相互独立的事件的概率PPT优选课件
合集下载
相互独立事件精品PPT教学课件
日期:
演讲者:蒝味的薇笑巨蟹
8
例1 生产一种零件,甲车间的合格率是 96%,乙车间的合格率是95%,从它们生 产的零件中各抽取一件,(1)都抽到合 格品的概率是多少?(2)只有甲车间的 是合格品的概率是多少?
解:记从甲车间抽到的是合格品为事件A 从乙车间抽到的是合格品为事件B,则都 抽到合格品的事件可记为A·B
又因为A与B是独立事件
比赛规则:各位选手必须独立解题,团队 中有一人解出即为获胜。
已知诸葛亮想出计谋的概率为0.88,三个 臭皮匠甲、乙、丙各自想出计谋的概率各 为0.6、0.5、0.4.问这三个臭皮匠能胜过 诸葛亮吗 ?
2020/12/6
12
课堂小结:
定义
互斥事件
相互独立事件
不可能同时发 事件A是否发生对事件B 生的两个事件 发生的概率没有影响
事件A、B同时发生记 A·B ,即事件 A·B=“两
次取到都是白球”, 如何求P(A·25B)?
P(A
·
C B)=C
1 3 1 5
• •
C C
1 3 1 5
= 9 =0.36
观察以上结论,有P(A · B)= P(A) · P(B)
2020/12/6
= 0.6 ×0.6=0.36 6
归纳结论: 若A、B是相互独立事件,则有 P(A·B)= P(A)· P(B)
若事件A发生,则P(B)=0.6;若事件A 不发生,则P(B)=0.6
2020/12/6
2
相互独立事件的概念
相互独立事件:如果事件A(或B) 是否发生对事件B(或A)发生的 概率没有影响,这样的两个事件 叫做相互独立事件.
2020/12/6
3
练习1下列各对事件中,A与B是否是相互独立事件?
相互独立事件同时发生概率-PPT精选文档
是
②袋中有三个红球,两个白球,采取不放回的取球. 事件A:第一次从中任取一个球是白球. 不是 事件B:第二次从中任取一个球是白球. ③袋中有三个红球,两个白球,采取有放回的取球 . 事件A:第一次从中任取一个球是白球. 事件B:第二次从中任取一个球是白球. 是
好运动者健,好思考者智,好助人 者乐好读书者博,好旅游者悦,好 7
(2) 若事件A与B相互独立, 则以下三对事件 也相互独立. ①
A 与 B; ② A 与 B;
③ A 与 B.
注 称此为二事件的独立性 关于逆运算封闭.
证① A A A ( B B ) AB A B
P ( A ) P ( AB ) P ( A B ) P ( A B ) P ( A ) P ( AB )
A 与 B; ② A 与 B;
③ A 与 B.
引例:盒中有5个球其中有3个绿的2个红的, 每次取一个有放回的取两次,设
事件A={第一次取到绿球}
事件B={第二次取到红球}
事件A对事件B是否有影响? 事件A对事件B是否有影响? 事件A对事件B是否有影响?
好运动者健,好思考者智,好助人者乐 好读书者博,好旅游者悦,好追求者成 持续更新●▂●请收藏 10
2º 独立与互斥的关系 这是两个不同的概念.
独立是事 互斥是事 件间的概 件间本身 率属性 的关系
两事件相互独立 P ( AB ) P ( A ) P ( B ) 二者之间没 有必然联系 两事件互斥 AB 例如
B
AB
1
1 1 若 P ( A ) , P ( B ) , 2 2
则 P ( AB ) P ( A ) P ( B ).
结论:事件A(或B)是否发生对事件B(或A)发 生的概率没有影响好运动者健,好思考者智,好助人者乐
两个相互独立事件同时发生的概率PPT教学课件
在上面5 X 4种结果中,同时摸出白 球的结果有3 X 2种.因此,从两个坛子 里分别摸出1个球,都是白球的概率 P(A﹒B)= __________________
另一方面,从甲坛子里摸出1个球,得 到白球的概率P(A)= ________
从乙坛子里摸出1个球,得到白球的 概率P(B)= _________ 由 ______________ = ____ × ____ 我们看到P(A﹒B)=P(A)﹒P(B)
(2)海—气相互作用与热交换的过程 (3)海—气相互作用与水平衡
(4)海—气相互作用与热量平衡
(2009·北京西城模拟)“云气西行,云云
然,冬夏不辍;水泉东流,日夜不休,上不竭,下
不满……”(《吕氏春秋·圜道》)这段文字主要涉及
A.静态水资源的更新过程
(B )
B.水循环的水汽输送和径流输送环节
合理规划, 综合开发
3.潮汐能和波浪能的开发利用
类型 形式 分布 原因 建站条件 发电特点 发电流程
潮 汐 能
势能
狭窄的 海峡、 海湾、 河口区 域
势能带 口窄肚大、
动水轮 适宜的海
机
岸
密度高
潮汐涨落→ 大坝蓄水→ 势能→水轮 机发电
物体在
波 浪 能
动能 和势 能
平均潮 差小、 近岸水 较深
波浪作 用下震 动和摆 动、波 浪压力 变化转 换为势
为事件A,“从乙坛子里摸出1个球,得到 白球”为事件B,则事件A是否发生对事 件B的发生没有影响,这样的两个事件叫 做相互独立事件
在上面的问题里,事件 A 是指 “从甲坛子里摸出1个球,得到黑球”,
事件 B 是指“从乙坛子里摸出1个 球,得到黑球”.很明显事件A与B ,
相互独立事件同时发生的概率1精选教学PPT课件
74
3. 某 工 厂 的 产 品 要 同 时经 过 两 名 检 验 员 检 验 合格 方 能 出 厂 , 但 在 检 验 时 可 能 会 出 差错.对 于 第i名 检 验 员 , 合 格 品 不 能通
过 检 验 的 概 率 为 i ,不 合 格 品 能 够 通 过 检 验的 概 率 为 i (i 1,
我唯一的靠山倒了,但是母亲教会了我在逆境中学会坚强,勇敢地面对困难和失败,适应任何环境而求生存,这就是我的母亲留给我的无比珍贵的财富和爱。 母亲虽然走了,可她永远活在我的心里,我永远怀念她,她是我地唯一,无人取代,也是我的最爱,更是难忘的爱!
