使定义域与值域都相同,也不一定是同一个函数.(2)函数是两个非空数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.(3)在化简解析式时,必须是等价变形.下列各组函数表示同一个函数的是( )A .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0与g (x )=|x |B .f (x )=1与g (x )=(x +1)0C .f (x )=x 2与g (x )=(x )2D .f (x )=x +1与g (x )=x 2-1x -1解析:选A.A 项中两函数的定义域和对应关系相同,为同一个函数;B 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,-1)∪(-1,+∞);C 项中f (x )的定义域为R ,g (x )的定义域为[0,+∞);D 项中,f (x )的定义域为R ,g (x )的定义域为(-∞,1)∪(1,+∞).B ,C ,D 三项中两个函数的定义域都不相同,所以不是相等函数.故选A.求函数值和值域已知f (x )=12-x (x ∈R ,x ≠2),g (x )=x +4(x ∈R ).(1)求f (1),g (1)的值; (2)求f (g (x )).【解】 (1)f (1)=12-1=1,g (1)=1+4=5.(2)f (g (x ))=f (x +4)=12-(x +4)=1-2-x =-1x +2(x ∈R ,且x ≠-2).1.(变设问)在本例条件下,求g (f (1))的值及f (2x +1)的表达式. 解:g (f (1))=g (1)=1+4=5.f (2x +1)=12-(2x +1)=-12x -1⎝ ⎛⎭⎪⎫x ∈R ,且x ≠12. 2.(变条件)若将本例g (x )的定义域改为{0,1,2,3},求g (x )的值域.解:因为g (x )=x +4,x ∈{0,1,2,3},所以g (0)=4,g (1)=5,g (2)=6,g (3)=7.所以g (x )的值域为{4,5,6,7}.(1)求函数值的方法①先要确定出函数的对应关系f 的具体含义;②然后将变量取值代入解析式计算,对于f (g (x ))型函数的求值,按“由内到外”的顺序进行,要注意f (g (x ))与g (f (x ))的区别.(2)求函数值域的常用方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.1.已知函数f (x )=x -1,且f (a )=3,则a =________. 解析:因为f (x )=x -1, 所以f (a )=a -1. 又因为f (a )=3, 所以a -1=3,a =16. 答案:162.求下列函数的值域:(1)y =2x +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =3x -1x +1;(4)y =x +x .解:(1)因为x ∈R ,所以2x +1∈R , 即函数的值域为R .(2)配方:y =x 2-4x +6=(x -2)2+2,因为x ∈[1,5),如图所示.所以所求函数的值域为[2,11). (3)借助反比例函数的特征求.y =3(x +1)-4x +1=3-4x +1(x ≠-1), 显然4x +1可取0以外的一切实数, 即所求函数的值域为{y |y ≠3}. (4)设u =x (x ≥0),则x =u 2(u ≥0),y =u 2+u =⎝ ⎛⎭⎪⎫u +122-14(u ≥0).由u ≥0,可知⎝ ⎛⎭⎪⎫u +122≥14,所以y ≥0.所以函数y =x +x 的值域为[0,+∞).1.若f (x )=x +1,则f (3)=( ) A .2 B .4 C .2 2D .10解析:选A.因为f (x )=x +1,所以f (3)=3+1=2. 2.对于函数f :A →B ,若a ∈A ,则下列说法错误的是( ) A .f (a )∈BB .f (a )有且只有一个C .若f (a )=f (b ),则a =bD .若a =b ,则f (a )=f (b )解析:选C.根据函数的定义可知,A ,B ,D 正确;C 错误. 3.若[0,3a -1]为一确定区间,则a 的取值范围是________.解析:根据区间表示数集的方法原则可知,3a -1>0,解得a >13,所以a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. 答案:⎝ ⎛⎭⎪⎫13,+∞4.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.答案:(1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞) 5.已知函数f (x )=6x -1-x +4.(1)求函数f (x )的定义域(用区间表示); (2)求f (-1),f (12)的值.解:(1)根据题意知x -1≠0且x +4≥0,所以x ≥-4且x ≠1, 即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.[A 基础达标]1.下列对应关系是从集合M 到集合N 的函数的是( ) A .M =R ,N ={x ∈R |x >0},f :x →|x | B .M =N ,N =N *,f :x →|x -1| C .M ={x ∈R |x >0},N =R ,f :x →x 2D .M =R ,N ={x ∈R |x ≥0},f :x →x解析:选C.对于A ,集合M 中x =0时,|x |=0,但集合N 中没有0;对于B ,集合M 中x =1时,|x -1|=0,但集合N 中没有0;对于D ,集合M 中x 为负数时,集合N 中没有元素与之对应;分析知C 中对应是集合M 到集合N 的函数.2.下列四个图中,不是以x 为自变量的函数的图象是( )解析:选C.根据函数定义,可知对自变量x 的任意一个值,都有唯一确定的实数(函数值)与之对应,显然选项A ,B ,D 满足函数的定义,而选项C 不满足,故选C.3.区间(-3,2]用集合可表示为( ) A .{-2,-1,0,1,2} B .{x |-3<x <2} C .{x |-3<x ≤2}D .{x |-3≤x ≤2}解析:选C.由区间和集合的关系,可得区间(-3,2]可表示为{x |-3<x ≤2},故选C.4.