各种结晶过程分析

合集下载

结晶过程机理分析

结晶过程机理分析

编号:SM-ZD-11262 结晶过程机理分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.编制:____________________审核:____________________批准:____________________本文档下载后可任意修改结晶过程机理分析简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。

文档可直接下载或修改,使用时请详细阅读内容。

(1)结晶在固体物质溶解的同时,溶液中还进行着一个相反的过程,即已溶解的溶质粒子撞击到固体溶质表面时,又重新变成固体而从溶剂中析出,这个过程称为结晶。

(2)晶体晶体是化学组成均一的固体,组成它的分子(原子或离子)在空间格架的结点上对称排列,形成有规则的结构。

(3)晶系和晶格构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。

晶体可按晶格空间结构的区别分为不同的晶系。

同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。

例如,熔融的硝酸铵在冷却过程中可由立方晶系变成斜棱晶系、长方晶系等。

微观粒子的规则排列可以按不同方向发展,即各晶面以不同的速率生长,从而形成不同外形的晶体,这种习性以及最终形成的晶体外形称为晶习。

同一晶系的晶体在不同结晶条件下的晶习不同,改变结晶温度、溶剂种类、pH值以及少量杂质或添加剂的存在往往因改变晶习而得到不同的晶体外形。

例如,因结晶温度不同,碘化汞的晶体可以是黄色或红色;NaCl从纯水溶液中结晶时为立方晶体,但若水溶液中含有少许尿素,则NaCl形成八面体的结晶。

结晶过程机理分析

结晶过程机理分析

结晶过程机理分析前言结晶是指溶液中溶质在一定条件下形成晶体,是无机化学、有机化学、生物化学等领域的重要研究内容。

结晶过程是一个复杂的物理化学过程,其机理包括化学动力学和热力学两个方面,涉及到物相平衡、动力学与热学参数对结晶过程的影响以及结晶操作控制等多个方面。

近年来,随着新型材料的发展和结晶技术的不断提高,结晶过程机理的研究也越来越受到关注。

本文将从化学动力学和热力学两个方面介绍结晶过程的机理,并探讨对结晶操作的控制。

一、化学动力学机理的分析1.1 组分浓度的影响溶液中各组分浓度的变化对结晶过程有很大影响。

当溶液的浓度过高时,难以形成晶体,而当浓度过低时,则不存在结晶的条件。

在液态中,存在大量的分子活动,一旦溶质分子聚集到一定的浓度后,就可以形成“团簇”,这种团簇的形成是结晶的前提和基础。

当其团簇达到一定大小后,就可以继续生长,形成晶体。

因此,在控制结晶过程时,给定合适的浓度条件,是非常重要的。

1.2 搅拌速度的影响搅拌速度是影响结晶过程化学动力学机理的一个重要参数。

搅拌可以促进溶质分子间的相互作用,增加团簇形成的概率和速率。

具体来说,搅拌能够提高溶液的热传导效率,加速平衡状态的达成,保证团簇相互作用的充分和均匀。

需要注意的是,过强的搅拌速度反而会使得团簇破碎,影响晶体的生长。

因此,在实际操作中应避免搅拌过强。

1.3 温度的影响溶液温度的变化对结晶过程的约束作用和晶体生长速率都具有影响。

温度的升高会导致结晶物质的溶解度增大,从而影响到团簇的性质和数量,使得结晶过程加快。

同时,温度的增大也会增加团簇生长的能量,促进晶体生长和结晶动力学过程。

因此,在结晶操作中,应严格控制温度变化。

二、热力学机理的分析2.1 相转变相转变是热力学机理的重要内容,是指物质由一种稳定的相态转变为另一种稳定的相态的过程。

例如,固体的溶解和再结晶过程就是一种典型的相转变。

相转变通过热力学的研究来解释和控制结晶过程中的各种现象。

数控技术《4.4-典型铁碳合金结晶过程分析》

数控技术《4.4-典型铁碳合金结晶过程分析》

第4章铁碳合金典型铁碳合金的结晶过程分析开场:大家好,欢迎来到“金属材料与热处理”课堂,今天我们一起学习典型铁碳合金的结晶过程分析。

在上一节我们学习到,含碳量不同的铁碳合金,从高温下的液态,缓慢冷却到室温后,其室温组织不同。

