混凝土总是开裂,原来是这个原因导致的

合集下载

泵送混凝土温度裂缝的成因和防治方法范本

泵送混凝土温度裂缝的成因和防治方法范本

泵送混凝土温度裂缝的成因和防治方法范本混凝土温度裂缝是指由于混凝土在硬化过程中由于温度变化引起的裂缝。

混凝土是一种复合材料,其混凝土的体积会随着温度的变化而发生变化。

在混凝土表面产生的温度差异会导致混凝土的收缩或膨胀,从而产生应力,当混凝土内部的应力超过了其强度或弹性极限时,就会产生温度裂缝。

成因:
1.混凝土浇筑过程中未能充分考虑混凝土的收缩和膨胀,导致温度应力超过混凝土的强度。

2.大气温度变化剧烈,尤其是在极端气候条件下,混凝土受到极端的收缩或膨胀。

3.混凝土中含有过多的水分,当水分蒸发或冷凝时,会导致混凝土体积的变化,从而形成温度裂缝。

4.混凝土结构与周围环境温度变化快速不一致,造成了温度差异。

防治方法:
1.在混凝土浇筑过程中,控制混凝土的收缩和膨胀,可以通过添加混凝土膨胀剂或使用控制性收缩剂来达到效果。

2.在混凝土表面覆盖绳网或其他保护层来降低表面温度差异。

3.控制混凝土中的水分含量,避免过量含水,可以通过控制施工环境的湿度和采用干燥剂等方法来达到效果。

4.在混凝土结构上设置伸缩缝,以分割混凝土结构,减少温度差异的传递,从而减轻温度裂缝的产生。

5.控制混凝土结构与周围环境的温度差异,可以采用隔热材料或复合材料等方法来达到效果。

总之,混凝土温度裂缝的产生是由于混凝土内部的温度差异导致的应力超过了混凝土的强度,因此,在混凝土施工过程中应该预防温度裂缝的产生,采取相应的措施来降低温度差异,如添加混凝土膨胀剂、控制水分含量、设置伸缩缝等。

这些措施旨在减轻温度裂缝的产生,从而提高混凝土结构的整体性能和使用寿命。

建筑施工专业技术中混凝土出现裂缝的原因及预防措施

建筑施工专业技术中混凝土出现裂缝的原因及预防措施

建筑施工专业技术中混凝土出现裂缝的原因及预防措施混凝土裂缝是建筑施工中常见的问题,其产生主要有以下几个原因:1.温度变化:混凝土在干燥过程中会收缩,而在水分稳定后会膨胀。

如果温度变化较大,混凝土受热后膨胀,受冷后收缩,容易产生裂缝。

2.过早干燥:在混凝土表面脱水速度过快而导致混凝土变干燥过快,会引起表面和内部的应力不均匀,从而产生裂缝。

3.混凝土成分问题:混凝土配合比的设计不合理,或者掺入的掺合材料质量不合格,都会影响混凝土的抗裂性能。

4.静载荷:施工过程中如果超载、区域集中、不均匀等情况产生,都会给混凝土的结构强度带来不均衡的应力分布,从而导致裂缝的产生。

预防混凝土裂缝的措施可以从以下几个方面入手:1.合理设计配合比:根据施工环境、工程要求和材料实际情况,合理配比混凝土,确保混凝土的性能和稳定性,从而减少裂缝产生的可能。

2.控制混凝土的含水量:通过加水量、养护等措施,使混凝土的水分含量控制在适当范围内,避免过早干燥导致的裂缝。

3.加入抗裂措施:可在混凝土中加入纤维材料,例如聚丙烯纤维、钢纤维等,以提高混凝土的抗裂性能。

4.控制温度变化:在施工过程中,应合理设置温度控制设备,如覆盖保温材料、使用冷却水等来控制混凝土的温度,从而减少温度变化引起的裂缝。

5.控制静载荷:在施工过程中,需要合理安排工序、控制施工速度等,以确保混凝土受力均匀,避免因静载荷过大而引发裂缝。

6.加强养护工作:混凝土浇筑后需进行养护,如覆盖保湿膜、定期喷水等,以保持混凝土表面的湿度和温度,避免裂缝的产生。

7.做好施工质量管控:施工中要加强对混凝土质量的把控,确保原材料的质量符合要求,施工过程中严格按照施工规范进行操作,避免操作不当导致的裂缝。

在建筑施工中,避免混凝土裂缝是非常重要的,它不仅关系到建筑物的安全性能,还会影响建筑的美观。

因此,需要在设计、施工和养护等方面都加以重视,以减少混凝土裂缝的发生。

水泥水化热对混凝土早期开裂的影响

水泥水化热对混凝土早期开裂的影响

水泥水化热对混凝土早期开裂的影响`引言对于预拌混凝土应用过程出现的早期开裂现象,有些混凝土专家归因于水泥比外表积太大和早期强度太高; 而水泥界则认为, 我国目前水泥的比外表积和早期强度并不比国外的高, 混凝土的早期开裂主要是混凝土施工和养护不当所致。

