常见运放滤波电路1
第一节单相全波整流和滤波电路
第一节 单相全波整流和滤波电路 单相全波整流和滤波电路
3.波形图 . 个二极管组合封装在一起, 将 4个二极管组合封装在一起 , 个二极管组合封装在一起 制成单相桥式整流器,如图所示。 制成单相桥式整流器,如图所示。
第一节 单相全波整流和滤波电路 单相全波整流和滤波电路
二、滤波电路
1.电容滤波电路 .
稳压电路的最大输出电流取决于调整管的功率容量,若需要 稳压电路的最大输出电流取决于调整管的功率容量, 进一步扩大输出电流, 进一步扩大输出电流,可采用功率容量更大的调整管且接成复合 调整管。 调整管。
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
[例 7-1] 在图中,已知输入电压 VI = 20 V,基准电压 VZ = 6 例 在图中, , V ,取样电阻 R1 = R2 = RP = 2 kΩ,试求:(1)输出电压 VO 的可 Ω 试求: ) 调范围; 调范围;(2)设调整管的饱和压降 VCES 约为 2 V,为使电路正常 ) , 工作, 最小值应为多少? 工作,输入电压 VI 最小值应为多少?
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
3.实用电路 .
稳压原理: 稳压原理:
VO 增大 (减小 ) → I B 减小(增大 ) → I C减小(增大 ) → VCE 增大 (减小 ) → 限制 VO 变化
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
二、串联调整型稳压电路
连续调整型直流稳压电路 第二节 连续调整型直流稳压电路
一、串联调整型直流稳压电路的基本原理
1.工作原理 . 增大, ① 输入电压 VI 增大 ,致使 VO 增大 , 增大 RP , 其上压降增大 , VO 的增大也受到了限制。 的增大也受到了限制。 不变, 增大时,输出电压亦将增大, ② VI 不变, RL 增大时,输出电压亦将增大,此时增大 RP 使分压系数减小, 的增大受到限制。 使分压系数减小,就可以使 VO 的增大受到限制。 与负载串联,故称为串联型稳压电路。 因调整元件 RP 与负载串联,故称为串联型稳压电路。
经典的运算放大器基本电路大全
运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
运放低通滤波
运放低通滤波
运放低通滤波是一种常用的电路设计技术,可以有效地滤除信号中高频部分,使得输出信号更加平滑和稳定。
其基本原理是利用运放的放大和反相放大功能,结合电容器和电阻器来实现信号的滤波。
在运放低通滤波电路中,输入信号经过一个电容器,然后被放大并反相输出,再通过另一个电容器和电阻器组成的电路,最终输出到负载上。
通过调整电容器和电阻器的数值,可以实现不同的滤波效果。
一般来说,当电容器大小逐渐增加时,滤波效果会越来越好,但同时输出信号的幅度也会逐渐下降。
运放低通滤波广泛应用于各种电子设备和电路中,尤其是在音频和视频信号处理中,其作用尤为重要。
在实际应用中,需要根据具体信号特点和滤波要求来选择合适的电容器和电阻器,以达到最佳的滤波效果。
- 1 -。
常见运放滤波电路
滤波电路这节非常深入地介绍了用运放组成的有源。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。
图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。
图十四3.1.3 文氏滤波器文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
十种运放精密全波整流电路
十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。
常见运放滤波电路
。示所四十图如器波滤通高的型典 器波滤通高 2�1�3
三十图
。分部叠重不的器波滤个两这是将 性特 过通的器波滤阻带于对�分部叠交的器波滤个两这是将性特过通的器波滤 通带于对。来起连串器波滤通低和器波滤通高用要需就器波滤阻带者或通带的 宽很个一现实要需果如 。值 Q 的高常非有器波滤阻带和通带的用常通们我 。调微些一做上础基的器波滤 htrowrettuB 在能只器波滤 llesseB 和 vehsybehC �率频点拐出算计的确准以可器波滤 htrowrettuB 有只道知要须必 。化变间之器波滤 vehsybehC 和 htrowrettuB 在器波滤使们他且而 �值 Q 的们 他整调来件元的同相用使器波滤阻带和通带的成组构结扑拓个一同的常通 。性特频幅的频倍每 Bd04 有器波滤阶二