我想不起小姨妈在母亲有病的时候是怎样抱着我,还是背着我,我不知道,从小姨妈对那段往事的回忆中,我才知道别人对她的冷眼,天寒地冷的无奈…… 我才知道她的棉衣前襟是明亮发光的,而且经常是湿地;才知道烧无烟煤时熏黑了的脸上那双有黑有大的眼睛的明亮。那时候小姨妈只有十六岁,一个失去父母关爱的小女孩,能在姐姐病重的时候撑起一个家,还带着一个不满周岁的孩子,可想而知,这是多么不容易
(1)恰击中一次的概率;0.2592 (2)第二次击中的概率;0.4
(3)恰击中2次的概率;0.3456 (4)第二、三两次击中的概率;
(5)至少击中一次的概率.0.92224
0.16
5. 甲 、 乙 两 台 车 床 , 甲车 床 正 常 工 作 率 为0.9, 乙 车 床 正 常 工 作 率 为0.85, 求 : (1)甲 、 乙 两 车 床 都 正 常 工作 的 概 率 ;0.765 (2)甲 、 乙 两 车 床 都 不 正 常工 作 的 概 率 ;0.015 (3)恰 有 一 台 车 床 不 能 正 常工 作 的 概 率 ;0.22 (4)至 少 有 一 台 车 床 不 能 正常 工 作 的 概 率. 0.235
3. 某 工 厂 的 产 品 要 同 时经 过 两 名 检 验 员 检 验 合格 方 能 出 厂 , 但 在 检 验 时 可 能 会 出 差错.对 于 第i名 检 验 员 , 合 格 品 不 能通
过 检 验 的 概 率 为 i ,不 合 格 品 能 够 通 过 检 验的 概 率 为 i (i 1,
我唯一的靠山倒了,但是母亲教会了我在逆境中学会坚强,勇敢地面对困难和失败,适应任何环境而求生存,这就是我的母亲留给我的无比珍贵的财富和爱。 母亲虽然走了,可她永远活在我的心里,我永远怀念她,她是我地唯一,无人取代,也是我的最爱,更是难忘的爱!
我想不起小姨妈在母亲有病的时候是怎样抱着我,还是背着我,我不知道,从小姨妈对那段往事的回忆中,我才知道别人对她的冷眼,天寒地冷的无奈…… 我才知道她的棉衣前襟是明亮发光的,而且经常是湿地;才知道烧无烟煤时熏黑了的脸上那双有黑有大的眼睛的明亮。那时候小姨妈只有十六岁,一个失去父母关爱的小女孩,能在姐姐病重的时候撑起一个家,还带着一个不满周岁的孩子,可想而知,这是多么不容易
(1)恰击中一次的概率;0.2592 (2)第二次击中的概率;0.4
(3)恰击中2次的概率;0.3456 (4)第二、三两次击中的概率;
(5)至少击中一次的概率.0.92224
0.16
5. 甲 、 乙 两 台 车 床 , 甲车 床 正 常 工 作 率 为0.9, 乙 车 床 正 常 工 作 率 为0.85, 求 : (1)甲 、 乙 两 车 床 都 正 常 工作 的 概 率 ;0.765 (2)甲 、 乙 两 车 床 都 不 正 常工 作 的 概 率 ;0.015 (3)恰 有 一 台 车 床 不 能 正 常工 作 的 概 率 ;0.22 (4)至 少 有 一 台 车 床 不 能 正常 工 作 的 概 率. 0.235
《相互独立事件》PPT课件
事件的相互独立性
即:事件A(或B)是否发生,对事件B(或A)发生的概率没有 影响,这样两个事件叫做相互独立事件。
问题3:若事件A与B相互独立,那么A与B,A与B,A与B是 不是相互独立的?
问题3:若事件A与B相互独立,那么A与B,A与B,A与B是
不是相互独立的?
相互独立
若事件A与B相互独立, 则以下三对事件也相互独立:
(2)若以0.99的概率击中飞碟,求需小口径步枪多少支?
例 4.某公司招聘员工,指定三门考试课程,有两种 考试方案. (06 北京) 方案一:考试三门课程,至少有两门及格为考试通过; 方案二:在三门课程中,随机选取两门,这两门都及 格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是 a,b,c,且三门课程考试是否及格相互之间没有影响. 求:(1)分别求该应聘者用方案一和方案二时考试通过的 概率; (2)试比较该应聘者在上述两种方案下考试通过的概率 的大小.(说明理由)
练习: 甲、乙二人各进行1次射击比赛,如果2人击中目标的 概率都是0.6,计算:
(1)两人都击中目标的概率; (2)其中恰由1人击中目标的概率 (3)至少有一人击中目标的概率
变式.