笔者认为, 必须通过混凝土生产者和水泥生产商沟通, 对早期裂缝的成因达成共识, 在水泥生产、混凝土配制及施工养护等环节共同采取措施加以解决。

“高强早强、高比外表积”及“水泥磨得太细”, 这些都是外表现象, 其本质是早期水化热太高及混凝土温度应力大的缘故。

1 水化热高是混凝土早期开裂的重要原因混凝土早期开裂主要是由于初凝前后干燥失水引起的收缩应变和水化热产生的热应变所引起。

关于混凝土的开裂, 大家都已接受如下认识: 抗拉强度越高, 则混凝土开裂的危险性越小; 弹性模量大、收缩大则开裂的危险性大; 徐变大则开裂的危险性小。

弹性模量越低, 一定收缩量(或应变)产生的拉应力越小。

混凝土处于塑性状态时弹性模量几乎为零, 任何收缩或应变都不会产生拉应力, 只有凝结固化具有一定强度后才有弹性模量, 混凝土弹性模量随强度增加而增大。

因此, 混凝土强度的发展既有利于减少混凝土的开裂又因弹性模量增大而增加混凝土的开裂性。

根据美国ACI 建筑法规318- 83, 混凝土弹性模量与标准圆柱体28d 抗压强度的平方根成正比[1]。

混凝土徐变越大, 应力松弛量越大, 纯拉应力越小。

因此, 弹性模量低、徐变大及收缩小的混凝土开裂的危险小。

高强混凝土因收缩较大和徐变较小而较易开裂, 而低强混凝土可能因收缩小和徐变大, 而往往裂缝较少。

关于干燥收缩及其防止或减少收缩的措施, 大家都已达成共识, 本文不拟赘述, 但对于温度应变引起的应力往往认识不足。

温度应力是目前预拌混凝土早期开裂的一个很重要的因素。

R.Springenschmid[2]认为, 混凝土的2/3 应力来自于温度变化, 1/3 来自干缩和湿胀。

混凝土结构裂缝产生原因分析

混凝土结构裂缝产生原因分析

混凝土结构裂缝产生原因分析本文结合笔者多年工作的实践经验,就混凝土结构施工期间常见裂缝进行了综述,并就其产生原因进行了深入地分析,谨供大家作参考之用。

标签混凝土;裂缝;收缩;水化热;温度前言混凝土结构裂缝的成因复杂繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因,主要与施工、设计、材料、环境等有关。

据有关资料统计,由施工因素造成的混凝土早期裂缝占80%左右,因混凝土材料方面的原因造成的的裂缝占15%左右,因设计不当造成的裂缝占5%左右。

本文就以上所说的几个方面分别讨论。

1 施工工艺因素在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装的过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、竖向的、斜向的、水平的、表面的、贯穿的等各种裂缝,特别是细长薄壁结构更容易出现。

裂缝出现的部位与走向、裂缝宽度因产生的原因而异,通常有:1.1 违章施工、不当施工造成混凝土裂缝混凝土搅拌、运输时间过长,使水分蒸发过多,导致混凝土坍损较大,使得在混凝土体积上出现不规则的收缩裂缝。

主要结构部位模板刚度不足,或施工时拆模过早,混凝土强度明显不足,使得构件在自重或施工荷载作用下产生裂缝。

混凝土初期养护工作管理不严,造成混凝土早期强度增长时失水,收缩量大,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

种种原因造成混凝土运输车不能及时到达及时供料,现场浇筑停歇时间超过混凝土终凝时间,而又没有按施工缝处理好接头部位等。

1.2 振捣方式不当引起裂缝不正确的振捣方式会造成混凝土分层离析、表面浮浆而使混凝土面层开裂,或造成混凝土砂浆大量向低处流淌致使混凝土产生不均匀沉降收缩而在结构厚薄交界处出现裂缝。

商品混凝土由于采用搅拌车运输、泵送浇筑,混凝土坍落度比较大,凝结时间比较长,一般混凝土初凝时间都在10h以上甚至更长,即使在炎热的夏天,在掺了高效缓凝减水剂后,浇捣好的混凝土表面被太阳暴晒,水分蒸发很快,形成一层几毫米厚的“被子”,看上去混凝土似乎已凝结,实际内部还远未达到初凝,甚至还能流动。