常见运放滤波电路
滤波电路这节非常深入地介绍了用运放组成的有源滤波器。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了V CC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butter worth、Chebys hev、Bessel l)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20d B 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。
图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。
3运算放大器有源滤波电路
掉,
ω<ωl的信号被高通滤波电路滤掉, 只有当ωl<ω<ωh时信
号才能通过, 显然, ωh>ωl才能组成带通电路。图7 - 30(b)为一 个低通滤波电路和一个高通滤波电路“并联”组成的带阻滤波 电路, ω<ωh信号从低通滤波电路中通过, ω>ωl的信号从高通滤 波电路通过, 只有ωh<ω<ωl的信号无法通过, 同样, ωh<ωl才能 组成带阻电路。
含运放的有源滤波电路
一、基本概念
1、滤波器:即为能从输入信号中选出有频率的信号使其顺利通 过,而将无用频率的信号加以抑制或衰减的电子电路叫做滤波器。
2、滤波器的分类:由采用元件的不同可分为无源滤波器和有源 滤波器。无源滤波器即为由无源元件 R、L、C组成;有源滤波器由 有源器件如集成运放和RC网络组成。由所能通过的频率范围,又可 分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器四种。
10
Q=0.707
- 20
- 30 - 40
40dB/十倍频
0.1 0.2 0.3 0.5 1
2
3
5
f/fL
含运放的有源滤波电路
四、 带通滤波电路和带阻滤波电路
将截止频率为ωh的低通滤波电路和截止频率为ωl的高通滤
波电路进行不同的组合, 就可获得带通滤波电路和带阻滤波电
路。如图7 - 30(a)所示, 将一个低通滤波电路和一个高通滤波电 路“串接”组成带通滤波电路, ω>ωh的信号被低通滤波电路滤
带通滤波和带阻滤波的典型电路
含运放的有源滤波电路
. .
20lg
Au Auo
dB
0 -3
Q增大
1
BW
f/f0
)
1 1 jRC
Ui
常用运放芯片
常用运放芯片运放芯片是一种具有高增益、宽带宽和低功耗的集成电路。
它广泛应用于各种电子设备中,例如放大器、滤波器、模拟计算器、传感器接口等。
常用的运放芯片有很多种,本文将介绍一些常用的运放芯片。
1. LM741:LM741是一种经典的运放芯片,是全球最常用的运放芯片之一。
它具有高增益、宽带宽和低噪声等特点,广泛应用于放大电路和滤波器等领域。
然而,LM741也有一些缺点,例如工作电压范围窄、输入输出阻抗高等。
2. TL082:TL082是一种双运放芯片,具有四个运算放大器,广泛应用于音频放大器和滤波器等领域。
它具有宽带宽、低失真和低功耗等特点,而且价格相对较低,是一种性价比较高的运放芯片。
3. AD620:AD620是一种精密放大器芯片,具有低输入偏置电流和低噪声等特点,可以用于传感器信号放大和测量等应用。
AD620还具有可调增益和温度补偿等功能,适用于多种工作环境。
4. LM358:LM358是一种双运放芯片,具有低功耗和低输入偏置电流等特点,广泛应用于电压比较器、温度测量和信号放大等领域。
LM358的价格低廉,性能稳定,是一种常用的运放芯片。
5. TL074:TL074是一种四运放芯片,具有低功耗和宽带宽等特点,适用于高性能音频放大器和滤波器等应用。
TL074还具有高共模抑制比和低温漂等特性,使其在高精度测量和数据采集中有广泛应用。
6. AD823:AD823是一种超低功耗运放芯片,主要用于心电图(ECG)监测和生物信号放大等应用。
AD823具有低噪声和高共模抑制比,能够提供高质量的生物信号放大,适用于医疗设备和个人健康监测等领域。
以上是一些常用的运放芯片,它们具有不同的特点和应用领域。
根据具体的需求,选择合适的运放芯片可以提高电路性能和系统稳定性。
随着技术的不断进步,新型的运放芯片也将不断涌现,为电子设备提供更高的性能和功能。
运放输出rc滤波的作用
运放输出rc滤波的作用
运放是一种重要的电子元件,常用于电路中的信号放大、滤波等应用。
其中,RC滤波是一种常见的滤波电路,它利用电容和电阻的相互作用,实现对输入信号的滤波作用。