JA
JB
JC
设每个开关能闭合的概率都是0.7,计算这条线路正常工作 的概率?
解:分别记这段时间内开关 J A、J B、JC 能够闭合为事件A,B,C. 所以这段事件内线路正常工作的概率是
(考虑乘法公式, 转化为互独事件)
件
概 率
反向
对立事件的概率
独立事件一定不互斥. 互斥事件一定不独立.
理清题意, 判断各事件之间的关系(等可能;互斥;互独; 对立). 注意关键词, 如“至多” “至少” “同时” “恰有”.
即:事件A(或B)是否发生,对事件B(或A)发生的概率没有 影响,这样两个事件叫做相互独立事件。
问题3:若事件A与B相互独立,那么A与B,A与B,A与B是 不是相互独立的?
问题3:若事件A与B相互独立,那么A与B,A与B,A与B是
不是相互独立的?
相互独立
若事件A与B相互独立, 则以下三对事件也相互独立:
(2)若以0.99的概率击中飞碟,求需小口径步枪多少支?
例 4.某公司招聘员工,指定三门考试课程,有两种 考试方案. (06 北京) 方案一:考试三门课程,至少有两门及格为考试通过; 方案二:在三门课程中,随机选取两门,这两门都及 格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是 a,b,c,且三门课程考试是否及格相互之间没有影响. 求:(1)分别求该应聘者用方案一和方案二时考试通过的 概率; (2)试比较该应聘者在上述两种方案下考试通过的概率 的大小.(说明理由)
练习: 甲、乙二人各进行1次射击比赛,如果2人击中目标的 概率都是0.6,计算:
(1)两人都击中目标的概率; (2)其中恰由1人击中目标的概率 (3)至少有一人击中目标的概率
变式.
JA
JB
JC
设每个开关能闭合的概率都是0.7,计算这条线路正常工作 的概率?
解:分别记这段时间内开关 J A、J B、JC 能够闭合为事件A,B,C. 所以这段事件内线路正常工作的概率是
(考虑乘法公式, 转化为互独事件)
件
概 率
反向
对立事件的概率
独立事件一定不互斥. 互斥事件一定不独立.
理清题意, 判断各事件之间的关系(等可能;互斥;互独; 对立). 注意关键词, 如“至多” “至少” “同时” “恰有”.
10.2 事件的相互独立性课件ppt
=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9
=0.092.
变式训练3某机械厂制造一种汽车零件,已知甲机床的正品率是0.96,乙机
床的次品率是0.05,现从它们制造的产品中各任意抽取一件,试求:
(1)两件产品都是正品的概率;
(2)恰有一件是正品的概率;
(3)至少有一件是正品的概率.
(2)求甲、乙、丙三人的租车费用和为10元的概率.
解 (1)由题意可得,甲、乙、丙 30 分钟以上且不超过 40 分钟还车的概率分
1 1 1
别为 , , ,
4 2 4
1 1 1 1 1 1 1
甲、乙、丙三人的租车费用完全相同的概率为 P=2 × 4 × 4 + 4 × 4 × 2 + 4 ×
1 1
生,不会受任何事件是否发生的影响,不可能事件⌀总不会发生,也不受任何
事件是否发生的影响.当然,它们也不影响其他事件是否发生.(3)对于n个事
件A1,A2,…,An,如果其中任意一个事件发生的概率不受其他事件是否发生
的影响,则称n个事件A1,A2,…,An相互独立.
微思考
分别抛掷两枚质地均匀的硬币,事件A=“第一枚硬币正面朝上”,事件B=“第
单的相关概率计算问题.(数学运算)
4.培养学生分析问题、解决问题的能力,提高学生数学转化与
化归的能力.(逻辑推理)
思维脉络
课前篇 自主预习
激趣诱思
常言道:“三个臭皮匠顶个诸葛亮.”怎样从数学上来解释呢?将问题具体化:
假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出
计谋的概率各为0.6,0.5,0.5.问这三个臭皮匠能胜过诸葛亮吗?
事件的相互独立性ppt课件
公式
21
思考
一个家庭中有若干个小孩,假定生男孩和生女 孩是等可能的,令A={一个家庭中既有男孩又 有女孩},B={一个家庭中最多有一个女 孩}.对下述两种情形,讨论A与B的独立性:
(1)家庭中有两个小孩; (2)家庭中有三个小孩.
22
解析: (1)有两个小孩的家庭,男孩、女孩的可能情形 为 Ω={(男,男),(男,女),(女,男),(女,女)},它有 4 个基本事件,由等可能性知概率各为14.
变式:“至多有一次抽到中奖号码”。
P(AB) P(AB) P(AB) 1- P(AB)
16
[题后感悟] (1)求相互独立事件同时发生的概 率的步骤是:①首先确定各事件之间是相互独 立的;②确定这些事件可以同时发生;③求出 每个事件的概率,再求积.
(2)使用相互独立事件同时发生的概率计算公式 时,要掌握公式的适用条件——各个事件是相互 独立的,而且它们同时发生.