混凝土开裂的原因和处理方案

混凝土开裂的原因和处理方案

混凝土开裂的原因和处理方案混凝土是一种常用的建筑材料,但在使用过程中可能会出现开裂的问题。

开裂不仅影响混凝土的美观性,还可能影响混凝土的使用寿命和安全性。

因此,了解混凝土开裂的原因和处理方案对于保障建筑结构的稳固性和耐久性至关重要。

本文将从混凝土开裂的原因和处理方案两个方面进行详细介绍。

一、混凝土开裂的原因1.材料和配合比问题混凝土的开裂问题可能与原材料质量不合格或者混凝土配合比不合理有关。

如果水泥的质量不达标,可能导致混凝土的强度不足,造成开裂。

同时,如果配合比中水灰比过大,也容易导致混凝土开裂。

2.温度变化温度变化是混凝土开裂的常见原因之一。

在夏季,高温会导致混凝土内部温度不均,造成温度差异带来的热胀冷缩,使混凝土产生裂缝。

在冬季,混凝土受到冷却作用,同样会导致裂缝的产生。

3.湿度环境混凝土在施工过程中受到水分环境的影响,也可能导致开裂。

如果混凝土受到快速干燥或者潮湿的环境,都会造成混凝土裂缝的产生。

特别是在干燥的环境下,混凝土很容易缩水开裂。

4.施工和养护不当施工和养护不当也是混凝土开裂的原因之一。

在混凝土浇筑和养护过程中,如果施工操作不规范或者养护措施不到位,都会导致混凝土内部应力不均匀,从而产生裂缝。

5.结构设计问题混凝土结构设计不合理也可能导致混凝土裂缝的产生。

如果结构受力不均匀或者存在设计缺陷,都会给混凝土施加额外的应力,从而引起裂缝。

二、混凝土开裂的处理方案1.加强材料和配合比质量控制针对混凝土开裂的原因,可以通过加强材料和配合比质量控制来减少开裂的可能性。

对水泥、骨料等原材料进行严格质量检验,确保原材料质量符合标准。

同时,要合理设计配合比,控制水灰比,确保混凝土的强度和抗裂性。

2.控制温度和湿度在施工过程中要控制混凝土的温度和湿度,避免快速干燥或者过湿的情况发生。

可以采用覆盖物或者喷水养护的方式来控制混凝土的温湿度环境,减少裂缝的产生。

3.合理施工和养护施工过程中要严格按照操作规程进行施工,避免因操作不当导致混凝土开裂。

梁产生裂缝的原因及处理方法

梁产生裂缝的原因及处理方法

钢筋混凝土梁裂缝钢筋混凝土梁是目前多种形式的工业与民用建筑中最常用的构件,在实际施工及使用中出现裂缝的形式也最多最常见,现对实际工程中所涉及的裂缝及其原因进行简要分析。

一、裂缝成因钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:1.混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。

2.温变裂缝.水泥在硬化期间,砼表面与内部温差较大,导致砼表面急剧的温度变化而产生较大的降温收缩,受到内部砼的约束,而出现裂缝。

3.设计欠周全。

如钢筋砼梁的截面不够、梁的跨度过大、高度偏小,或者由于计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等,都会导致砼梁出现结构裂缝。

4.施工质量造成的裂缝。

由于砼标号偏低、受力钢筋截面偏小、截面尺寸不符合设计等而导致砼梁出现裂缝;由于施工不当、模板支撑下沉,或过早拆除底模和支撑等形成的裂缝;施工控制不严,在梁上超载堆荷,而导致出现裂缝。

5.预制钢砼梁在运输、吊装过程中,由于支撑不合理、吊点位置不符以及较大的振动或冲击荷载,也会导致钢砼梁出现裂缝。

6.在使用过程中,改变原来使用功能,将办公室改为仓库、屋面加层、使用不当、增大梁上荷载等均会出现裂缝。

二、裂缝的处理根据裂缝的成因情况,可将裂缝分为两种类型:一类是由于材料、气候等造成的一般塑性收缩裂缝、干缩裂缝等.这类裂缝一般对承载力影响较小,可作一般处理或不处理;另一类裂缝明显影响了梁的承载能力,随着裂缝的扩展和延伸,钢筋达到屈服强度,受压区砼应变量增大,梁刚度大大降低,构件趋向破坏.此类裂缝必须及早采取加固补强,以满足结构安全需要。

对于裂缝的处理,首先要重视对裂缝的调查分析,确定裂缝的种类、程度、危害及加固的依据。

调查可从裂缝宽度、长度、是否贯通、是否达到弹性极限应力的位置、有无潮气或漏水、工程地点环境以及施工图纸设计情况等多处入手,分析裂缝产生的本质原因,以采取相应的措施.(一)经过调查分析,确认裂缝在不降低承载力的情况下,采取表面处理法、充填法、注入法等简易的处理方法:1.表面修补法:该法适用于缝较窄,用以恢复构件表面美观和提高耐久性时所采用,常用的是沿砼裂缝表面铺设薄膜材料,一般可用环氧类树脂或树脂浸渍玻璃布。

混凝土梁板施工裂缝的产生原因

混凝土梁板施工裂缝的产生原因

混凝土梁板施工裂缝的产生原因与防治措施1 桥梁混凝土梁板施工裂缝产生的原因1.1 原材料质量不良引起的裂缝混凝土主要由水泥、砂、粗骨料、拌和水和外加剂组成。

混凝土所采用的原材料质量不合格,可能导致梁板出现裂缝。

水泥使用不合格水泥会出现早期不规则的裂缝。

砂石材料(1)砂石含泥量超标,不仅降低混凝土的强度和抗渗性,还会使混凝土干燥时产生不规则的网状裂缝。

(2)砂石的级配差,有的砂过细,用这种材料拌制的混凝土常造成侧面裂缝。

(3)碱骨料反应,骨料中含有酸性硅化物质与水泥中的碱性物质相遇,则会发生水硅反应生成膨胀的胶质,吸水后造成局部膨胀和拉应力,梁板就会产生爆裂状裂缝。

拌和水及外加剂拌和水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响,采用含碱的外加剂,可能对碱骨料反应也的影响。

外加剂用量不当,造成混凝土早期强度过高或过低而产生的裂缝。

1.2 施工工艺质量引起的裂缝混凝土梁板在浇注、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理,质量低劣,可能产生各种形式的裂缝,主要有以下几种原因。

(1)设计配合比不合理或施工配合比与设计出入较大,混凝土振捣不密实、不均匀、出现蜂窝、麻面或空洞,是形成裂缝的起源点。

(2)混凝土浇注过快,混凝土流动性较低,在硬化前因混凝土振捣不足,硬化后沉实过大,容易在浇注数小时后产生塑性收缩裂缝。

(3)混凝土搅拌、运输时间长,水分蒸发过多,引起混凝土坍落度过低,使得在混凝土表面出现不规则的收缩裂缝。

(4)为保证混凝土的流动性,增加水和水泥的用量,或其他原因加大水灰比,增大了坍落度,导致混凝土硬化时收缩量增加,使得混凝土表面出现不规则的收缩裂缝和水泥浮浆而产生龟裂。