RC滤波电路的作用是通过改变电容和电阻的数值,对信号进行滤波。
它可以实现对不同频率的信号进行不同程度的衰减或放大,从而达到滤波的目的。
RC滤波电路一般由电容、电阻和运放组成。
其中,电容起到存储电荷的作用,电阻则控制电流的流动,而运放则起到信号放大的作用。
在RC滤波电路中,电容和电阻的数值决定了滤波的效果,而运放则起到放大信号的作用。
在RC滤波电路中,输入信号经过电容和电阻后,进入运放进行放大。
运放的放大倍数可以根据需要进行调整,从而实现对不同幅度的信号进行放大。
放大后的信号再经过电容和电阻的作用,最终输出经过滤波的信号。
RC滤波电路的滤波效果主要取决于电容和电阻的数值。
当电容较大时,滤波效果较好,可以实现对低频信号的衰减,而高频信号则能够通过。
相反,当电容较小时,滤波效果较差,无法对低频信号进行有效的衰减。
RC滤波电路还可以根据需要进行调整。
通过改变电容和电阻的数值,可以实现对不同频率信号的滤波效果。
例如,当电容较大时,可以实现对低频信号的滤波;而当电容较小时,可以实现对高频信号的滤波。
RC滤波电路利用电容和电阻的相互作用,通过运放的放大作用,实现对输入信号的滤波。
它可以根据需要对不同频率的信号进行滤波,从而达到改善信号质量的目的。
在电子设备中,RC滤波电路被广泛应用于音频放大、射频信号处理等领域,发挥着重要的作用。
常见运放滤波电路
滤波电路这节非常深入地介绍了用运放组成的有源滤波器。
在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。
这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。
设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100倍以上。
这样才可以保证电路的幅频特性不会受到这个输入电容的影响。
如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。
如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。
这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。
这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。
滤波器的实现很简单,但是以下几点设计者必须注意:1. 滤波器的拐点(中心)频率2. 滤波器电路的增益3. 带通滤波器和带阻滤波器的的Q值4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell)不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。
即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。
通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。
或者可以通过几次实验而最终确定下来。
如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。
3.1 一阶滤波器一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器典型的低通滤波器如图十三所示。
图十三3.1.2 高通滤波器典型的高通滤波器如图十四所示。
图十四3.1.3 文氏滤波器文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
《运放滤波器》课件
运放滤波器电路分析
运放滤波器基本结 构:输入端、输出 端、反馈端、电源 端
运放滤波器类型: 低通滤波器、高通 滤波器、带通滤波 器、带阻滤波器
运放滤波器参数: 增益、带宽、截止 频率、相位裕度、 稳定性
运放滤波器应用: 信号处理、通信系 统、电源系统、仪 器仪表等
运放滤波器性能 指标
运放滤波器频率响应
等
运放滤波器在音 频信号处理中的 应用:用于音频 信号的滤波、放 大、压缩等处理, 提高音质和音效
运放滤波器在音 频信号处理中的 优势:具有高精 度、高稳定性、 低噪声等特点, 能够满足音频信
号处理的需求
通信信号处理
信号接收:接收来自天线的信号
信号放大:将接收到的信号放大到合适 的电平
信号滤波:对放大后的信号进行滤波, 去除噪声和干扰
运放滤波器技术面 临的挑战和问题, 如功耗、稳定性等
运放滤波器技术发展趋势