设A为事件“第一位同学没有中奖”。
B表示事件“最后一名同学中奖”.
P(B A) n( AB) P( AB) 1 n( A) P( A) 2
答:事件A的发生会影响事件B发生的概率
3
思考与探究
思考1:三张奖券有一张可以中奖。现由三 名同学依次有放回地抽取,问:最后一名去 抽的同学的中奖概率会受到第一位同学是否 中奖的影响吗?
概率的概念
设事件A和事件B,且P(A)>0,在已知事件A发生的条 件下事件B发生的概率,叫做条件概率.记作P(B |A).
(2).条件概率计算公式:
P(B | A) n( AB) P( AB) n( A) P( A)
2
思考与探究
思考1:三张奖券有一张可以中奖。现由三 名同学依次无放回地抽取,问:最后一名去 抽的同学的中奖概率会受到第一位同学是否 中奖的影响吗?
21
思考
一个家庭中有若干个小孩,假定生男孩和生女 孩是等可能的,令A={一个家庭中既有男孩又 有女孩},B={一个家庭中最多有一个女 孩}.对下述两种情形,讨论A与B的独立性:
(1)家庭中有两个小孩; (2)家庭中有三个小孩.
22
解析: (1)有两个小孩的家庭,男孩、女孩的可能情形 为 Ω={(男,男),(男,女),(女,男),(女,女)},它有 4 个基本事件,由等可能性知概率各为14.
变式:“至多有一次抽到中奖号码”。
P(AB) P(AB) P(AB) 1- P(AB)
16
[题后感悟] (1)求相互独立事件同时发生的概 率的步骤是:①首先确定各事件之间是相互独 立的;②确定这些事件可以同时发生;③求出 每个事件的概率,再求积.
(2)使用相互独立事件同时发生的概率计算公式 时,要掌握公式的适用条件——各个事件是相互 独立的,而且它们同时发生.
设A为事件“第一位同学没有中奖”。
B表示事件“最后一名同学中奖”.
P(B A) n( AB) P( AB) 1 n( A) P( A) 2
答:事件A的发生会影响事件B发生的概率
3
思考与探究
思考1:三张奖券有一张可以中奖。现由三 名同学依次有放回地抽取,问:最后一名去 抽的同学的中奖概率会受到第一位同学是否 中奖的影响吗?
概率的概念
设事件A和事件B,且P(A)>0,在已知事件A发生的条 件下事件B发生的概率,叫做条件概率.记作P(B |A).
(2).条件概率计算公式:
P(B | A) n( AB) P( AB) n( A) P( A)
2
思考与探究
思考1:三张奖券有一张可以中奖。现由三 名同学依次无放回地抽取,问:最后一名去 抽的同学的中奖概率会受到第一位同学是否 中奖的影响吗?
《相互独立事件》课件
02 相互独立事件的 性质
相互独立事件的概率性质
概率乘法公式
若事件A和B相互独立,则$P(A cap B) = P(A) times P(B)$。
独立事件的概率性质
若事件A和B相互独立,则$P(A cup B) = P(A) + P(B)$。
独立事件的加法公式
若事件A和B相互独立,则$P(A cup B) = P(A) + P(B) - P(A cap B)$。
事件A的发生不影响事件B发生的概率 ,事件B的发生不影响事件A发生的概 率。
事件A和B相互独立与两事件独立的区别
事件独立
如果事件A的发生不影响事件B发生的概率,同时事件B的发生也不影响事件A 发生的概率,则称事件A和B独立。
两事件独立与相互独立的区别
两事件独立不一定是相互独立,而相互独立一定是两事件独立。
05 相互独立事件的 扩展知识
多个事件的相互独立性
多个事件相互独立
当且仅当一个事件的结果不会影响到另一个事件的结果,那么这两 个事件就是相互独立的。
独立性的判断
可以通过计算各个事件的联合概率和各个事件的边缘概率的乘积来 判断是否相互独立。如果相等,则说明事件相互独立。
独立性的性质
如果两个事件相互独立,那么它们的和事件、积事件、逆事件等也相 互独立。
概率论中的相互独立事件
投掷硬币
一个人先后投掷两枚硬币 ,每枚硬币出现正面的概 率不受另一枚硬币的影响 。
抽取样本
从总体中随机抽取两个样 本,每个样本的抽取概率 与另一个样本无关。
随机试验
两个随机试验的结果相互 独立,一个试验的结果不 会影响到另一个试验的结 果。
04 相互独立事件的 应用
相互独立事件及其同时发生的概率PPT优秀课件1
所以这段事件内线路正常工作的概率是 1 P ( A B C ) 1 0 . 0 2 7 0 . 9 7 3
还有什么做法?