已知函数f (x )=x 21+|x -1|,则f (-2)=( )A .-1B .0C .1D .2解析:选C.由题意知f (-2)=(-2)21+|-2-1|=44=1.故选C.5.若函数y =x 2-3x 的定义域为{-1,0,2,3},则其值域为( )A .{-2,0,4}B .{-2,0,2,4}C .{y |y ≤-94}D .{y |0≤y ≤3} 解析:选A.依题意,当x =-1时,y =4;当x =0时,y =0;当x =2时,y =-2;当x =3时,y =0,所以函数y =x 2-3x 的值域为{-2,0,4}.6.将函数y =31-1-x 的定义域用区间表示为________. 解析:由⎩⎨⎧1-x ≥0,1-1-x ≠0解得x ≤1且x ≠0, 用区间表示为(-∞,0)∪(0,1].答案:(-∞,0)∪(0,1]7.若f (x )=5x x 2+1,且f (a )=2,且a =________. 解析:令5a a 2+1=2,即2a 2-5a +2=0,解得a =12或a =2,故a 的值为12或2. 答案:12或2 8.如果函数f :A →B ,其中A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在B 中都有唯一确定的|a |和它对应,则函数的值域为________.解析:由题意知,对a ∈A ,|a |∈B ,故函数值域为{1,2,3,4}.答案:{1,2,3,4}9.已知f (x )=1-x 1+x(x ∈R ,且x ≠-1),g (x )=x 2-1(x ∈R ). (1)求f (2),g (3)的值;(2)求f (g (3))的值及f (g (x )).解:(1)因为f (x )=1-x 1+x ,所以f (2)=1-21+2=-13. 因为g (x )=x 2-1,所以g (3)=32-1=8.(2)依题意,知f (g (3))=f (8)=1-81+8=-79, f (g (x ))=1-g (x )1+g (x )=1-(x 2-1)1+(x 2-1)=2-x 2x2(x ≠0). 10.已知函数y =kx +1k 2x 2+3kx +1的定义域为R ,求实数k 的值. 解:函数y =kx +1k 2x 2+3kx +1的定义域即使k 2x 2+3kx +1≠0的实数x 的集合.由函数的定义域为R ,得方程k 2x 2+3kx +1=0无解.当k =0时,函数y =kx +1k 2x 2+3kx +1=1,函数定义域为R , 因此k =0符合题意;当k ≠0时,k 2x 2+3kx +1=0无解,即Δ=9k 2-4k 2=5k 2<0,不等式不成立.所以实数k 的值为0.[B 能力提升]11.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,那么f (72)等于( )A .p +qB .3p +2qC .2p +3qD .p 3+q 2 解析:选B.因为f (ab )=f (a )+f (b ),所以f (9)=f (3)+f (3)=2q , f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .12.若函数f (x )的定义域为[-2,1],则g (x )=f (x )+f (-x )的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧-2≤x ≤1,-2≤-x ≤1,即-1≤x ≤1. 故g (x )=f (x )+f (-x )的定义域为[-1,1].答案:[-1,1]13.求下列函数的值域.(1)y =x -1(x ≥4);(2)y =2x +1,x ∈{1,2,3,4,5};(3)y =x +2x -1;(4)y =x 2-2x -3(x ∈[-1,2]).解:(1)因为x ≥4,所以x ≥2,所以x -1≥1,所以y ∈[1,+∞).(2)y ={3,5,7,9,11}.(3)设u =2x -1,则u ≥0,且x =1+u 22, 于是,y =1+u 22+u =12(u +1)2≥12, 所以y =x +2x -1的值域为⎣⎢⎡⎭⎪⎫12,+∞. (4)y =x 2-2x -3=(x -1)2-4,因为x ∈[-1,2],作出其图象(图略)可得值域为[-4,0].14.已知函数f (x )=x 2-mx +n ,且f (1)=-1,f (n )=m ,求f (-1),f (f (-1))的值及f (f (x ))的表达式.解:由题意知⎩⎪⎨⎪⎧1-m +n =-1,n 2-mn +n =m , 解得⎩⎪⎨⎪⎧m =1,n =-1,所以f (x )=x 2-x -1,故f (-1)=1,f (f (-1))=-1,f (f (x ))=f (x 2-x -1)=(x 2-x -1)2-(x 2-x -1)-1=x 4-2x 3-2x 2+3x +1.[C 拓展探究]15.(2019·石家庄检测)已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)由(1)中求得的结果,你发现f (x )与f ⎝ ⎛⎭⎪⎫1x 有什么关系?并证明你的发现. (3)求2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018的值.解:(1)因为f (x )=x 21+x 2,所以f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1, f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)由(1)可发现f (x )+f ⎝ ⎛⎭⎪⎫1x =1.证明如下: f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1,是定值.(3)由(2)知,f (x )+f ⎝ ⎛⎭⎪⎫1x =1, 因为f (1)+f (1)=1,f (2)+f ⎝ ⎛⎭⎪⎫12=1, f (3)+f ⎝ ⎛⎭⎪⎫13=1,f (4)+f ⎝ ⎛⎭⎪⎫14=1, … f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=1, 所以2f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017+f (2 018)+f ⎝ ⎛⎭⎪⎫12 018=2 018.。