为此我们可以根据室温组织将铁碳合金分为以下几种类型:(1)工业纯铁(WC<%)含碳量 wC < 0 0218%的铁碳合金称为工业纯铁,其室温组织为铁素体。

(2)碳钢(WC=%~%)含碳量wC = %~%的铁碳合金称为钢。

可分为:亚共析钢(% <wC< %)、共析钢(wC=%)、过共析钢(% <wC< %)。

(3)白口铸铁(WC=%~%)含碳量wC=%~%的铁碳合金称为白口铸铁。

有较好的铸造性能、质脆,不能锻造。

可分为:亚共晶白口铸铁(%<wC<%)、共晶白口铸铁(wC=%)、过共晶白口铸铁(%<wC<%)。

下面我们一起来分析下几种典型的铁碳合金的结晶过程。

1、工业纯铁结晶过程(wC = % (flash动画)合金液体在1-2点间转变为δ,2点δ→γ,3-4点间γ→F,4点到5点之间为F,到7点,从F中析出Fe3C。

从铁素体中析出的渗碳体称三次渗碳体,用Fe3CⅢ表示。

Fe3CⅢ以不连续网状或片状分布于晶界。

随温度下降,Fe3CⅢ量不断增加,合金的室温下组织为F Fe3CⅢ。

室温下Fe3CⅢ的最大量为:凡是亚共析钢结晶过程均与此过程相似,只是由于碳的质量分数不同,组织中铁素体和珠光体的相对量也不同,随着含碳量增多,珠光体含量增加。

%6.22%10077.069.677.011.23=⨯--=II C Fe Q过共析钢的结晶过程均与此过程相似,只是随着碳的质量分数不同,组织中珠光体和渗碳体的相对量不同。

5、共晶白口铸铁( wC ≈% )以含碳量为%的共晶白口铸铁为例。

合金Ⅳ在温度1点以上为单一液相;当温度降至与ECF 线相交时,液态合金发生共晶反应,即LC →Ld (Fe3C ),结晶出莱氏体。

分析纯铁的晶体结构与结晶过程

分析纯铁的晶体结构与结晶过程

分析纯铁的晶体结构与结晶过程一、学习目标知识目标:·了解晶体、晶格、晶胞、晶粒的概念及常见的三种晶格类型;·明确金属实际晶体结构;·掌握纯铁的同素异晶转变;·熟悉合金的概念及合金的相结构;·了解金属与合金的结晶过程。

能力目标:·熟悉金属或合金的结晶过程及规律,能有效控制金属的结晶过程,改善金属材料的组织和性能。

二、任务引入纯铁是由铁矿石经冶炼而成的,先得到温度较高的铁水,铁水经冷却后形成高温固态铁,然后在逐渐冷却到室温。

液态铁水经过什么变化形成固态铁,高温固态铁冷却过程中铁的结构是否发生变化?三、相关知识材料的性能取决于材料的组织结构,而材料的组织结构由它的化学组成和加工工艺决定的。

也就是说不同的金属材料具有不同的性能,即使是同一种金属材料,在不同的加工条件下其性能也是不同的。

金属性能的这些差异,从本质上来说,是由其内部结构所决定的。

(一)常见的金属晶格类型1.晶体与非晶体自然界中的固态物质都是由原子组成的,根据原子排列的状况不同,可以将物质分为晶体和非晶体两大类。

(1)晶体物质的原子都是按一定几何形状有规则地排列的称为晶体,如金刚石、石墨及固态金属和合金。

(2)非晶体在物质内部,凡是原子呈无规则、杂乱地堆砌在一起的称为非晶体,如松香、普通玻璃、沥青、石蜡等。

晶体与非晶体因原子排列方式不同,它们的性能也有差异。

晶体具有固定的熔点,其性能呈各向异性,而非晶体没有固定的熔点,呈各向同性。

2.晶格与晶胞晶体内部的原子是按照一定规则排列的。

为了便于理解,将金属晶体中原子看成一个小球,图1-7(a)是金属晶体中原子在空间作有规则排列的简单模型。

为了说明排列的方式,人为地把原子看成一个点,用假想的线将各原子的中心连结起来,这样就得到一个抽象化了的空间格架,见图1-7(b)。

这种用于描述原子在晶体中排列规律的空间格架称为晶格。

(a)晶体的原子排列模型(b)晶格(c)晶胞图1-7 晶体、晶格和晶胞示意图由上图可见,晶格是由许多形状、大小相同的最小几何单元重复堆积而成的。

结晶过程分析实用版

结晶过程分析实用版

YF-ED-J7450可按资料类型定义编号结晶过程分析实用版Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements.(示范文稿)二零XX年XX月XX日结晶过程分析实用版提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。