P(A B C) P(A B C ) P( A B C ) P( A B C)
P(A B C ) P(A B C) P( A B C) P(A B C)
个开关都不能闭合的概率是
( 1 0 . 7 ) ( 1 0 . 7 ) ( 1 0 . 7 )0 . 0 2 7
P ( A B C ) P ( A ) P ( B ) P ( C )[ 1( P A ) ] [ 1( P B ) ] [ 1( P C ) ]
不可能同时发生的,而相互独立事件是以它们能够同时发生为前提
的. 相互独立事件同时发生的概率等于每个事件发生的概率的积,
这一点与互斥事件的概率和也是不同的.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
相互独立事件概率一 ppt课件
相互独立事件同时 发生的概率 (一)
1.互斥事件与对立事件
(1)A与B是互斥事件: 事件A与事件B不可能同时发生;
(2)A与B是对立事件: 事件A与事件B不可能同时发生,且A 与B中必有一个发生 对立事件必是互斥事件,但互斥事 件不一定是对立事件。
2、互斥事件的概率关系
(1)若A,B互斥,则 P(A+B)=P(A)+P(B) (2)若A1,A2,…,An彼此互斥, 则P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An) (3)若A的对立事件记为Ā,
课堂练习
例题2
在一线路中并联着3个自动控制的常用开 关,只要其中有一个开关能够闭合,线路 就正常工作。假定某段时间内每个开关能 够闭合的概率都是0.7,计算在这段时间 内线路正常工作的概率.
课堂练习
1.P.140-3 2.甲袋中有8个白球,4个红球; 乙袋中有6两个坛子里分别摸出1个球,都是
白球”的概率 P(AB)32 54
另一方面:“从甲坛子里分别摸出1
个球,得到白球”的概率P:( A) 3 5
“从乙坛子里分别摸出1个球,都是
白球”的概率:
P(B) 2
4
∴ P(A•B)= P(A)•P(B)
两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积.
球是同色的概率是多少?
课堂小结
两个事件相互独立,是指它们其 中一个事件的发生与否对另一个 事件发生的概率没有影响
相互独立事件同时发生的概率等 于每个事件发生的概率的积
课堂小结
求解较复杂事件概率的一般思路 (1)正向思考:
通过“分类”或“分步”将较复杂事 件进行分解,转化为简单的互斥事 件的和事件或相互独立事件的积事 件; (2)逆向思考:转化为求它的对立事件 的概率
1.互斥事件与对立事件
(1)A与B是互斥事件: 事件A与事件B不可能同时发生;
(2)A与B是对立事件: 事件A与事件B不可能同时发生,且A 与B中必有一个发生 对立事件必是互斥事件,但互斥事 件不一定是对立事件。
2、互斥事件的概率关系
(1)若A,B互斥,则 P(A+B)=P(A)+P(B) (2)若A1,A2,…,An彼此互斥, 则P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An) (3)若A的对立事件记为Ā,
课堂练习
例题2
在一线路中并联着3个自动控制的常用开 关,只要其中有一个开关能够闭合,线路 就正常工作。假定某段时间内每个开关能 够闭合的概率都是0.7,计算在这段时间 内线路正常工作的概率.
课堂练习
1.P.140-3 2.甲袋中有8个白球,4个红球; 乙袋中有6两个坛子里分别摸出1个球,都是
白球”的概率 P(AB)32 54
另一方面:“从甲坛子里分别摸出1
个球,得到白球”的概率P:( A) 3 5
“从乙坛子里分别摸出1个球,都是
白球”的概率:
P(B) 2
4
∴ P(A•B)= P(A)•P(B)
两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积.
球是同色的概率是多少?
课堂小结
两个事件相互独立,是指它们其 中一个事件的发生与否对另一个 事件发生的概率没有影响
相互独立事件同时发生的概率等 于每个事件发生的概率的积
课堂小结
求解较复杂事件概率的一般思路 (1)正向思考:
通过“分类”或“分步”将较复杂事 件进行分解,转化为简单的互斥事 件的和事件或相互独立事件的积事 件; (2)逆向思考:转化为求它的对立事件 的概率
事件的相互独立性(使用)ppt课件
球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个球
称为乙试验,事件A1表示“从甲盒中取出的是白球”,事件 B1表示“从乙盒中取出的是白球”;
(2)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用
A事2表件示B2表事示件事“件第“一第次二取次出取的出是的白是球白”球,”把;取出的球放回盒中,
(3)盒中有4个白球、3个黑球,从盒中陆续取出两个球,用
精选ppt课件2021
12
练一练:已知A、B、C相互独立,试用数学符号语言表示
下列关系
① A、B、C同时发生概率;
P(A•B•C)
② A、B、C都不发生的概率; ③ A、B、C中恰有一个发生的概率;
P(A•B•C)
④ A、B、C中恰有两个发生的概率;
⑤A、B 、C中至少有一个发生的概率;
( 3 ) P (A • B • C ) P (A • B • C ) P (A • B • C )
事件A:第一次从中任取一个球是白球.
是
事件B:第二次从中任取一个球是白球.
精选ppt课件2021
5
若P(A)0,则P(BA)P(B) P (A)B P (A )P (B )
推广:如果事件A1,A2,…An相互独立,那么这n个事件 同时发生的概率等于每个事件发生的概率的积.即:
P(A1·A2·…·An)= P(A1)·P(A2)·…·P(An)
( 4 ) P ( A • B • C ) P ( A • B • C ) P ( A • B • C )
(5)1P(A•B•C)
精选ppt课件2021
13
例2.甲, 乙两人同时向敌人炮击,已知甲击中敌机的概率 为0.6, 乙击中敌机的概率为0.5, 求敌机被击中的概率.
10.2事件的相互独立性 课件【共26张PPT】
归纳:求相互独立事件的概率
1.求相互独立事件同时发生的概率的步骤: (1)首先确定各事件之间是相互独立 的; (2)确定这些事件可以同时发生; (3)求出每个事件的概率,再求积.2.使 用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事 件是相互独立的,而且它们同时发生.
练习2.