数学人教A版选择性必修第一册3.1.1椭圆及其标准方程课件

数学人教A版选择性必修第一册3.1.1椭圆及其标准方程课件

通过“拉伸”得到椭圆吗?如何“拉伸”?由此你能发现椭圆与圆之
间的关系吗?
例2 如图,在圆 + = 上任取一点P,
过点作轴的垂线段,为垂足,P为
MD的中点,当点P在圆上运动时,点的
轨迹是什么?为什么?
典型例题
例3.如图,在,两点的坐标分别为(−, ),(, ).直线,相
x2
2
−c 那么方程 2
a
+
y2
a2 −c2
=
x2
1可化成: 2
a
y2
+ 2
b
=1 a>b>0 .
新课讲授


+


= >> ①
由上面的推导过程知,椭圆上任意一点的坐标(x,y)都满足方程
①;反之,以方程①的解为坐标的点(x,y)与椭圆的两个焦点(c,0),
(一c,0)的距离之和为 2a,即以方程①的解为坐标的点都在椭圆上.
线为 轴,建立平面直角坐标系 ,如图所示.
新课讲授
椭圆定义:我们把平面内与两个定点 , 的距离
的和等于常数(大于 )的点的轨迹叫做椭圆.
设(, )是椭圆上任意一点,椭圆的焦距为2( > 0),则焦点1 , 2 的
坐标分别为 −, 0 , (, 0).
= , =

.

因为点( , )在圆 + = 上,所以 + = .①
把 = , = 代入方程①,得 + =
所以点的轨迹是椭圆.

,即

+ = .
代入法求轨迹方程!
典型例题
问题8
由例2我们发现,可以由圆通过“压缩”得到椭圆.你能由圆

人教A版数学必修1第三章3.1.1 方程的根与函数的零点

人教A版数学必修1第三章3.1.1 方程的根与函数的零点
A. ( – 1 ,0) B. (0,1) C. (1,2) D. (2,3)
小结
函数的零点定义
三个等价关系
函数零点存在性原理
数学思想方法



















函数零点方程根, 形数本是同根生。 函数零点端点判, 图像连续方可行 。
注意:零点指的是一个实数,而不是一个点!
方程f(x)=0的实数根
函数y=f(x)的零点