下载后可以对文件进行定制修改,请根据实际需要调整使用。

1 冷却结晶冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNO₃、NaNO₃、MgSO₄等。

冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。

自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。

间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。

直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。

直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

2 蒸发结晶蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,部分溶剂汽化,从而获得过饱和溶液。

此法主要适用于溶解度随温度的降低而变化不大的物系或具有逆溶解度变化的物系,如N₉C1及无水硫酸钠等。

典型铁碳合金结晶过程分析 (2)

典型铁碳合金结晶过程分析 (2)

第二章碳钢C相图第3节Fe-Fe3第5讲典型铁碳合金结晶过程分析2典型铁碳合金的结晶过程分析-4共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%共晶白口铸铁w c =4.3%铁碳合金的结晶过程CD EFK124.30%1交点:液相开始发生共晶转变1~2之间:共晶奥氏体中会出现二次渗碳体2交点:γ发生共析转变→P (珠光体)共晶渗碳体不发生变化2 以下:组织低温莱氏体(L′d )L 4.31148∘C(γ2.11+Fe 3C)共晶转变生成莱氏体(Ld )奥氏体为共晶奥氏体,渗碳体为共晶渗碳体w c=4.3%的铁碳合金结晶过程示意图低温莱氏体金相照片(黑斑区为珠光体,白色为渗碳体)室温组织:(L′d )室温相:α+ Fe 3Cw c =4.3%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w α=6.69−4.36.69−0.0008×100%≈?w Fe 3C =1−w α≈?%100='d L w典型铁碳合金的结晶过程分析-5亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%亚共晶白口铸铁w c =3%铁碳合金的结晶过程CD EFK1233.0%3以下2交点:存在两相L +γ2~3:奥氏体中会出现二次渗碳体3交点:γ发生共析转变→P (珠光体)二次渗碳体+ Ld 不发生变化3 以下:组织低温莱氏体(L′d + Fe 3C II + P )L 4.31148∘C(γ2.11+Fe 3C)1交点:液相开始发生匀晶转变L →γ其中的室温组织:(L'd + P + Fe 3C Ⅱ)室温相:α+ Fe 3Cw c =3.0%的铁碳合金的结晶过程通过杠杆定律计算室温下各组织含量通过杠杆定律计算室温下各相含量自学内容w Fe 3C =1−w α≈?w α= 6.69−3.06.69−0.0008×100%≈?w L ′d=3.0−2.114.3−2.11×100%≈?w P = 4.3−3.04.3−2.11×6.69−2.116.69−0.77×100%≈?w Fe 3C II =1−w L ′d −w P ≈?结晶过程示意图亚共晶白口铸铁的金相照片亚共晶白口铸铁w c =3%铁碳合金3以下典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K123典型铁碳合金的结晶过程分析-6过共晶白口铸铁w c =5.3%铁碳合金的结晶过程CDEF K1231~2:一次渗碳体形成的温度高,故其形貌为粗大的片状结构2交点:共晶转变3交点:γ发生共析转变3 以下:组织低温莱氏体(L′d + Fe 3C I )1交点:液相开始发生匀晶转变L →Fe 3C I过共晶白口铸铁w c=5.3%铁碳合金L'd+Fe3CⅠ过共晶白口铸铁的室温组织典型铁碳合金的结晶过程分析-7工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q1234567工业纯铁w c <0.01%铁碳合金的结晶过程A GH J NP Q12345671~2:L 减少δ增加1以上:液相1交点:匀晶转变L →δ2点:单相δ (0.01%)2~3:单相δ (0.01%)3点开始:δ →γ3~4:δ减少γ增加4~5:单相γ(0.01%)5点开始:γ→α5~6:γ减少α增加6点,6~7:单相α (0.01%)7点:α析出Fe 3C ⅡI工业纯铁w c<0.01%铁碳合金室温下的相:F+Fe3C 室温组织: F + Fe3CⅢ工业纯铁室温组织金相照片。