所以 M,N 不是相互独立事件;
③中,P(M)= ,P(N)= ,P(MN)= ,P(MN)=P(M)P(N),因此 M,N 是相互独立事件.
练习1.
2.【2021年·新高考Ⅰ卷】 有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次, 每次取1个球. 甲表示事件“第一次取出的球的数字是1”, 乙表示事件“第二次取出的球的数字是2”, 丙表示事件“两次取出的球的数字之和是8”,
4 (4,1) (4,2) (4,3) (4,4)
我们再用理论来验证:
对于A与B,因为A=AB∪AB,而且AB与AB互斥,所以 P(A)=P(AB∪AB)=P(AB)+P(AB)=P(A)P(B)+P(AB)
所以 P(AB)=P(A)-P(A)P(B)= P(A)(1-P(B))= P(A)P(B) 由事件的独立性定义,A与B相互独立. 类似地,可以证明事件A与B,A 与 B也都相互独立.
所以P(A
B)=
P(A)P( B)=
1 2
1 2
1, 4
P(AB)= P(A)P(B)=
1, 4
P(AB)= P(A)P(B)=
1, 4
因此A与B,A 与B,A与 B是独立的.
1 第二次
第一次
2
3
4
1 (1,1) (1,2) (1,3) (1,4)
相互独立事件同时发生的概率PPT优秀课件3
(1) 5次预报中恰有4次准确的概率;
(2) 5次预报中至少有4次准确的概率。
解:(1) 记‘‘预报1次,结果准确”为事件A.预报5次相当 于作5次独立重复试验,根据n次独立重复试验中事件发 生k次的概率公式, 5次预报中恰有4次准确的概率是:
P5(4)=C5 4×0.84×(1-0.8)5-4 =5×0.84×0.20.41
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
答: 5次预报中恰有4次准确的概率约为0.41.
例2 某气象站天气预报的准确率为80%,计算(结果保留 两个有效数字):
(1) 5次预报中恰有4次准确的概率;
(2) 5次预报中至少有4次准确的概率。
(2) 5次预报中至少有4次准确的概率,就是5次预报中恰
有4次准确的概率与5次预报都准确的概率的和,即: P = P5(4) + P5(5)
1 P( A B) A 、 B 中 至 少 有 一 个 发 生
1P(AB) A 、 B 中 至 多 有 一 个 发 生
一.新课引人
分别记在第1,2,3,4次
射击中,这个射手击中目
标为事件A1,A2,A3,A4, 某射手射击1次,击中目标的概率
是0.9,他射击4次恰好击中3次的概率
那么射击4次,击中3次共
答:甲3:0获胜的概率是0.216
例3 甲,乙两人进行五局三胜制的乒乓球比赛,若 甲每局获胜的概率是0.6,乙每局获胜的概率是0.4。
(2) 5次预报中至少有4次准确的概率。
解:(1) 记‘‘预报1次,结果准确”为事件A.预报5次相当 于作5次独立重复试验,根据n次独立重复试验中事件发 生k次的概率公式, 5次预报中恰有4次准确的概率是:
P5(4)=C5 4×0.84×(1-0.8)5-4 =5×0.84×0.20.41
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]
答: 5次预报中恰有4次准确的概率约为0.41.
例2 某气象站天气预报的准确率为80%,计算(结果保留 两个有效数字):
(1) 5次预报中恰有4次准确的概率;
(2) 5次预报中至少有4次准确的概率。
(2) 5次预报中至少有4次准确的概率,就是5次预报中恰
有4次准确的概率与5次预报都准确的概率的和,即: P = P5(4) + P5(5)
1 P( A B) A 、 B 中 至 少 有 一 个 发 生
1P(AB) A 、 B 中 至 多 有 一 个 发 生
一.新课引人
分别记在第1,2,3,4次
射击中,这个射手击中目
标为事件A1,A2,A3,A4, 某射手射击1次,击中目标的概率
是0.9,他射击4次恰好击中3次的概率
那么射击4次,击中3次共
答:甲3:0获胜的概率是0.216
例3 甲,乙两人进行五局三胜制的乒乓球比赛,若 甲每局获胜的概率是0.6,乙每局获胜的概率是0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 法 P( 1 •B: ) P A( P •B A• A B) 0. 0 3. 6 0 4. 884
解法2:两人都未击中目标的概率是
PA ( •B ) PA ( ) •PB ) ( ( 01. (6 1 0). 6 0 . 04 . 04. 1 6 ,
因此,至少有1人击中目标的概率
2有3个白球,2个黑球,乙盒子里 有2个白球,2个黑球,从这两个盒子里分别摸 出1个球,它们都是白球的概率是多少?
把“从甲坛子里摸 出1个球,得到白 球”叫做事件A
把“从乙盒子里摸 出 1个球,得到白 球”叫做事件B
P(A) 3 5
2020/10/18
没有影响
⑴P(A·B)=P(A)·P(B) =0.9×0.95=0.855
(2)0.14
2020/10/18
13
例3 在一段线路中并联着3个自动控制的常 开开关,只要其中有1个开关能够闭合,线路 就能正常工作.假定在某段时间内每个开关 能够闭合的概率都是0.7,计算在这段时间内 线路正常工作的概率.
2020/10/18
即
P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).
如果A、B是两个相互独立的
想一想?
事件,那么1-P(A)•P(B)表
示什么?