函数y=f(x) 的图 象与x轴交点的 横坐标

例1、求下列函数的零点:(注意格式)
(1) y x2 x; (2) y log2 x; (3) y 3x 1;
解: (1)令y=0,即x2-x=0; 解得x1=0,x2=1
∴所求函数的零点是0和1 (2) 1 (3) 0
例2:已知函数 f (x) 是定义域为R的奇函数,且 f (x)
在(0, )上有一个零点,则f (x) 的零点个数为(A)
A.3 B.2 C.1 D.不确定
提升:这三个零点的和是多少?
思考
方程 ln x 2x 6 0 是否有实根?有几个实根
合作探究二
某地0--12时气温变化如图,中间一部分看不清 楚,假设气温是连续变化的,请将图形补充成完 整的函数图像,这段时间内,是否一定有某时刻 的气温为0°C?为什么?
气温
8
0
12 时间
-4
判断二次函数 f (x) x2 2x 2 在区间 (2,3) 上是否存在零点.
数的角度— 求根法 形的角度— 你会从数来刻画这一图形特征吗? y

3.1.1函数的概念(2)课件高一上学期数学人教A版(2019)必修一

3.1.1函数的概念(2)课件高一上学期数学人教A版(2019)必修一

12345
内容索引
谢谢观看
Thank you for watching
内容索引
活动二 探究抽象函数的定义域
例 2 (1) 已知函数f(x)的定义域为(0,1),求f(x2)的定义域; 【解析】 因为f(x)的定义域为(0,1), 所以要使f(x2)有意义,则0<x2<1, 即-1<x<0或0<x<1,所以函数f(x2)的定义域为{x|-1<x<0或0<x<1}.
内容索引
内容索引
例 1 求下列函数的定义域: (1) y=3-12x; 【解析】 函数 y=3-12x 的定义域为 R.
(2) y=x+x+120; 【解析】 由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,即 x>-2,所以 x>-2 且 x≠-1, 所以函数 y=x+x+120的定义域为{x|x>-2,且 x≠-1}.
【答案】 D
12345
内容索引
3. (多选)(2022·佛山顺德区容山中学高一期中)已知函数f(x)=x2-2x-3的
定义域为[a,b],值域为[-4,5],则实数对(a,b)可能为( )
A. (-2,4)B. (-2 Nhomakorabea1)C. (1,4)
D. (-1,1)
【解析】 画出f(x)=x2-2x-3的图象如图所示.由图可知,f(-2) =f(4)=5,f(1)=-4,根据选项可知.当f(x)=x2-2x-3的定义域为[a, b],值域为[-4,5]时,实数对(a,b)可能为(-2,4),(-2,1),(1,4).故 选ABC.
内容索引
1. 函数值域的定义: 若A是函数y=f(x)的定义域,则对于A中的每一个x,都有一个输出值 y与之对应.我们将所有输出值y组成的集合{y|y=f(x),x∈A}称为函数的 值域. 2. 函数的值域是由函数的定义域和对应法则共同确定的,所以求函 数的值域一定要注意定义域是什么,对于同一个函数关系式,当定义域 变化时,值域也可能发生变化.

高中数学人教A版(2019)必修第一册3.1.1 函数的概念(1)课件

高中数学人教A版(2019)必修第一册3.1.1 函数的概念(1)课件

2.2016年11月2日8时至次日八时,北京的温度走势如图 所示。 (1)求对应关系为图中曲线的函数的定义域与值域 (2)根据图像求,这一天中,12时所对应的温度
解(1)设从今日八点起24小时内经过时间t的温度为 y0C,则定义域为{t|0≤t≤24},值域为{y|2≤y≤12}. (2)由图知12时的温度约为9.70C
(3)你认为如何表述s与t的对应关系才是更为精确的?
列车行进的路程s与运行时间t的对应关系是s=350t①,其 中t的变化范围是数集A1={t|0≤t≤0.5},S的变化范围是数 集B1={S|0≤S≤175}, 对于数集A1中的任意时刻t,按照对应关系①在数集B1中都 有唯一确定的路程s和它对应
问题2:某电器维修公司要求工人每周工作至少1天,至多不超过6
你认为它们是同一函数吗?为什么?
问题3:图中是北京市2016年11月23日的空气质量指数
(Air Quality Index,简称AQI)变化图。
(1)如何根据该图确定这一天内任意时刻t的空气质量指数(AQI) 的值I? (2)你认为这里的I是t的函数吗?如果是你能仿照前面的方法描 述I与t的对应关系吗?
可见,构成函数的要素为:定义域,对应关系和值域。因为值 域是由定义域和对应关系决定的,所以如果两个函数的定义 域相同,并且对应关系完全一致,即相同的自变量对应的函 数值相同,那么这两个函数是同一个函数.
• 对函数概念的五点说明 • (1)对数集的要求:集合A,B为非空数集. • (2)任意性和唯一性:集合A中的数具有任意性,
民生活质量的高低,恩格尔系数越低,生活质量越高,表中是我国某省城镇居 民恩格尔系数变化情况,从中可以看出,该省城镇居民的生活质量越来越高
(1)你认为按表中给出的对应关系,恩格尔系数r是年份y的函数吗?为 什么? (2)如果是,你能仿照前面的方法给出精确刻画吗? (3)三如果我们引入集合B4={r|0≤r≤1},将对应关系表示为对于任何任意一 个年份y都有B4中唯一确定的r与之对应,你认为有道理吗?