结晶过程及危险性分析

结晶过程及危险性分析

结晶过程及风险分析结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。

在化学工业中,固体物质经常从溶液和熔体中结晶,如糖、食盐、各种盐类、染料及其中间体、肥料及药品、味精、蛋白质的分离与提纯等。

结晶是一个重要的化工单元操作,主要用于以下两方面。

(1)制备产品与中间产品许多化学产品经常以晶体形式出现,在生产过程中都与结晶过程有关。

结晶产品易于包装、运输、贮存和使用。

(2)获得高纯度的纯净固体物料工业生产中,即使原溶液中含有杂质,通过结晶获得的产品可以达到非常高的纯度,故结晶是获得纯净固体物质的重要方法之一。

工业结晶过程不仅要求产品的纯度和生产率高,而且对晶形、晶粒大小及粒度范围(即晶粒大小分布)等也有规定。

颗粒大且粒度均匀的晶体不仅易于过滤和洗涤,而且贮存时胶结现象(即72粒体互相胶粘成块)大为减少。

结晶过程常采用搅拌装置。

搅动液体,使其以某种方式循环,从而使物料混合均匀或促使物理、化学过程加速操作。

搅拌在工业生产中的应用有:①气泡在液体中的分散,如空气分散于发酵液中,为发酵过程提供氧气;②液滴在不混溶液体中的分散,如油分散于水中制成乳浊液;③固体颗粒在液体中的悬浮,如向树脂溶液中加入颜料,以调制涂料;④互溶液体的混合,如使溶液稀释,或加速可混溶组分之间的化学反应等。

此外,搅拌还可以增强液体和固体壁之间的传热,并使物料受热均匀。

搅拌的方法有机械搅拌和气流搅拌。

搅拌槽内液体的运动,从尺度上分为总体流动和湍流脉动。

总体流动的流量称为循环量,加大循环量有利于提高宏观混合的调匀度。

湍流脉动的强度与离开搅拌器的流体速度有关,加强湍流脉动有利于减小分隔尺度与分隔强度。

不同的过程对这两种流动有不同的要求。

液滴、气泡的分散,需要强烈的湍流脉动固体颗粒的均匀悬浮,有赖于总体流动。

搅拌时能量在这两种流动上的分配,是搅拌器设计中的重要问题。

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤

3、结晶的步骤
4盐析法 在溶液中,添加另一种物质使原溶质的溶解度降低,形成过饱和溶液 而析出结晶.加入的物质可以是能与原溶媒互溶的另一种溶媒或另一种 溶质. 5抗溶剂法 通过加入能降低溶解度的抗溶剂,如碳酸钠的抗溶剂结晶,在此结晶 体系中,乙二醇、一缩二乙二醇或者1,2-丙二醇等可加入其水溶液中,以 降低溶解度,产生过饱和度.
结晶现象的原理与方法
目录
1 结晶与晶体 2 结晶的基本原理 3 结晶的步骤 4 结晶过程影响因素分析
1、结晶与晶体
1、结晶与晶体
结晶是指固体物质以晶体状态从溶液、蒸汽或熔融物中析出的过程. 晶体是指内部结构中质点元素〔原子、离子、分子作三维有序规则排 列排列的固态物质. 晶体可分为三大晶族,七大晶系如下: 高级晶族:立方晶系<等轴晶系 中级晶族:三方晶系、四方晶系、六方晶系 低级晶族:正交晶系<斜方晶系、单斜晶系、三斜晶系.
2、结晶的基本原理
介稳区
不稳区 过渡区 亚稳区
稳定区
1—饱和曲线;2—第一过饱和曲线; 3—第二过饱和曲线
A稳定区:即不饱和区.其浓度≦ 平衡浓度,在这里不可能发生结晶.
B亚稳区:即第一过饱和区.在此 区域内不会自发成核,当加入晶种时,结 晶会生长,但不会产生新晶核.
C过渡区:即第二过饱和区.在此 区域内也不会自发成核,但加入晶种后, 在结晶生长的同时会有新晶核产生.
4、结晶过程影响因素分析
〔4冷却〔蒸发速度的影响 在实际生产中,通过真空绝热蒸发冷却是使溶液产生过饱和度的重要手 段之一.冷却速度快,过饱和度增大就快,容易超越介稳区极限,到达不稳 定区时将析出大量晶核,影响结晶粒度.因些,结晶操作过程的冷却速度 不宜太快. 〔5杂质的影响 物料中杂质的存在对晶体的生长有很大的影响,应该尽量去除杂质,以提 高产品质量.