集成化:运放滤波器将更加集成化,提高性能和可靠性 低功耗:运放滤波器将更加注重低功耗设计,降低功耗和成本 高精度:运放滤波器将更加注重高精度设计,提高测量精度和稳定性 智能化:运放滤波器将更加注重智能化设计,提高自适应性和智能化程度
测试性能:使用测试设备 对滤波器进行性能测试,
确保满足设计要求
运放滤波器设计软件介绍
软件名称:FilterPro 功能:设计运放滤波器,提供多种滤波器类型 特点:界面友好,操作简单,支持多种编程语言 应用领域:电子工程、信号处理、通信工程等
运放滤波器设计实例分析
实例一: 低通滤波 器设计
实例二: 高通滤波 器设计
网络化:运放滤波器将更 加网络化,实现远程监控 和诊断
感谢您的观看
汇报人:
噪声类型:白噪声、 粉红噪声、蓝噪声 等
运算放大器详细的应用电路(很详细)
§比例运算电路之蔡仲巾千创作8.1.1 反相比例电路1. 基本电路电压并联负反馈输入端虚短、虚断特点:反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强要求放大倍数较大时,反馈电阻阻值高,稳定性差。
如果要求放大倍数100,R1=100K,Rf=10M2. T型反馈网络虚短、虚断8.1.2 同相比例电路1. 基本电路:电压串联负反馈输入端虚短、虚断特点:输入电阻高,输出电阻小,带负载能力强V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高2. 电压跟随器输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§加减运算电路8.2.1 求和电路1.反相求和电路虚短、虚断特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系2.同相求和电路虚短、虚断8.2.2 单运放和差电路8.2.3 双运放和差电路例1:设计一加减运算电路设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3解:用双运放实现如果选Rf1=Rf2=100K,且R4= 100K则:R1=50K R2=20K R5=10K例2:如图电路,求Avf,Ri解:§积分电路和微分电路8.3.1 积分电路电容两端电压与电流的关系:积分实验电路积分电路的用途将方波变成三角波(Vi:方波,频率500Hz,幅度1V)将三角波变成正弦波(Vi:三角波,频率500Hz,幅度1V)(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率200Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?积分电路的其它用途:去除高频干扰将方波变成三角波移相在模数转换中将电压量变成时间量§积分电路和微分电路8.3.2 微分电路微分实验电路把三角波变成方波(Vi:三角波,频率1KHz,幅度0.2V)输入正弦波(Vi:正弦波,频率1KHz,幅度0.2V)思考:输入信号与输出信号间的相位关系?(Vi:正弦波,频率500Hz,幅度1V)思考:输入信号频率对输出信号幅度的影响?§对数和指数运算电路8.4.1 对数电路对数电路改进基本对数电路缺点:运算精度受温度影响大;小信号时exp(VD/VT)与1差未几大,所以误差很大;二极管在电流较大时伏安特性与PN结伏安特性不同较大,所以运算只在较小的电流范围内误差较小。
滤波器电路分析 课件
PPT课件
19
RC一阶高通滤波电路相频特性曲线,从图中可任意看 出当f=100.697KHZ时,相角超前46.497 deg。
PPT课件
20
3.3RC二阶低通滤波电路
设计RC二阶低通滤波器电路,可以通过将两个RC一阶低通滤波电路 级联等到,RC二阶低通滤波电路。
图 14-9
PPT课件
21
下面给出一个fc=200KHZ的RC二阶低通滤波电路的仿真电路图
1
? ? 0
RC PPT课件
27
图12 RC带通滤波电路幅频特性,相频特性曲 线
PPT课件
28
RC带通滤波电路仿真原理图
PPT课件
29
RC带通滤波电路,中心频率6.504KHZ
PPT课件
30
RC带通滤波电路相频特性曲线
PPT课件
31
实际应用分析:图12(a)表示工频正弦交流电经全波整流后
的波形,试设计一个RC低通滤波电路来滤除其谐波分量
图12 求解过程:全波整流波形可用傅里叶级数展开为
PPT课件
32
其中f等于工频50HZ
ω ? 2π ? 628rad/s T
设A=100V,则
u1(t) ? [63.66? 42.44cos(? t) ? 8.488cos(2? t)? 3.638cos(3? t) ? ...]V
采用图(b)所示一阶RC滤波电路,并选择电路元件参数满足以下 条件
ωC
?