(5)混凝土分层或分段浇注时,接头处理不好,使得在新旧混凝土的施工缝处出现裂缝。

(6)施工时模板刚度不足,在浇注混凝土时,因侧向压力的作用使得模板变形,从而产生与模板变形一致的裂缝。

(7)施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。

混凝土大面积开裂的原因

混凝土大面积开裂的原因

混凝土大面积开裂的原因混凝土在建筑工程中被广泛使用,它具有耐久性高、强度好、施工方便等优点。

然而,在使用过程中,我们常常会遇到混凝土大面积开裂的问题,这不仅会影响建筑物的美观,还可能导致结构性问题。

因此,了解混凝土大面积开裂的原因非常重要,这样可以采取相应的措施来预防和修复裂缝。

混凝土大面积开裂的原因可以归结为以下几个方面:1. 温度变化:温度变化是导致混凝土开裂的主要因素之一。

当混凝土遭受温度的变化时,会发生体积的膨胀或收缩,这可能会超过混凝土的承受能力,从而导致开裂。

特别是在极端温度条件下,如夏季高温或冬季低温,混凝土的开裂风险更高。

2. 混凝土配合比不合理:混凝土的配合比指混凝土中水、水泥、骨料等成分的比例。

如果配合比不合理,比如水泥用量过多或过少,骨料粒径不均匀,水灰比不合理等,都可能导致混凝土开裂。

当配合比不合理时,混凝土中的体积变化会不均匀,从而引起开裂。

3. 施工不规范:不规范的施工也是混凝土开裂的原因之一。

比如,混凝土浇筑时不进行充分的振捣,使得混凝土中存在空隙;浇筑过程中没有采取适当的措施控制混凝土的温度和湿度;混凝土浇筑过程中没有进行适当的伸缩缝处理等。

这些施工不规范的操作都会导致混凝土开裂。

4. 荷载变化:混凝土结构在使用过程中承受各种荷载的作用,包括静荷载、动荷载、温度荷载等。

当荷载变化过大或过快时,混凝土的应力超过了其承受能力,从而导致开裂。

这种裂缝常常呈现较大的面积,对结构的稳定性和安全性构成威胁。

5. 混凝土材料的老化:混凝土材料的老化是混凝土大面积开裂的另一个因素。

长期受到环境的侵蚀,混凝土中的化学反应和物理过程会发生变化,导致混凝土的强度和耐久性下降。

这种老化现象使得混凝土更容易开裂。

为了避免混凝土大面积开裂,我们可以采取以下措施:1. 控制温度变化:在混凝土施工过程中,应尽量避免极端温度条件下的施工,或者采取合适的措施来控制混凝土的温度和湿度,如使用隔热材料、遮阳棚等。

混凝土裂缝的鉴别

混凝土裂缝的鉴别

混凝土裂缝的鉴别混凝土裂缝主要有温度裂缝、干缩裂缝、应力裂缝、施工裂缝、沉降裂缝、构造不合理造成的裂缝等,根据对混凝土裂缝的分析,可对大部分裂缝做出正确的鉴别,下面主要阐述应力、温度、干缩和沉陷四类裂缝的鉴别。

(1)应力裂缝受弯构件常见的有垂直裂缝和斜裂缝两类。

垂直裂缝多出现在梁、板构件弯矩最大的截面上或断面突然削弱处(如主筋切断处附近);斜裂缝一般发生在剪力最大的部位,例如梁支座附近,多数是剪力与弯矩共同作用而造成。

裂缝由下部开始,一般沿45‘方向向跨中上方伸展,随着荷载增加,裂缝不断扩展,且裂缝数量增加。

轴心受压构件一般不出现裂缝,一旦发现受压区混凝土压裂,可能预示结构开始破坏,应引起足够重视。

小偏心受压构件和受拉区配筋较多的大偏心受压构件的裂缝与破坏情况,基本上与轴心受压构件相似。

大偏心受压且受拉区配筋不多的构件,基本上类似受弯构件。

轴心受拉构件在荷载不大时,混凝土就产生裂缝,其特征是沿正截面开始,和钢筋拉力作用线相垂直,各缝间距近似相等。

冲切构件裂缝,例如柱下基础底板,从柱的周边开始沿45’斜面拉裂,形成冲切面。

扭弯构件裂缝,钢筋混凝土构件受扭弯时,构件内产生近于裂缝方向常与较短边平行;当板有横肋时,裂缝多与横肋相垂直,常见的裂缝宽度是0.15—0.5mm。

2)大体积混凝土中,水泥水化热大量积聚,散发很慢,由此而形成的各种温度差是产生裂缝的主要原因。

其中内外温差与温度陡降只引起表面或浅层的裂缝;混凝土内部温差可造成贯穿裂缝。

有时几种不同温差作用的叠加,可能造成结构截面全部断裂。

3)在使用中,结构受高温热源的影响而产生裂缝。

例如某厂鼓风炉车间,在鼓风炉周围和冷凝器下的钢筋混凝土梁,表面温度达80~97℃,梁上出现了不少横向裂缝,其宽度为0.1~0.8mm。

再如钢筋混凝土烟囱受热后较普遍产生裂缝,常见的有竖向裂缝与水平裂缝。

裂缝形成的时间,又可分为投产使用前和投产使用后两类。

前者裂缝较浅,一般裂至内、外表面下2~3cm到10余厘米,宽度大多在0.2—2mm左右。

有关钢筋混凝土结构产生裂缝的几点体会 (2)