金属的结晶构造和结晶过程

金属的结晶构造和结晶过程

Logo
金属晶体模型
二、晶格、晶胞、晶格常数
Logo
晶体 原子呈有序排列
名 非晶体 原子呈无序排列
词 术 语
晶格 描述原子排列规律的空间格子 晶胞 组成晶格的最基本单元
晶格常数 晶胞的棱边长度
将晶体中原子排列,假想成空间的几何格架
Logo
二、晶格、晶胞、晶格常数
Logo
二、晶格、晶胞、晶格常数
Logo
一、晶体与非晶体
1、晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。有固定熔点。
2、非晶体:原子在三维空间内不规则排列。
长程无序,各向同性。无固定熔点。
3、在自然界中除少数物质(如普通玻璃、松香、石蜡等) 是非晶体外,绝大多数都是晶体,如金属、合金、硅 酸盐,大多数无机化合物和有机化合物,甚至植物纤 维都是晶体。
1 538℃
1 394℃
912℃
L
δ-Fe
γ -Fe
α-Fe
(体心)
(面心)
(体心)
转变发生于固态 特点:在一定温度下进行
晶格类型发生变化
形核 + 长大
局部
整体
三、金属的同素异晶转变
纯铁的同素异构转变曲线
Logo
Logo
三、金属的同素异晶转变
❖ 金属的同素异晶有一定的转变温度并放出结晶潜 热。
❖ 金属的同素异晶转变具有较大的过冷倾向。
密排六方晶格
Logo
❖十二个金属原子分布在六方体的十二个角上, 在上 下底面的中心各分布一个原子, 上下底面之间均匀 分布三个原子。
❖ 密排六方晶胞的特征:
晶格常数:用底面正六边形的边长a和两底面之间 的距离c来表达, 两相邻侧面之间的夹角为120°, 侧面与底面之间的夹角为90°。