高中数学第三章函数的概念与性质3.1.1函数的概念讲义新人教A版必修第一册

高中数学第三章函数的概念与性质3.1.1函数的概念讲义新人教A版必修第一册

3.1.1 函数的概念最新课程标准:在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用。

了解构成函数的要素,能求简单函数的定义域.知识点一函数的概念1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).显然,值域是集合B的子集.状元随笔对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”表示对应关系,在不同的函数中f的具体含义不一样.知识点二区间的概念1.区间的几何表示定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]2.实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”;“-∞”读作“负无穷大”;“+∞”读作“正无穷大”.3.无穷大的几何表示定义 符号 数轴表示{x |x ≥a } [a ,+∞) {x |x >a } (a ,+∞) {x |x ≤b } (-∞,b ] {x |x <b }(-∞,b )状元随笔 关于无穷大的2点说明 (1)“∞”是一个符号,而不是一个数.(2)以“-∞”或“+∞”为端点时,区间这一端必须是小括号. 知识点三 同一函数如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数.[教材解难]1.教材P 60思考根据问题1的条件,我们不能判断列车以350 km/h 运行半小时后的情况,所以上述说法不正确.显然,其原因是没有关注到t 的变化范围.2.教材P 63思考反比例函数y =kx(k ≠0)的定义域为{x |x ≠0},对应关系为“倒数的k 倍”,值域为{y |y ≠0}.反比例函数用函数定义叙述为:对于非空数集A ={x |x ≠0}中的任意一个x 值,按照对应关系f “倒数的k (k ≠0)倍”,在集合B ={y |y ≠0}中都有唯一确定的数k x和它对应,那么此时f :A →B 就是集合A 到集合B 的一个函数,记作f (x )=k x(k ≠0),x ∈A .3.教材P 66思考初中所学习的函数传统定义与高中的近代定义之间的异同点如下:不同点:传统定义从变量变化的角度,刻画两个变量之间的对应关系;而近代定义,则从集合间的对应关系来刻画两个非空数集间的对应关系.相同点:两种对应关系满足的条件是相同的,“变量x 的每一个值”以及“集合A 中的每一个数”,都有唯一一个“y 值”与之对应.[基础自测]1.下列从集合A 到集合B 的对应关系f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A ={平行四边形},B =R ,f :求A 中平行四边形的面积解析:对B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对D ,A 集合不是数集,故不符合函数的定义.综上,选A.答案:A 2.函数f (x )=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞) 解析:使函数f (x )=x -1x -2有意义, 则⎩⎪⎨⎪⎧x -1≥0,x -2≠0,即x ≥1,且x ≠2.所以函数的定义域为{x |x ≥1且x ≠2}.故选D. 答案:D3.下列各组函数表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =x +1,x ∈Z 与y =x -1,x ∈Z解析:A 中两函数定义域不同;B 中两函数值域不同;D 中两函数对应法则不同. 答案:C4.用区间表示下列集合:(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12≤x <5=________; (2){x |x <1或2<x ≤3}=________.解析:(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=[-12,5). (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案:(1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]题型一 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A 到集合B 的函数: (1)A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; (2)A ={1,2,3},B ={4,5,6},对应关系如图所示;(3)A =R ,B ={y |y >0},f :x →y =|x |;(4)A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1. 【解析】 对于集合A 中的任意一个值,在集合B 中都有唯一的值与之对应,因此(1)(4)中对应关系f 是从集合A 到集合B 的一个函数.(2)集合A 中的元素3在集合B 中没有对应元素,且集合A 中的元素2在集合B 中有两个元素(5和6)与之对应,故所给对应关系不是集合A 到集合B 的函数.(3)A 中的元素0在B 中没有对应元素,故所给对应关系不是集合A 到集合B 的函数. 1.从本题(1)可以看出函数f(x)的定义域是非空数集A ,但值域不一定是非空数集B ,也可以是集合B 的子集.2.判断从集合A 到集合B 的对应是否为函数,一定要以函数的概念为准则,另外也要看A 中的元素是否有意义,同时,一定要注意对特殊值的分析.方法归纳(1)判断一个集合A 到集合B 的对应关系是不是函数关系的方法:①A ,B 必须都是非空数集;②A 中任意一个数在B 中必须有并且是唯一的实数和它对应.[注意] A 中元素无剩余,B 中元素允许有剩余.