有关钢筋混凝土结构产生裂缝的几点体会 (2)

有关钢筋混凝土结构产生裂缝的几点体会
钢筋混凝土结构产生裂缝是常见的现象,以下是几点关于该问题的体会:
1. 强度不足:结构的强度设计不足或加载超过设计荷载,会导致钢筋混凝土结构产生
裂缝。

这可能是因为建筑设计中未考虑到实际负载,或者施工过程中操作不当导致结
构强度不足。

2. 温度应力:钢筋混凝土受到温度变化的影响,会发生热胀冷缩。

长期的温度变化会
导致结构内部产生应力,超过材料的耐受能力,产生裂缝。

3. 湿度变化:湿度变化也会导致钢筋混凝土结构产生裂缝。

例如,在干燥季节,结构
中的水分蒸发,导致收缩应力,从而产生裂缝。

而在潮湿季节,结构中的水分吸收可
能引起膨胀应力,同样会导致裂缝的出现。

4. 施工质量问题:不合理的施工技术、材料质量问题、施工过程中的温度控制不当等,都可能导致钢筋混凝土结构产生裂缝。

5. 基础问题:基础设计不当、地基沉降、土质异常等因素,也可能导致结构产生裂缝。

为了避免或减小钢筋混凝土结构的裂缝问题,需要进行合理的结构设计、控制施工质量、合理选择材料、控制温度和湿度变化、定期检查和维护建筑结构等。

同时,在施
工过程中,需要采取适当的预防措施,例如使用建筑伸缩缝、控制混凝土收缩比、合
理安装钢筋等。

梁产生裂缝的原因及处理方法

梁产生裂缝的原因及处理方法

梁产生裂缝的原因及处理方法The final revision was on November 23, 2020钢筋混凝土梁裂缝钢筋混凝土梁是目前多种形式的工业与民用建筑中最常用的构件,在实际施工及使用中出现裂缝的形式也最多最常见,现对实际工程中所涉及的裂缝及其原因进行简要分析。

一、裂缝成因钢筋砼梁出现裂缝的原因很复杂,主要有材料或气候因素、施工不当、设计和施工错误、改变使用功能或使用不合理等,通常可归纳为以下几种:1.混凝土尚处于未完全硬化状态时,如干燥过快,则产生收缩裂缝,通常发生在表面上,裂缝不规则,宽度小。

2.温变裂缝。

水泥在硬化期间,砼表面与内部温差较大,导致砼表面急剧的温度变化而产生较大的降温收缩,受到内部砼的约束,而出现裂缝。

3.设计欠周全。

如钢筋砼梁的截面不够、梁的跨度过大、高度偏小,或者由于计算错误,受力钢筋截面偏小、配筋位置不当、节点不合理等,都会导致砼梁出现结构裂缝。

4.施工质量造成的裂缝。

由于砼标号偏低、受力钢筋截面偏小、截面尺寸不符合设计等而导致砼梁出现裂缝;由于施工不当、模板支撑下沉,或过早拆除底模和支撑等形成的裂缝;施工控制不严,在梁上超载堆荷,而导致出现裂缝。

5.预制钢砼梁在运输、吊装过程中,由于支撑不合理、吊点位置不符以及较大的振动或冲击荷载,也会导致钢砼梁出现裂缝。

6.在使用过程中,改变原来使用功能,将办公室改为仓库、屋面加层、使用不当、增大梁上荷载等均会出现裂缝。

二、裂缝的处理根据裂缝的成因情况,可将裂缝分为两种类型:一类是由于材料、气候等造成的一般塑性收缩裂缝、干缩裂缝等。

这类裂缝一般对承载力影响较小,可作一般处理或不处理;另一类裂缝明显影响了梁的承载能力,随着裂缝的扩展和延伸,钢筋达到屈服强度,受压区砼应变量增大,梁刚度大大降低,构件趋向破坏。