分析45钢结晶过程及其组织转变

分析45钢结晶过程及其组织转变

分析45钢结晶过程及其组织转变45钢是一种高强度、高塑性的结构钢,广泛应用于船舶、大桥、压力容器等重型结构中。

该钢的组织转变是指在加热、冷却过程中的晶体生长和相变过程。

下面将详细分析45钢的结晶过程及其组织转变。

首先,在加热过程中,45钢内部的晶粒开始不断长大,出现晶界迁移现象。

晶粒的形成过程是由于一些原子间的扩散和交换,导致晶界消失。

随着温度的升高,钢中的碳元素以固溶体的形式溶解在α铁晶粒中,晶粒间的碳浓度差异逐渐减少。

在逐渐升高的温度下,钢内部发生相变现象。

45钢在上升到880℃时,发生铁素体相变,晶粒的结构由面心立方变为体心立方。

相变过程伴随着晶格重新排列和晶界的生成,形成了强韧的铁素体晶粒。

然后,在冷却过程中,晶粒继续长大,晶界消失并再次发生迁移,晶粒逐渐粗化。

在温度降低至约540℃时,45钢发生奥氏体相变,晶粒的结构再次发生变化,由体心立方变为面心立方。

在相变过程中,晶格重新排列,晶界重新形成,晶粒内部的碳元素溶解度减小。

最后,在进一步降温过程中,45钢的晶粒逐渐细化,形成细小且均匀的晶粒,提高了材料的强度和塑性。

通过适当的控制冷却速度,可以得到细小的晶粒,进一步提高材料的性能。

此时,45钢的组织主要由细小的铁素体晶粒和奥氏体相组成。

总的来说,45钢的结晶过程及其组织转变经历了加热、相变和冷却三个阶段。

在加热过程中,晶粒开始长大,晶界迁移。

相变阶段发生铁素体相变和奥氏体相变,晶粒结构发生变化。

在冷却阶段,晶粒继续长大并逐渐粗化,在相变过程中,晶粒细化。

最终,45钢的组织由细小的铁素体晶粒和奥氏体相组成,具有高强度和高塑性的特性。

各种结晶过程分析

各种结晶过程分析

各种结晶过程分析
结晶是指将溶液中的物质由无规则、随机排列转变成有序、有规律排列的过程。

结晶的过程有许多种类,下面分别分析一下常见的几种结晶过程。

1. 溶剂蒸发结晶
溶剂蒸发结晶是指将有机物或无机盐溶解在适量的溶剂中,通过溶剂慢慢蒸发,使溶质逐渐结晶的过程。

这种方法适用于易于在普通温度下溶解,但在一定温度下不易溶解的物质。

溶剂蒸发结晶过程需要注意的是在晶粒的生长过程中,不断补充新的溶液以维持晶粒的状态,否则晶体会在晶界处溶解,难以得到纯净的晶体。

2. 熔融结晶
熔融结晶是指将物质加热至熔点以上,使其融化,再缓慢冷却至较低温度,使物质重新结晶,得到比较纯净的晶体。

这种方法适用于易于熔化,但在普通温度下难以溶解的物质。

熔融结晶的优点是能够得到纯度较高的晶体,但同时也存在晶体色泽不佳、晶粒质量难以控制等缺点。

3. 溶液沉淀结晶
溶液沉淀结晶是指在溶液中清晰的界面上加入反应物,使其反
应生成沉淀,然后将沉淀分离出来并进行结晶,得到比较纯净的晶体。

溶液沉淀结晶的优点是能够通过化学反应控制晶体的形态和大小,但同时也存在晶体质量和纯度难以保证的缺点。

4. 水合物结晶
水合物结晶是指物质在结晶过程中与水形成水合物,形成晶体
特殊的形态和性质。

水合物结晶的适用于相对容易水合的物质。

水合物结晶过程需要注意的是,为了保证晶体的水合度,需要
在一定的温度和湿度条件下贮藏。

如果湿度较低,则水分可能会脱
离晶体而导致晶体失水。

总的来说,结晶是分离纯化化合物的一种重要方法。

不同的结
晶方法适用于不同的物质,并且在实验中需要根据具体的情况实施。

结晶过程及危险性分析

结晶过程及危险性分析

编号:SM-ZD-50311 结晶过程及危险性分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.编制:____________________审核:____________________批准:____________________本文档下载后可任意修改结晶过程及危险性分析简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。

文档可直接下载或修改,使用时请详细阅读内容。

结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。

在化学工业中,常遇到的情况是固体物质从溶液及熔融物中结晶出来,如糖、食盐、各种盐类、染料及其中间体、肥料及药品、味精、蛋白质的分离与提纯等。

结晶是一个重要的化工单元操作,主要用于以下两方面。

(1)制备产品与中间产品许多化工产品常以晶体形态出现,在生产过程中都与结晶过程有关。

结晶产品易于包装、运输、贮存和使用。

(2)获得高纯度的纯净固体物料工业生产中,即使原溶液中含有杂质,经过结晶所得的产品都是能达到相当高的纯净度,故结晶是获得纯净固体物质的重要方法之一。

工业结晶过程不但要求产品有较高的纯度和较大的生产率,而且对晶形、晶粒大小及粒度范围(即晶粒大小分布)等也有规定。

颗粒大且粒度均匀的晶体不仅易于过滤和洗涤,而且贮存时胶结现象(即72粒体互相胶粘成块)大为减少。

结晶过程常采用搅拌装置。

搅动液体使之发生某种方式的循环流动,从而使物料混合均匀或促使物理、化学过程加速操作。

搅拌在工业生产中的应用有:①气泡在液体中的分散,如空气分散于发酵液中,以提供发酵过程所需的氧;②液滴在与其不互溶的液体中的分散,如油分散于水中制成乳浊液;③固体颗粒在液体中的悬浮,如向树脂溶液中加入颜料,以调制涂料;④互溶液体的混合,如使溶液稀释,或为加速互溶组分间的化学反应等。

分析60钢的结晶过程

分析60钢的结晶过程

分析60钢的结晶过程
60钢是碳钢的一种,其结晶过程通常包括以下几个步骤:
1. 熔化阶段:首先将钢材加热到熔点以上进行熔化,加热的温度通常在1300-1400摄氏度之间。

熔化后,钢液开始下降温度进入结晶阶段。

2. 结晶核形成:当钢液温度降至一定程度时,在钢液内部会形成一些微小的结晶核。

这些结晶核在后续的过程中会逐渐长大并形成晶粒。

3. 晶粒长大:结晶核逐渐长大,并在形成的过程中不断吸收周围的原子,从而形成晶粒。

4. 晶粒长大和增多:晶粒在温度降低过程不断增多,晶界不断形成和扩展,最终形成钢材的晶界结构。

在这个过程中,温度、成分、冷却速度等因素都会影响钢材的结晶过程。

为了获得理想的晶界结构,需要对这些因素进行精细的控制和调整。

各种结晶过程分析(正式版)

各种结晶过程分析(正式版)

文件编号:TP-AR-L4273In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________各种结晶过程分析(正式版)各种结晶过程分析(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