1 RC
?
1
?
(3-5)
将上式改写为
(3-4) (3-6)
PPT课件
15
RC一阶高通滤波电路幅度,相角 表达式
图 14-8
低通、高通、带通、带阻、全通、三运放差分滤波器
第六次试验生物医学工程班3010202294吴坤亮一、实验内容:搭建滤波器(低通、高通、带通、带阻、全通)加以分析,搭建三运放差分滤波器,并加以分析。
二:(滤波器)简单低通滤波器简单高通滤波器由上图搭建电路,接入负载f H、f H会发生变化,为了减小负载效应,可以在输出端串接一个电压跟随器,因为电压跟随器的输入电阻很大。
(以下电路在此基础构造)1、低通滤波器:电路图如下:f H=1/(2πRC)=1KHZ,放大倍数K=(1+R f/R1)=4.以下图均为(蓝线为输入,黄线为输出)50HZ CH1 CH2200HZ CH1 CH2500HZ CH1 CH2900HZ CH1 CH2 由以上波形比例可知,实验成功。
2、高通滤波器:f l=1/(2πRC)=1KHZ,放大倍数K=(1+R f/R1)=4.200HZ CH1 CH2500HZ CH1 CH21000HZ CH1 CH25KHZ CH1 CH230KHZ CH1 CH275KHZ(失真)CH1 CH2高通电路上限是有限制(不是很理解),正常增益内输入输出信号存在相移。
(以下带通、带阻可以通过低通带通的电路构造出来,我做了尝试误差较大,这里不再试用)3、带通滤波器:(中心频率)f o=1/(2πc(R1R2)1/2)=2022HZ,f BW=1/(R2C)=1000HZ(2.7HZ1.00vpp)数据图如下:4、带阻滤波器:它常用于通信和生物医学仪器中以清除无用的频率分量(如50HZ的电源频率等)f o=1/2πRC=4.423KHZ。
以下为不同频率下的波形:f=1KHZf=4.432KHZf=45KHZ实验测量数据如下:5、全通滤波器:输入信号所有无衰减地通过的一种滤波器。
但它对不同的频率分量提供不同的相移。
传输线(如电话线)常常会引起输入信号的相位移动,故全通滤波器称为相位校正器或延迟均衡器。
∠H(jw)=-2arctan(wRC)以下为调节R所得位移波形:R=834Ω R=19.57kΩR=26.9Ω相位移动明显二、三运放差分滤波器电路图如下:电路分析:差模增益:Avd=(R1+R2+R6)/R6*(R4/R3)=17共模增益:Avc=Rw/( R5+Rw)* (R3+R4)/ R3- R4/R3=0;(R w=16K)所以电路的共模抑制比CMRR为:CMRR= Avd/ Avc=[(R1+R2+Rw)/ Rw*(R4/R3)]/ [Rw/( R5+Rw )* (R3+R4)/ R3- R4/R3]=无穷大(理论上)1、首先调节共模抑制,使其简直最低方法(将两输入端接相同信号)(输入1KHZ、1vpp)(以下为输出波形和数据)R=24.1KR=19.6KR=16K(最好)R=11.96K (又开始变大)R=6.74K(可知R w=R4=16K,共模抑制比最大,实验与理论最大程度的吻合)以下为Vi1接正弦信号,Vi2接地2、输入50mvpp观察频率对其影响(以下为输出)f=50HZf=5KHZf=10.5KHZ(开始发生变化)f=50KHZf=500KHZf=1M(在示波器上显示为失真导出图片只是它的某一帧)3、5KHZ下不同伏值对其影响(蓝线为输入、黄线为输出)30mvpp(无放大)35mvpp40mvpp(很好)50mvpp(很好)160mvpp(失真)600mvpp8vpp以下图形为Vi1用手捏住做输入其他不变(娱乐):。
十种运放精密全波整流电路
十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。
滤波器1-讲
滤波器
滤波器
滤波器
(4)分析方法: 分析方法:
分析滤波电路,就是求解出电路频率特性, 分析滤波电路,就是求解出电路频率特性,这 意味要解出A 和过渡带的斜率。 意味要解出Avp、fp和过渡带的斜率。
滤波器
二、有源滤波电路的引入
无源滤波电路: 无源滤波电路: 仅由无源元件(电阻、电容、电感)组成, 仅由无源元件(电阻、电容、电感)组成,则称为无源 滤波器。 滤波器。 有源滤波电路: 有源滤波电路: 电路中不仅由无源元件,还有有源元件(晶体管、 电路中不仅由无源元件,还有有源元件(晶体管、场效 应管、集成运放)组成,称为有源滤波器。 应管、集成运放)组成,称为有源滤波器。 从无源低通滤波器看: 从无源低通滤波器看: 在频率响应分析中, 在频率响应分析中,我们已推出无源低通滤波器的一些 指标, 对低通, f=0时的电压放大 指标,如:通带放大倍数Avp(对低通,指f=0时的电压放大 通带放大倍数A 倍数) 倍数)
ωo
ωo
ɺ Uo ɺ U
i
1 α< 2
3dB
1 α= 2
1 α> 2
ω P = ω o 1 − 2α
0
2
ωP
ωo
ω
R1=∞ 时:AF=1 ∞
ɺ Ui R PR
C
∞ + +
ɺ Uo
ɺ Uo ɺ = Ui
C
ω 2 2ω 1− ( ) + j ωo ωo
AF
ɺ Uo 1 = ɺ U i 1 + ( ω )2
高通滤波电路与低通滤波电路具有对偶性, LPF中滤 高通滤波电路与低通滤波电路具有对偶性,将LPF中滤 波环节的电容、电阻对换就可得各种高通滤波器。 波环节的电容、电阻对换就可得各种高通滤波器。
集成放大器及其运算与处理电路
2. 加法电路(同相)
根据虚短、虚断和 N 点 的KCL得:
vS1 vS2
Rf R R1 R2 R
'
N
– +
vO
R v P v N v o R f R v S1 - v N vS2 - v N vN R1 R2 R'
P
v R S 1 v S 2 f v ( 1 )( R ∥ R ∥ R ' )( ) O 1 2 R R 1 R 2
例1:试求理想运算放大器的输出电压和电压放大倍 数的表达式。
解: 根据虚断 I-= I+ 0
根据虚短 V+ V- 0 Ii = (Vi- V-)/R1 Vi/R1 If = (V-- Vo )/Rf -Vo/Rf ∵ Ii If ∴ Vi/R1=-Vo/Rf
反相比例运算电路 电压并联负反馈
其中
A( j ) —— 模,幅频响应
( ) —— 相位角,相频响应
2. 分类
1.按所处理信号分 模拟和数字滤波器 2.按所用元件分 无源和有源滤波器 3.按滤波特性分
1. 基本概念
滤波器:是一种能使有用频率信号通过而同时抑制或衰减无
用频率信号的电子装置。
滤波电路传递函数定义
Vo (s) A(s) Vi (s)
vI ( t )
滤波电路
vO ( t )
j ( ) s j 时,有 A A ( j ) ( ) ( j ) A ( j ) e
vO
v R S 1 v S 2 f v ( 1 )( R ∥ R )( ) O 1 2 R R 1 R 2
缺点:比例系数调节不方便。
(加法运算)
v S 1 v S 2 若 R ( R ∥ R ) R R ∥ R 则有 v R ( ) p 1 2 N f o f R R 1 2 R v v N f 反馈系数 F v R R O v O f
运算放大器电路大全运算放大器电路大全
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3 V 也或者会更低。
出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。
需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。
虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 一阶滤波器