此类裂缝必须及早采取加固补强,以满足结构安全需要。

对于裂缝的处理,首先要重视对裂缝的调查分析,确定裂缝的种类、程度、危害及加固的依据。

混凝土裂缝的各原因及防治方法

混凝土裂缝的各原因及防治方法

混凝土裂缝的各原因及防治方法混凝土是一种常见的建筑材料,然而在使用过程中,混凝土中常会出现裂缝,这不仅影响了建筑物的美观,还可能对其结构造成不利影响。

下面详细介绍混凝土裂缝的各原因及防治方法。

1.温度变化:混凝土在温度变化下会产生热胀冷缩的现象,如果温度变化过大,就容易产生裂缝。

2.水分变化:混凝土中的水分会因为干燥或者湿润环境的变化而发生收缩或膨胀,从而导致裂缝的产生。

3.负载作用:长期受到重压或者外界负载作用,如人流、车辆等,会导致混凝土产生应力集中,进而引发裂缝的出现。

4.施工不当:施工过程中如果操作不当,如混凝土的浇筑不均匀、振捣不到位等,都可能导致混凝土内部应力集中而产生裂缝。

针对混凝土裂缝的防治,以下是几种常见的方法:1.控制混凝土配合比:合理的混凝土配合比可以改善混凝土的力学性能,减少开裂的可能性。

适当调整水灰比、材料的选用等因素,可以获得更好的性能。

2.加强混凝土的抗裂能力:可以在混凝土中添加防裂剂,以增加混凝土的柔韧性和韧性,提高其抗裂能力。

同时,在混凝土中添加适量的纤维可以增加其抗裂能力。

3.控制温度变化:可以采取措施降低混凝土温度变化,如在施工过程中进行适当的冷却降温,或者在施工后及时覆盖保温等。

4.增加混凝土的密实性:在混凝土浇筑后,要进行充分的振捣,以确保混凝土的密实性,减少内部空隙,从而减少裂缝的产生。

5.加强混凝土的保湿措施:在施工结束后,要及时进行保湿,以防止混凝土在干燥过程中产生收缩引起的裂缝。

6.加强预应力钢筋的设计和施工:在有大面积预应力混凝土结构中,应合理设计预应力布置,采取有效的措施,使预应力良好地控制在混凝土截面内,避免出现局部预应力损失而引起的裂缝。