(2)函数的定义中“任意一个x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )A .0个B .1个C .2个D .3个 (2)下列对应是否是函数? ①x →3x,x ≠0,x ∈R ;②x →y ,其中y 2=x ,x ∈R ,y ∈R . 解析:(1)图号 正误 原因① × x =2时,在N 中无元素与之对应,不满足任意性② √ 同时满足任意性与唯一性③ × x =2时,对应元素y =3∉N ,不满足任意性 ④ ×x =1时,在N 中有两个元素与之对应,不满足唯一性(1)①x∈[0,1]取不到[1,2]. ③y∈[0,3]超出了N∈[0,2]范围.④可取一个x 值,y 有2个对应,不符合题意.(2)①是函数.因为任取一个非零实数x ,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x =1时,y =±1,即一个非零自然数x ,对应两个y 的值,不符合函数的概念.答案:(2)①是函数②不是函数 (2)关键是否符合函数定义.题型二 求函数的定义域 [经典例题] 例2 (1)函数f (x )=x +1x -1的定义域是( ) A.[-1,1)B .[-1,1)∪(1,+∞)C .[-1,+∞)D .(1,+∞)(2)求下列函数的定义域. ①y =x +2+1x 2-x -6;②y =(x -1)0|x |+x.【解析】 (1)由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.所以所求函数的定义域为[-1,1)∪(1,+∞). 【答案】 (1)B(1)依据分式的分母不为0,二次根式的被开方数大于等于0,列不等式组求定义域. 【解析】(2)①要使函数有意义,需满足⎩⎪⎨⎪⎧x +2≥0,x 2-x -6≠0,即⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,得x >-2且x ≠3.所以所求函数的定义域为(-2,3)∪(3,+∞). ②要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≠0,|x |+x ≠0,即⎩⎪⎨⎪⎧x ≠1,x >0,所以x >0且x ≠1,所以所求函数的定义域为(0,1)∪(1,+∞). 【答案】(2)见解析(2)依据分式的分母不为0,二次根式的被开方数大于等于0,0的0次幂没有意义,列不等式组求定义域.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域: (1)f (x )=6x 2-3x +2;(2)f (x )=(x +1)|x |-x;(3)f (x )=2x +3-12-x+1x.解析:(1)要使函数有意义,只需x 2-3x +2≠0, 即x ≠1且x ≠2,故函数的定义域为{x |x ≠1且x ≠2}.(2)要使函数有意义,则⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得x <0且x ≠-1.所以定义域为(-∞,-1)∪(-1,0). (3)要使函数有意义,则⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0.故定义域为⎣⎢⎡⎭⎪⎫-32,0∪(0,2). (1)分母不为0(2)⎩⎪⎨⎪⎧偶次根式被开方数≥0(x +1)0底数不为0(3)⎩⎪⎨⎪⎧偶次根式被开方数≥0分母不为0题型三 同一函数[教材P 66例3]例3 下列函数中哪个与函数y =x 是同一个函数? (1)y =(x )2;(2)u =3v 3;(3)y =x 2; (4)m =n 2n.【解析】 (1)y =(x )2=x (x ∈{x |x ≥0}),它与函数y =x (x ∈R )虽然对应关系相同,但是定义域不相同,所以这个函数与函数y =x (x ∈R )不是同一个函数.(2)u =3v 3=v (v ∈R ),它与函数y =x (x ∈R )不仅对应关系相同,而且定义域也相同,所以这个函数与函数y =x (x ∈R )是同一个函数.(3)y =x2=|x |=⎩⎪⎨⎪⎧-x ,x <0,x ,x ≥0,它与函数y =x (x ∈R )的定义域都是实数集R ,但是当x <0时,它的对应关系与函数y =x (x ∈R )不相同.所以这个函数与函数y =x (x ∈R )不是同一个函数.(4)m =n 2n=n (n ∈{n |n ≠0}),它与函数y =x (x ∈R )的对应关系相同但定义域不相同.所以这个函数与函数y =x (x ∈R )不是同一个函数.教材反思判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2-xx,g (x )=x -1;(2)f (x )=x x ,g (x )=x x; (3)f (x )=x 2,g (x )=(x +1)2; (4)f (x )=|x |,g (x )=x 2. 解析:应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型四 求函数的值域[经典例题] 例4 求下列函数的值域. (1)y =3-4x ,x ∈(-1,3]. (2)y =2xx +1. (3)y =x 2-4x +5,x ∈{1,2,3}. (4)y =x 2-4x +5.【解析】 (1)因为-1<x ≤3,所以-12≤-4x <4,所以-9≤3-4x <7, 所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7). (2)因为y =2x x +1=2(x +1)-2x +1=2-2x +1≠2, 所以函数y =2xx +1的值域为{y |y ∈R 且y ≠2}. (3)函数的定义域为{1,2,3}, 当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2, 所以这个函数的值域为{1,2},(4)因为y =x 2-4x +5=(x -2)2+1,x ∈R 时,(x -2)2+1≥1, 所以这个函数的值域为[1,+∞).