一、冷却结晶冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。

冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。

自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。

间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。

直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。

直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

各种结晶过程分析

各种结晶过程分析

各种结晶过程分析一、冷却结晶冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系。

冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。

自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。

间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。

直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而冷却,冷却剂在冷却过程中则被汽化的方法。

直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

二、蒸发结晶蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,部分溶剂汽化,从而获得过饱和溶液。

此法主要适用于溶解度随温度的降低而变化不大的物系或具有逆溶解度变化的物系,如NaCl及无水硫酸钠等。

蒸发结晶法消耗的热能最多,加热面的结垢问题也会使操作遇到困难,故除了对以上两类物系外,其他场合一般不采用。

三、真空冷却结晶真空冷却结晶是使溶液在较高真空度下绝热蒸发,一部分溶剂被除去,溶液则因为溶剂汽化带走了一部分潜热而降低了温度。

此法实质上是冷却与蒸发两种效应联合来产生过饱和度,适用于具有中等溶解度物系的结晶,如KCl、MgBr2等。

该法所用的主体设备较简单,操作稳定。

最突出之处是器内无换热面,因而不存在晶垢妨碍传热而需经常清洗的问题,且设备的防腐蚀问题也比较容易解决,操作人员的劳动条件好,劳动生产率高,是大规模生产中首先考虑采用的结晶方法。

四、盐析结晶盐析结晶是在混合液中加入盐类或其他物质以降低溶质的溶解度从而析出溶质的方法。

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤
目 录
1 2
结晶与晶体 结晶的基本原理 结晶的步骤 结晶过程影响因素分析
3
4
1、结晶与晶体
1、结晶与晶体
结晶是指固体物质以晶体状态从溶液、蒸汽或熔融物中析出的过程。 晶体是指内部结构中质点元素(原子、离子、分子)作三维有序规则
排列排列的固态物质。
晶体可分为三大晶族,七大晶系如下: 高级晶族:立方晶系(等轴晶系)
处于平衡的溶液称为该固体的饱和溶液。
溶液浓度恰好等于溶质的溶解度,即达到液固相平衡状态时的浓 度曲线,称为饱和曲线;
溶液过饱和而欲自发的产生晶核的极限浓度曲线称为过饱和曲线
。饱和曲线与过饱和曲线之间的区域为结晶的介稳区。
2、结晶的基本原理
A稳定区:即不饱和区。其浓度
不稳区 过渡区 介稳区
≦平衡浓度,在这里不可能发生结晶
3、结晶的步骤
3、结晶的步骤
结晶是从均一的溶液中析出固相晶体的一个操作,常包括为三个 步骤:过饱和溶液的形成、晶核的生成和晶体的成长。 a-晶核的生成 b-诱导期 c-结晶成长 d-结晶老化 e-平衡的饱和溶液
3、结晶的步骤
(1)过饱和溶液的形成 结晶的首要条件是过饱和,制备过饱和溶液的方法一般有五种:
4、结晶过程影响因素分析
4、结晶过程影响因素分析
根据结晶原理,结晶操作的影响因素主要考虑晶核形成速率和晶 体成长速率的影响因素,包括过饱和度、温度、搅拌强度、冷却速度
、杂质以及晶种等方面。
(1)过饱和度的影响 晶核生成速率和晶体成长速率均随过饱和度的增加而增大。在不
稳区,溶液会产生大量晶核,不利于晶体成长。
化学反应法
冷却法
盐析法 蒸发法
抗溶剂法
3、结晶的步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:AQ-JS-05574
( 安全技术)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
各种结晶过程分析
Analysis of various crystallization processes
各种结晶过程分析
使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。

一、冷却结晶
冷却结晶法基本上不去除溶剂,溶液的过饱和度系借助冷却获得,故适用于溶解度随温度降低而显著下降的物系,如KNOs、NaNOs、MgSO‘等。

冷却的方法可分为自然冷却、间壁冷却或直接接触冷却3种。

自然冷却是使溶液在大气中冷却而结晶,其设备构造及操作均较简单,但由于冷却缓慢,生产能力低,不易控制产品质量,在较大规模的生产中已不被采用。

间壁冷却是广泛应用的工业结晶方法,与其他结晶方法相比所消耗的能量较少,但由于冷却传热面上常有晶体析出(晶垢),使传热系数下降,冷却传热速率较低,甚至影响生产的正常进行,故一般多用在产量较小的场合,或生产规模虽较大但用其他结晶方法不经济的场合。