7.定期检测和维修:定期对建筑物进行检测,发现裂缝及时进行维修。

对于较大的裂缝,可以采取加固措施,如用钢筋增强,填充防水材料等。

总之,混凝土裂缝的原因多种多样,防治也需要综合考虑各种因素。

需要在设计、施工和后期维护等各个环节中采取相应的措施,以减少裂缝的产生,保证建筑物的安全和美观。

浅析路桥施工中混凝土产生裂缝的原因及处理技术

浅析路桥施工中混凝土产生裂缝的原因及处理技术
工 程 科技
・ 1 8 7 ・
浅析路桥施工中混凝土产生裂缝的原因及处理技术
姜 锋
f 龙建路桥第六工程股份有限公司, 黑龙江 哈 尔滨 1 5 0 0 0 O )
摘 要: 混凝 土之所 以在 工程建设 中应 用广泛 , 是 因为其 结构具有灵活性 , 价格相对较低 , 且混凝土的抗压 强度 又比较 高, 可以制成 不 同的形状 , 并具有 良好 的耐 火候性 , 进 行维护的成本低 , 所 以混凝土成 为使 用最广泛的建筑材料 。建筑结构在 当今 世界上的主要 缺点是 , 混凝 土的抗拉 能力差 , 容 易发 生裂纹。本文就对路桥 施工 中混凝土产生裂缝 的原 因及 处理技术进行探讨分析 , 提供参考。 关键词 : 路桥 ; 施工 ; 混凝 土; 裂缝
1混凝 土产 生 裂缝原 因分 析 有 开裂裂 缝 的桥梁 , 荷载 很长 时 间没有进 行 维修 , 导致裂 缝 的桥 1 . 1由于 地基 的变 形 而引 起 的裂缝 , 指 的是 基础 竖 向不 均匀 梁 裂缝 的扩张 , 影响 桥梁 结构 的强 度 , 此 情况 可采 用结 构加 固的 沉 降或 水平 位 移使 结构 应力 超 过混 凝 土结 构 的抗拉 能力 ,导致 方法 , 使用 锚杆进 行加 固桥梁 , 预应 力法 。此 外 , 还 可用 灌浆 等 。 结 构开 裂 的现象 。 由裂 纹引 起的 地基 变形 常 出现 在上 面 , 引 起结 同 时 , 加 强 检查 和混 凝 土 的裂缝 处 理效 果 检验 : 抽 样试 验 、 试 验 构性 变 化 , 经 常 出现在 现浇 混凝 土 l O mi n到 3 h 。 地 基不 均匀 沉降 压力 。使用 表面 处理方 法对 混凝 土裂缝 的修复 的表 面处理方 法 , 的主要 原 因是 混凝 土有 其 基础 的不 均匀 沉 降 ,在塑 性状 态下 的 涂料 树脂 保 护膜 。适 用于 钢结 构刷 清洁混 凝 土结构 表 面的第 一 支持, 使 局部 变形 和混 凝土 的约 束裂缝 。由于重力 作用 使混 凝土 次 使用 , 然 后用 清水 洗 净 , 干燥 , 填充 混 凝 土表 面上 的凹槽 腻 子 较 重 的颗 粒 下沉 , 水 泥浆 上 浮 , 当 接收 器 是钢 筋 , 模 板 作用 时 混 树脂 , 和装 载必要 的涂 片 。 表 面处理方 法包 括涂层 和面 涂层表 面 的补 丁 , 范 围为 细裂纹 深度 浅 , 不漏水 。防水表 面修 补法适 用 于 凝土 将产 生 裂纹 。 1 . 2由于 混 凝 土 的质 量 较差 或 保 护混 凝 土 的 保 护层 厚 度 达 大 面积 的水 泄漏 。 不 到规 范 的要求 , 造成 裂缝 。 久 而久 之便会 在 混凝 土 中形 成对 钢 2 . 3微膨 胀混 凝 土 的使用 ,在使 用化 学 混凝 土进 行补 偿 收 在混 凝 土发生 水化 反应 和硬 化 的过程 中 , 水 泥发 生水化 的化 筋 的腐蚀 。 二 氧化碳 物 质会腐 蚀钢 筋混凝 土保 护 层的 表面 , 造 成 缩 , 钢筋 混 凝 土 的碱度 降低 ,或 因周 围混凝 土 中含 有含 量较 高 的氯 学反应 , 是形 成钙 矾石 膨胀 的 主要来 源 。在这个 过程 中 , 成 功 的 离子 , 使得 钢 筋表 面 的氧化 薄膜 被 氧化 , 然后 钢筋 在 氧气 和水 分 关 键 在于 不 同约束 条件 下 的混凝 土 的膨胀 有足 够 的扩 展 。 由于 的环 境 下发 生 腐蚀 反应 ,被 氧 化 的铁氢 氧化 物 的体 积将 是原 来 是发 生在 水化 扩大 反应 和混 凝 土硬化 过程 中 ,因此 不能被 认 为 的钢 筋 的 2至 4倍 , 从 而造 成 周 围的混 凝 土保 护层 的膨胀 应 力 , 是 膨胀 混凝 土 。合成 纤维 和钢 纤维 混凝 土是 昂贵 的 , 近年 来 , 逐 导致 混凝 土 发生 开 裂甚 至是 剥 落 ,裂纹 将沿 这纵 向的钢筋 进行 渐 在合 成纤 维工程 中应 用 。 它 与钢纤 维的 区别 : 钢纤 维 的阻裂作 扩 张。 用 主要体 现在 硬化 混凝 土裂 纹扩 展 ,硬化 混凝 土 的拉 伸强 度保 1 . 3由于热 膨胀 和 收缩 温度 变化 引起 的混凝 土裂 缝 , 当外 部 持 恒定 的裂 纹 , 裂纹 性 能 的影响 是提 高硬 化混凝 土 的变形 能力 , 环境 或 内部温 度 的变化 不 均匀 时 , 混凝 土就会 产 生变 形 , 产 生裂 混 凝土 基体韧 性失 败后 , 仍 然是 一个 整体 。聚丙烯腈纤 维 和聚丙 缝, 如果 变 形 受 到限 制 , 结 构 就会 产 生 应力 , 当产 生 温度 裂 缝超 烯 纤 维属 于合 成纤 维 的阻裂 作用 ,主 要体 现避 免混凝 土早 期裂 过混 凝 土 的抗拉 强 度应 力 时就会 形成 裂 缝 。温度 裂缝 的特 征一 缝 的发 生和避 免发 展 中的减少 , 降低 混凝 土的塑性 收缩 。与大体 般是 没有 规律 的 表面 裂纹 , 向深 部 或贯 穿性 裂缝 , 一般 与 主筋平 积 混凝 土 相 比 ,合 成纤 维混凝 土 更适合 大 面积混 凝土 结构 可 以 行或 接近 平行 ; 裂缝 宽 度 的大小 不 同 , 宽 窄受 天气 的 温度变 化影 用 于 防止大 面积混 凝土 结构减 少裂 纹 的产 生 。 合成 纤维 的加入 , 响 。现浇 混 凝土 表 面温 度裂 缝经 常 出现 在 l d到 2 d之 间温 度裂 对 混凝 土性 能 的影 响是全 面 的 ,不 仅提 高早 期混 凝土 的体 积稳 缝, 温 度引 起 的裂缝 深 , 通常 会 出现在 现 浇混凝 土 2 | d , 因温 度变 定 性 , 而 且降低 了早 期 收缩 开裂 的最高 值 , 凸显 了混凝 土 的特点 化 而 产生 的 裂缝 主要 是 因为 混凝 土表 面 温度 温差 不均 匀 的沉 降 和 应用 价值 。 引起 的 温差 裂 缝 。如 大体 积 混凝 土 厚度 超 过 2 m 时浇 水 泥水 化 结 束语 热, 内部温 度高 , 温度太 高 , 就会 导致 表 面裂纹 。在冬 季施 工 , 及 在施 工 过程 中 , 混凝 土 的凝 结时 间必须 进行严 格 的控 制 , 因 早 摆脱 绝缘 层 , 或 由寒潮 袭击 , 都会 导 致混 凝土 开裂 的早 期 强度 为 桥元 件一 般 由大体 积混 凝土 结构 构成 ,具 有很 高的 热释放 速 低 。有些 裂缝 是 由于 结构 温差 , 外部约 束 引起 的。如现 浇混凝 土 率 ,所 以要设 置 混凝 土水 化时 间 。混凝 土入模 温 度进行 严格 控 支 承或 刚性 基础 大 体积 , 浇在 坚 硬 的地面 上 , 没 有采 取 隔离 措施 制 , 在水 泥温度 的早期 进行 控制 。 同时进 一步采 取砂 、 石、 水, 在 放 松 约束 或缩 缝 间距 太大 。膨 胀 混凝 土浇 筑有 温度 变化 引起 的 同一 时 间采取综 合措 施 , 控制 混凝 土温度 不超 过 2 8摄 氏度 。总 裂缝 混 凝 土 的收 缩性 能 ,当外 部环 境或 混 凝土 结构 内部 温 度的 之 , 如 果你 采取 适 当的预 防措 施 , 许 多裂缝 是可 以避免产 生 和控 变化, 就 会产 生变 形 , 如 果变 形受 到 限制 , 在结 构 的应力 之外 , 就 制 的。 会超 过 混凝 土温 度裂 缝 的抗 拉 强度 。 此外 , 蒸 汽养 护 的预制构 件 参考 文献 时, 由 于冷却 速度 过快 或 者急 于拆 模 , 使 得 混凝 土 的表 面形成 收 【 l 】 黄 鲲. 关- I - & 路桥 梁施 工混凝 土裂缝 的分 析及 防治措 施[ J 】 . 大 缩裂 缝 。 形 成 裂缝 的原 因是 混凝 土的温 度过 高 , 或 者温度 的不 均 科技 , 2 0 1 3 ( 2 ) . 匀沉 降 , 外 部 约束 。 在 混凝 土浇筑 过程 中 , 温度 是非 常 高的 , 水 泥 [ 2 】 宋 国华 . 刍议 高速 公路 桥 梁施 工 中混凝 土 裂缝 的控 制措 施 [ J 1 . 发生 水化 反 应发 出大 量 的热 , 从 而 使得 混凝 土 的温 度非 常 的高 。 大科技 。 2 0 1 3 ( 2 ) . 当大 型混 凝 土冷却 收 缩应力 , 进而 产生 冷却 收缩裂 缝 。 [ 3 】 朱强 生. 浅谈路 桥施 工 中混 凝土 裂缝控 制技 术 的应 用[ J 】 . 神 州, 2路桥 施工 中混 凝土 裂缝 的防治 2 0 1 2 ( 2 9 ) . 2 . 1材 料 直 接 填 充 裂 缝 修 补 方 法 ,通 常 用 来 修 复 宽 裂 缝 【 4 】 穆 恬恬 . 混凝土桥 梁的裂缝 处治 『 J 1 . 交通世 界, 2 0 1 2 ( 2 0 ) . ( 0 . 3 m m) , 操 作 简单 , 成本 低 。小 于 0 . 3 m m宽 度 的浅 小裂 纹 和简 [ 5 】 周 平. u 型桥 台混 凝 土 裂 缝 控 制 [ J ] . 中 国交 通 建 设 监 理, 2 0 1 2 单 的深 度 裂纹处 理可 以通 过 V槽 填充 。桥 梁裂 缝则 通 过 中间上 ( 1 O ) . 下, 手柄 的上 部 喷射施 工方 法 。7 8厘米 范 围 内沿 裂缝 宽度 , 与砂 轮、 钢 丝刷 的游离 石 灰 和混 凝 土表 面 的灰 尘 , 与 洗 涤剂 洗 , 然 后 加压 注射 环 氧树脂 和 粘 附 , 以填补 混凝 土产 生 的裂缝 , 提 高水 的 桥面 , 防止 钢筋 锈蚀 和混 凝土 老化 。 2 . 2混凝 土 裂缝 的加 固方 法 ,由于混凝 土具有 的耐 久性 , 具