状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x 的取值范围,再求3-4x 的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域. (3)将自变量x =1,2,3代入解析式求值,即可得值域. (4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的常用方法(1)观察法:对于一些比较简单的函数,其值域可通过观察法得到. (2)配方法:是求“二次函数”类值域的基本方法.(3)换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.(4)分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.跟踪训练4 求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1; (3)y =1-x21+x2;(4)y =-x 2-2x +3(-5≤x ≤-2).解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}. (2)因为x ≥0,所以x +1≥1, 即所求函数的值域为[1,+∞). (3)因为y =1-x 21+x 2=-1+21+x 2,所以函数的定义域为R , 因为x 2+1≥1,所以0<21+x 2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1]. (4)y =-x 2-2x +3=-(x +1)2+4. 因为-5≤x ≤-2, 所以-4≤x +1≤-1. 所以1≤(x +1)2≤16. 所以-12≤4-(x +1)2≤3. 所以所求函数的值域为[-12,3]. (3)先分离再求值域 (4)配方法求值域一、选择题1.下列各个图形中,不可能是函数y =f (x )的图象的是( )解析:对于1个x 有无数个y 与其对应,故不是y 的函数.答案:A2.函数f (x )=x +3+(2x +3)3-2x 的定义域是( )A.⎣⎢⎡⎦⎥⎤-3,32B.⎣⎢⎡⎭⎪⎫-3,-32∪⎝ ⎛⎭⎪⎫-32,32C.⎣⎢⎡⎭⎪⎫-3,32D.⎣⎢⎡⎦⎥⎤-3,-32解析:由题意得⎩⎪⎨⎪⎧x +3≥0,3-2x >0,2x +3≠0,解得-3≤x <32且x ≠-32,故选B.答案:B3.已知函数f (x )=-1,则f (2)的值为( )A .-2B .-1C .0D .不确定解析:因为函数f (x )=-1,所以不论x 取何值其函数值都等于-1,故f (2)=-1.故选B.答案:B4.下列各组函数中,表示同一函数的是( )A .y =x +1和y =x 2-1x -1B .y =x 2和y =(x )2C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )2解析:只有D是相同的函数,A与B中定义域不同,C是对应法则不同.答案:D二、填空题5. 用区间表示下列数集.(1){x|x≥2}=________;(2){x|3<x≤4}=________;(3){x|x>1且x≠2}=________.解析:由区间表示法知:(1)[2,+∞);(2)(3,4];(3)(1,2)∪(2,+∞).答案:(1)[2,+∞)(2)(3,4] (3)(1,2)∪(2,+∞)6.函数f(x)的图象如图所示,则f(x)的定义域为________,值域为________.解析:由f(x)的图象可知-5≤x≤5,-2≤y≤3.答案:[-5,5] [-2,3]7.若A={x|y=x+1},B={y|y=x2+1},则A∩B=________.解析:由A={x|y=x+1},B={y|y=x2+1},得A=[-1,+∞),B=[1,+∞),∴A∩B=[1,+∞).答案:[1,+∞)三、解答题8.(1)求下列函数的定义域:①y=4-x;②y=1|x|-x;③y=5-x+x-1-1x2-9;(2)将长为a的铁丝折成矩形,求矩形面积y关于一边长x的解析式,并写出此函数的定义域.解析:(1)①4-x≥0,即x≤4,故函数的定义域为{x|x≤4}.②分母|x|-x≠0, 即|x|≠x,所以x<0.故函数的定义域为{x|x<0}.③解不等式组⎩⎪⎨⎪⎧ 5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧ x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.(2)设矩形一边长为x ,则另一边长为12(a -2x ), 所以y =x ·12(a -2x )=-x 2+12ax ,函数的定义域为⎩⎪⎨⎪⎧ x >012(a -2x )>0⇒0<x <a 2,定义域为⎝ ⎛⎭⎪⎫0,a 2. 9.求下列各函数的值域:(1)y =x +1,x ∈{2,3,4,5,6};(2)y =x 2-4x +6;(3)y =x +2x -1. 解析:(1)因为当x 分别取2,3,4,5,6时,y =x +1分别取3,4,5,6,7, 所以函数的值域为{3,4,5,6,7}.(2)函数的定义域为R .因为y =x 2-4x +6=(x -2)2+2≥2,所以该函数的值域为[2,+∞).(3)设t =2x -1,则x =t 2+12,且t ≥0. 问题转化为求y =1+t 22+t (t ≥0)的值域. 因为y =1+t 22+t =12(t +1)2(t ≥0), 所以y 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. 故该函数的值域为⎣⎢⎡⎭⎪⎫12,+∞. [尖子生题库]10.(1)已知函数f (x )的定义域为[-1,5],求函数f (x -5)的定义域;(2)已知函数f (x -1)的定义域是[0,3],求函数f (x )的定义域.解析:(1)由-1≤x -5≤5,得4≤x ≤10,所以函数f (x -5)的定义域是[4,10].(2)由0≤x≤3,得-1≤x-1≤2,所以函数f(x)的定义域是[-1,2].。