一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性3.1.1 低通滤波器
典型的低通滤波器如图十三所示。
图十三
3.1.2 高通滤波器
典型的高通滤波器如图十四所示。
图十四
3.1.3 文氏滤波器
文氏滤波器对所有的频率都有相同的增益,但是它可以改变信号的相角,同时也用来做相角修正电路。
图十五中的电路对频率是F 的信号有90 度的相移,对直流的相移是0度,对高频的相移是180度。
3.2 二阶滤波器
二阶滤波电路一般用他们的发明者命名。
他们中的少数几个至今还在使用。
有一些二阶滤波器的拓扑结构可以组成低通、高通、带通、带阻滤波器,有些则不行。
这里没有列出所有的滤波器拓扑结构,只是将那些容易实现和便于调整的列了出来。
图十五(见图十七上)
二阶滤波器有40dB 每倍频的幅频特性。
通常的同一个拓扑结构组成的带通和带阻滤波器使用相同的元件来调整他们的Q 值,而且他们使滤波器在Butterworth 和Chebyshev 滤波器之间变化。
必须要知道只有Butterworth 滤波器可以准确的计算出拐点频率,Chebyshev 和Bessell滤波器只能在Butterworth 滤波器的基础上做一些微调。
我们通常用的带通和带阻滤波器有非常高的Q 值。
如果需要实现一个很宽的带通或者带阻滤波器就需要用高通滤波器和低通滤波器串连起来。
对于带通滤波器的通过特性将是这两个滤波器的交叠部分,对于带阻滤波器的通过特性将是这两个滤波器的不重叠部分。
这里没有介绍反相 Chebyshev 和 Elliptic 滤波器,因为他们已经不属于电路集需要介绍的范围了。
不是所有的滤波器都可以产生我们所设想的结果――比如说滤波器在阻带的最后衰减幅度在多反馈滤波器中的会比在Sallen-Key 滤波器中的大。
由于这些特性超出了电路图集的介绍范围,请大家到教科书上去寻找每种电路各自的优缺点。
不过这里介绍的电路在不是很特殊的情况下使用,其结果都是可以接受的。
3.2.1 Sallen-Key滤波器
Sallen-Key 滤波器是一种流行的、广泛应用的二阶滤波器。
他的成本很低,仅需要一个运放和四个无源器件组成。
但是换成Butterworth 或Chebyshev 滤波器就不可能这么容易的调整了。
请设计者参看参考条目【1】和参考条目【2】,那里介绍了各种拓扑的细节。
这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。
实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。
图十六(见图十七中)
3.2.2 多反馈滤波器
多反馈滤波器是一种通用,低成本以及容易实现的滤波器。
不幸的是,设计时的计算有些复杂,在这里不作深入的介绍。
请参看参考条目【1】中的对多反馈滤波器的细节介绍。
如果需要的是一个单位增益的Butterworth 滤波器,那么这里的电路就可以给出一个近似的结果。
图十七
3.2.3 双T滤波器
双T 滤波器既可以用一个运放也可仪用两个运放实现。
他是建立在三个电阻和三个电容组成的无源网络上的。
这六个元件的匹配是临界的,但幸运的是这仍是一个常容易的过程,这个网络可以用同一值的电阻和同一值的电容组成。
用图中的公式就可以同时的将R3 和C3 计算出来。
应该尽量选用同一批的元件,他们有非常相近的特性。
3.2.3.1 单运放实现
图十八
如果用参数非常接近的元件组成带通滤波器,就很容易发生振荡。
接到虚地的电阻最好在E-96 1%系列中选择,这样就可以破坏振荡条件。
图十九
3.2.3.2 双运放实现
典型的双运放如图20到图22所示
图二十
图二十一
图二十二
3.2.4 Fliege滤波器