直接接触冷却法是以空气或与溶液不互溶的碳氢化合物或专用的液态物质为冷却剂与溶液直接接触而
冷却,冷却剂在冷却过程中则被汽化的方法。

直接接触冷却法有效地克服了间壁冷却的缺点,传热效率高,没有晶垢问题,但设备体积较大。

二、蒸发结晶
蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,部分溶剂汽化,从而获得过饱和溶液。

此法主要适用于溶解度随温度的降低而变化不大的物系或具有逆溶解度变化的物系,如NaCl及无水硫酸钠等。

蒸发结晶法消耗的热能最多,加热面的结垢问题也会使操作遇到困难,故除了对以上两类物系外,其他场合一般不采用。

三、真空冷却结晶
真空冷却结晶是使溶液在较高真空度下绝热蒸发,一部分溶剂被除去,溶液则因为溶剂汽化带走了一部分潜热而降低了温度。

此法实质上是冷却与蒸发两种效应联合来产生过饱和度,适用于具有中等溶解度物系的结晶,如KCl、MgBr2等。

该法所用的主体设备较简单,操作稳定。

最突出之处是器内无换热面,因而不存在晶垢
妨碍传热而需经常清洗的问题,且设备的防腐蚀问题也比较容易解决,操作人员的劳动条件好,劳动生产率高,是大规模生产中首先考虑采用的结晶方法。

四、盐析结晶
盐析结晶是在混合液中加入盐类或其他物质以降低溶质的溶解度从而析出溶质的方法。

所加入的物质叫做稀释剂,它可以是固体、液体或气体,但加入的物质要能与原来的溶剂互溶,又不能溶解要结晶的物质,且和原溶剂要易于分离。

一个典型例子是从硫酸钠盐水中生产Na2S04•H2O,通过向硫酸钠盐水中加入NaCl可降低Na2S04•H20的溶解度,从而提高NazS04•H2O的结晶产量。

又如,向氯化铵母液中加盐(氯化钠),母液中的氯化铵因溶解度降低而结晶析出。

还有,向有机混合液中加水,使其中不溶于水的有机溶质析出,这种盐析方法又称水析。

盐析的优点是直接改变固液相平衡,降低溶解度,从而提高溶质的回收率;结晶过程的温度比较低,可以避免加热浓缩对热敏物的破坏;在某些情况下,杂质在溶剂与稀释剂的混合物中有较高的
溶解度,较多地保留在母液中,这有利于晶体的提纯。

此法最大的缺点是需配置回收设备,以处理母液,分离溶剂和稀释剂。

五、反应沉淀结晶
反应沉淀是液相中因化学反应生成的产物以结晶或无定形物析出的过程。

例如,用硫酸吸收焦炉气中的氨生成硫酸铵、由盐水及窑炉气生产碳酸氢铵等并以结晶析出,经进一步固液分离、干燥后获得产品。

沉淀过程首先是反应形成过饱和度,然后成核、晶体成长。

与此同时,还往往包含了微小晶粒的成簇及熟化现象。

显然,沉淀必须以反应产物在液相中的浓度超过溶解度为条件,此时的过饱和度取决于反应速率。

因此,反应条件(包括反应物浓度、温度、pH及混合方式等)对最终产物晶粒的粒度和晶形有很大影响。

六升华结晶
物质由固态直接相变而成为气态的过程称为升华,其逆过程是蒸汽的骤冷直接凝结成固态晶体,这就是工业上升华结晶的全部过
程。

工业上有许多含量要求较高的产品,如碘、萘、蒽醌、氯化铁、水杨酸等都是通过这一方法生产的。

七熔融结晶
熔融结晶是在接近析出物熔点温度下,从熔融液体中析出组成不同于原混合物的晶体的操作,过程原理与精馏中因部分冷凝(或部分汽化)而形成不同于原混合物的液相相类似。

熔融结晶过程中,固液两相需经多级(或连续逆流)接触后才能获得高纯度的分离。

熔融结晶主要用作有机物的提纯、分离,以获得高纯度的产品。

如将萘与杂质(甲基萘等)分离可制得纯度达99.9%的精萘,从混合二甲苯中提取纯对二甲苯,从混合二氯苯中分离获取纯对二氯苯等。

熔融结晶的产物往往是液体或整体固相,而非颗粒。

这里填写您的公司名字
Fill In Your Business Name Here。

相关文档
最新文档