表示相互独立事件A、B中
1 P (A )• P (B ) P (A B )
20至20/1少0/18有一个不发生的概率
6
三.例题分析:
例1 甲、乙2人各进行1次射击,如果2人击中目 标的概率都是0.6,计算:
2020/10/18
11
练习:制造一种零件,甲机床的正品率 是0.9,乙机床的正品率是0.95,从它 们制造的产品中各任抽一件,(1)两件 都是正品的概率是多少?(2)恰有一件 是正品的概率是多少?
2020/10/18
12
解:设A=从甲机床制造的产品中任意抽出一 件是正品;B=从乙机床制造的产品中任意抽 出一件是正品,则A与B是独立事件
2020/10/18 P 1 PA( •B ) 1 0 . 0 1. 6810 4
例2:某商场推出二次开奖活动,凡购买 一定价值的商品可以得到一张奖券。奖 券上有一个兑奖号码,可以分别参加两 次抽奖方式相同的兑奖活动。如果两次 兑奖活动的中奖概率都是0.05,求两次 中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码。
2 P(B)
42
1.独立事件的定义 事件A(或B)是否发生对事件B(或A)
发生的概率没有影响,这样的两个事件
叫做相互独立事件.
想 一 想:如果事件Α 与Β相互独立,那么与ΒΑ, Α与ΒΑ,与Β是否也相互独?立
2020/10/18
3
2.独立事件同时发生的概率
“从两个盒子里分别摸出 1个球,都是白球”是一个事 件,它的发生,就是事件A,B 同时发生,我们将它记作 A·B.想一想,上面两个相互 独立事件A,B同时发生的概率 P(A·B)是多少?
14
分析:根据题意,这段时间内线路正常 工作,就是指3个开关中至少有1个能够闭合, 这可以包括恰有其中某1个开关闭合、恰有 其中某2个开关闭合、恰好3个开关都闭合等 几种互斥的情况,逐一求其概率较为麻烦, 为此,我们转而先求3个开关都不能闭合的 概率,从而求得其对立事件——3个开关中 至少有1个能够闭合的概率.
(1) 2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率.
2020/10/18
7
例1 甲、乙2人各进行1次射击,如果2人击中目标的概 率都是0.6,计算:(1) 2人都击中目标的概率;
解:(1)记“甲射击1次,击中目标”为事 件A,“乙射击1次,击中目标”为事件 B.由于甲(或乙)是否击中,对乙(或甲)击中 的概率是没有影响的,因此A与B是相互独立 事件.
2020/10/18
15
解:分别记这段时间内开关JA, JB,JC能够闭合为事件A,B, C(如图).由题意,这段时间内3 个开关是否能够闭合相互之间 没有影响.根据相互独立事件 的概率乘法公式,这段时间内3 个开关都不能闭合的概率是
P ( A•B•C)P ( A)•P ( B)•P ( C)
1P (A 1 )P (B 1 )P (C )
又“两人各射击1次,都击中目标”就是 事件A·B发生,根据相互独立事件的概率 乘法公式,得到:
P(A·B)=P(A)·P(B)=0.6×0.6=0.36.
2020/10/18
8
例1 甲、乙2人各进行1次射击,如果2人击中目 标的概率都是0.6,计算:(2)其中恰有1人击中目 标的概率;
( 2 ) “ 两 人 各次射,击恰1有 1 人 击”中 目 包 括 两 种 情 况 :甲一击种中是、 乙 未 击 中 另 一 种 是 甲 未 击击中中、 乙
( 1 0 . 7 ) 0 (. 17 ) 0 (. 17 )
2020/10/18 0 . 0 2 7
16
例4:有甲、乙两批种子,发芽率分别 是0.8和0.7,在两批种子中各取一粒, A={由甲批中取出一个能发芽的种子}, B={由乙批中抽出一个能发芽的种子}, 问 ⑴A、B两事件是否互斥?是否互相立? ⑵两粒种子都能发芽的概率? ⑶至少有一粒种子发芽的概率? ⑷恰好有一粒种子发芽的概率?
2020/10/18
4
P(A•B)5 3 4 2 又P(A )5 3,P(B )4 2.
P (A • B ) P (A )• P (B )
这就是说,两个相互独立事件 同时发生的概率,等于每个事件 发生的概率的积.
2020/10/18
5
一般地,如果事件A1,A2,…,An相互 独立,那么这n个事件同时发生的概率,等于 每个事件发生的概率的积,
故所求概•B率 A•为 B ) P (A
P ( •B) AP ( A•B ) P (•PA( B ) )
P ( A) •P (B 0) .(6 10 .6() 10 .60). 6
0 2020/10/18 . 204. 204. 4 8 .
9
例1 甲、乙2人各进行1次射击,如果2人击中目标的概率 都是0.6,计算:(3)至少有1人击中目标的概率.
解法2:两人都未击中目标的概率是
PA ( •B ) PA ( ) •PB ) ( ( 01. (6 1 0). 6 0 . 04 . 04. 1 6 ,
因此,至少有1人击中目标的概率
2有3个白球,2个黑球,乙盒子里 有2个白球,2个黑球,从这两个盒子里分别摸 出1个球,它们都是白球的概率是多少?