人教A版2003课标高中数学必修1第三章3.1.1方程的根与函数的零点(共22张PPT)

人教A版2003课标高中数学必修1第三章3.1.1方程的根与函数的零点(共22张PPT)

探究三:零点存在性定理
探究三:零点存在性定理
(若不成立,利用图象举出反例)
23:27
学会了吗?
.
.
23:27
探究四:零点存在性定理的拓展
如果函数y=f(x)在区间[a,b]上的图象 是连续不断的一条曲线,并且有 f(a)·f(b)<0, 且是单调函数 那么,函数y=f(x)在区间(a,b) 内有零唯点一.的一个零点.
择决定命运,环境造就人生!
从特殊到一般性的归纳
判别式△
方程ax2 +bx +c =0(a>0)的 根
△>0
△=0
Байду номын сангаас
△< 0
这个结论对于一般的二次方程和对应函数成立吗?
上述结一论元:二一次元方程二的次实方数程根的实数二次根函就数是图相象应与函x轴数的图交象点的 横坐标(方程与实x轴数根交的点个的数横就坐是标对应. 函数图象与x轴的交点的个数)
记忆口诀: 零点不是点; 等价三相连. 上下不间断; 零点可呈现.
㈡数学思想方法
体会函数与方程和数形结合的数学思想
课后作业
⑴完成学案; ⑵ (选做)教材88页课后练习第2题.
小测试
①函数 f (x) (x2 2)( x2 3x 2) 的零点的个数是 ( )
A .1 B.2
C. 3
D.4
②函数 f (x) 图象在[a,b]上是一条连续不断的曲线,
且 f (a) f (b) 0 ,则 f (x) 在[a,b]上
()
A .一定没有零点 B.至少有一个零点 C. 只有一个零点 D.零点情况不确定
③函数 f (x) 2x 3x 的零点所在的大致区间是 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档