Fliege滤波器采用了双运放结构(图二十三~图二十六),所以相对于单运放实现的滤波器他是一种成本较高的滤波器,但是他对拐点频率或者Q 值有非常强的控制能力,可以非常方便的进行调整,而且他是一种全新的滤波器。
用它组成的低通、高通、和带通滤波器的增益是固定的,带阻滤波器他的增益是一。
图二十三
图二十四
图二十五
图二十
六
3.2.5Akerberg-Mossberg滤波器
图二十七~图三十中的三运放滤波器是很容易实现。
对于低通和高通滤波器可以很方便的调整增益,对于带通和带阻滤波器可以非常容易的调整Q 值。
带阻滤波器的性能会比双T 滤波器差一些,但是也不错。
图二十七
3.2.6 BiQuad
Biquad 滤波器是一种出名的滤波器结构(图三十一)。
他只能组成低通和带通滤波器。
低通滤波器可以根据需要做成同相和反相输出。
3.2.7 Sate Variable
Sate Variable 是一种三运放或四运放的拓扑结构。
第四个运放在带阻滤波器中必须使用。
他也是一种非常便于调整的滤波器拓扑结构,并且他可以很方便的在低通和高通滤波器之间相互转换,另外对于带通和带阻滤波器的Q 值也可以非常方便的进行调整。
但是不幸的是,Akerberg-Mossberg 并不是一种令人喜欢的拓扑结构。
因为调整增益、类型、Q 值和限制的电阻是同一个电阻。
这就是很多人不愿意用它的原因,除非在应用中同时需要高通、低通、带通和带阻滤波器。
阻容RC滤波电路
阻容滤波电路原理与特点及RC元件选择
阻容滤波电路图如下:
阻容滤波电路优点:
1.滤波效能较高
2.能兼降压限流作用
阻容滤波电路缺点:
1.带负载能力差
2.有直流电压损失
阻容滤波电路适用场合:负载电阻较大,电流较小及要求纹波系数很小的情况
阻容滤波电路参数选择:
全波整流
RC2=[(2.3×106)/rRL]
R一般取数十至数百WC(mF)
何谓退耦?
所谓退耦,既防止前后电路网络电流大小变化时,在供电电路中所形成的电流冲动对网络的正常工作产生影响。
换言之,退耦电路能够有效的消除电路网络之间的寄生耦合。
退耦滤波电容的取值通常为47~200μF,退耦压差越大时,电容的取值应越大。
所谓退耦压差指前后电路网络工作电压之差。
如下图为典型的RC退耦电路,R起到降压作用:
大家看到图中,在一个大容量的电解电容C1旁边又并联了一个容量很小的无极性电容C2
原因很简单,因为在高频情况下工作的电解电容与小容量电容相比,无论在介质损耗还是寄生电感等方面都有显著的差别(由于电解电容的接触电阻和等效电感的影响,当工作频高于谐振频率时,电解电容相当于一个电感线圈,不再起电容作用)。
在不少典型电路,如电源退耦电路,自动增益控制电路及各种误差控制电路中,均采用了大容量电解电容旁边并联一只小电容的电路结构,这样大容量电解电容肩负着低频交变信号的退耦,滤波,平滑之作用;而小容量电容则以自身固有之优势,消除电路网络中的中,高频寄生耦合。
在这些电路中的这一大一小的电容均称之为退耦电容。
还有些电路存在一些设置直流工作点的电阻,为消除其对于交流信号的耦合或反馈作用就需要在其上并联适当的电容来减少对交流信号的阻抗。
这些电容均起到退耦作用称之为退耦电容。
在放大倍数较高的电路中,后级的信号电流往往比较大,而电源内阻和电源布线的电阻就不容忽视了,较大的信号电流,会在这些电阻上产生压降,这些压降就会“耦合”到前面的小信号放大级的输入端,从而又被重新放大,如此反复,造成恶性循环,于是整个放大电路就无法正常工作,其表现就是产生“自激振荡”。
退耦电路就是要退除掉这种通过电源内阻、或电源布线电阻产生的耦合。
使后级的大电流信号不能通过这些电阻重新耦合到前级,以保证放大电路正常工作。
小电流的退耦合电路通常是用阻容滤波电路,该电路中的电阻就称为滤波电阻,他不是什么特殊的电阻,就是普通的电阻,因为是起滤波作用,因此叫做滤波电阻。