把“从甲坛子里摸 出1个球,得到白 球”叫做事件A
把“从乙盒子里摸 出 1个球,得到白 球”叫做事件B
P(A) 3 5
2020/10/18
没有影响
⑴P(A·B)=P(A)·P(B) =0.9×0.95=0.855
(2)0.14
2020/10/18
13
例3 在一段线路中并联着3个自动控制的常 开开关,只要其中有1个开关能够闭合,线路 就能正常工作.假定在某段时间内每个开关 能够闭合的概率都是0.7,计算在这段时间内 线路正常工作的概率.
2020/10/18
即
P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An).
如果A、B是两个相互独立的
想一想?
事件,那么1-P(A)•P(B)表
示什么?
表示相互独立事件A、B中
1 P (A )• P (B ) P (A B )
20至20/1少0/18有一个不发生的概率
6
三.例题分析:
例1 甲、乙2人各进行1次射击,如果2人击中目 标的概率都是0.6,计算:
2020/10/18
11
练习:制造一种零件,甲机床的正品率 是0.9,乙机床的正品率是0.95,从它 们制造的产品中各任抽一件,(1)两件 都是正品的概率是多少?(2)恰有一件 是正品的概率是多少?
2020/10/18
12
解:设A=从甲机床制造的产品中任意抽出一 件是正品;B=从乙机床制造的产品中任意抽 出一件是正品,则A与B是独立事件
2020/10/18 P 1 PA( •B ) 1 0 . 0 1. 6810 4
例2:某商场推出二次开奖活动,凡购买 一定价值的商品可以得到一张奖券。奖 券上有一个兑奖号码,可以分别参加两 次抽奖方式相同的兑奖活动。如果两次 兑奖活动的中奖概率都是0.05,求两次 中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码。
2 P(B)
42
1.独立事件的定义 事件A(或B)是否发生对事件B(或A)
发生的概率没有影响,这样的两个事件
叫做相互独立事件.
想 一 想:如果事件Α 与Β相互独立,那么与ΒΑ, Α与ΒΑ,与Β是否也相互独?立
2020/10/18
3
2.独立事件同时发生的概率
“从两个盒子里分别摸出 1个球,都是白球”是一个事 件,它的发生,就是事件A,B 同时发生,我们将它记作 A·B.想一想,上面两个相互 独立事件A,B同时发生的概率 P(A·B)是多少?
14
分析:根据题意,这段时间内线路正常 工作,就是指3个开关中至少有1个能够闭合, 这可以包括恰有其中某1个开关闭合、恰有 其中某2个开关闭合、恰好3个开关都闭合等 几种互斥的情况,逐一求其概率较为麻烦, 为此,我们转而先求3个开关都不能闭合的 概率,从而求得其对立事件——3个开关中 至少有1个能够闭合的概率.
(1) 2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率.
2020/10/18
7
例1 甲、乙2人各进行1次射击,如果2人击中目标的概 率都是0.6,计算:(1) 2人都击中目标的概率;
解:(1)记“甲射击1次,击中目标”为事 件A,“乙射击1次,击中目标”为事件 B.由于甲(或乙)是否击中,对乙(或甲)击中 的概率是没有影响的,因此A与B是相互独立 事件.
2020/10/18
15
解:分别记这段时间内开关JA, JB,JC能够闭合为事件A,B, C(如图).由题意,这段时间内3 个开关是否能够闭合相互之间 没有影响.根据相互独立事件 的概率乘法公式,这段时间内3 个开关都不能闭合的概率是
P ( A•B•C)P ( A)•P ( B)•P ( C)
1P (A 1 )P (B 1 )P (C )
又“两人各射击1次,都击中目标”就是 事件A·B发生,根据相互独立事件的概率 乘法公式,得到:
P(A·B)=P(A)·P(B)=0.6×0.6=0.36.
2020/10/18
8
例1 甲、乙2人各进行1次射击,如果2人击中目 标的概率都是0.6,计算:(2)其中恰有1人击中目 标的概率;
( 2 ) “ 两 人 各次射,击恰1有 1 人 击”中 目 包 括 两 种 情 况 :甲一击种中是、 乙 未 击 中 另 一 种 是 甲 未 击击中中、 乙
( 1 0 . 7 ) 0 (. 17 ) 0 (. 17 )
2020/10/18 0 . 0 2 7
16
例4:有甲、乙两批种子,发芽率分别 是0.8和0.7,在两批种子中各取一粒, A={由甲批中取出一个能发芽的种子}, B={由乙批中抽出一个能发芽的种子}, 问 ⑴A、B两事件是否互斥?是否互相立? ⑵两粒种子都能发芽的概率? ⑶至少有一粒种子发芽的概率? ⑷恰好有一粒种子发芽的概率?
2020/10/18
4
P(A•B)5 3 4 2 又P(A )5 3,P(B )4 2.
P (A • B ) P (A )• P (B )
这就是说,两个相互独立事件 同时发生的概率,等于每个事件 发生的概率的积.
2020/10/18
5
一般地,如果事件A1,A2,…,An相互 独立,那么这n个事件同时发生的概率,等于 每个事件发生的概率的积,
故所求概•B率 A•为 B ) P (A
P ( •B) AP ( A•B ) P (•PA( B ) )
P ( A) •P (B 0) .(6 10 .6() 10 .60). 6
0 2020/10/18 . 204. 204. 4 8 .
9
例1 甲、乙2人各进行1次射击,如果2人击中目标的概率 都是0.6,计算:(3)至少有1人击中目标的概率.