混凝土开裂与材料有关的10大原因

混凝土开裂与材料有关的10大原因

混凝土开裂与材料有关的10大原因1.材料质量问题:混凝土的材料质量直接影响混凝土的性能和耐久性,低品质的混凝土材料容易导致开裂问题。

2.水胶比过高:水胶比指水与水泥、砂浆的比率。

水胶比过高可能导致混凝土结构的孔隙度过大,增加混凝土内部含水量,使混凝土开裂。

3.水胶比过低:水胶比过低会造成混凝土的工作能力不足,施工困难。

同时,水胶比过低会导致混凝土的成品强度不够,易于开裂。

4.骨料质量问题:骨料是混凝土中的主要成分之一,其质量问题会直接影响混凝土的强度和耐久性。

如果骨料存在裂纹、含有过多的杂质等问题,会导致混凝土开裂。

5.外加剂使用不当:外加剂是指用于改善混凝土性能的添加剂。

如使用不当,外加剂可能会破坏混凝土内部的化学反应,引起混凝土开裂。

6.水泥质量问题:水泥是混凝土中最主要的胶凝材料,如果水泥质量不好,不能提供足够的强度和耐久性,容易引起混凝土开裂。

7.矿物掺合料问题:矿物掺合料是混凝土中的一种重要材料,如果矿物掺合料含有过多的有害物质或颗粒分布不均匀,会对混凝土的强度和耐久性产生负面影响,容易导致开裂。

8.增加剂使用不当:增加剂是指用于改善混凝土性能的添加剂。

如使用不当,增加剂可能与混凝土中其他成分发生剧烈的化学反应,导致混凝土开裂。

9.龟裂:龟裂是混凝土干燥过程中发生的一种开裂,通常是由于混凝土的表面干燥速度过快,导致混凝土表面收缩过大而引起的。

10.温度变化:混凝土在温度变化时会膨胀或收缩,如果没有采取合适的控制措施,温度的膨胀或收缩会导致混凝土开裂。

总结来说,混凝土开裂与材料有关的主要原因包括材料质量问题、水胶比过高或过低、骨料质量问题、外加剂使用不当、水泥质量问题、矿物掺合料问题、增加剂使用不当、龟裂、温度变化等。

为了避免混凝土开裂,应选择质量可靠的材料,合理控制水胶比,控制温度变化,加强施工管理等措施。

2023混凝土质量缺陷专项修补方案(通用5篇)

2023混凝土质量缺陷专项修补方案(通用5篇)

2023混凝土质量缺陷专项修补方案(通用5篇)混凝土质量缺陷专项修补方案1__X工程在混凝土结构自检验收过程中,发现少数楼层局部楼板存在裂纹,这些裂纹大多集中在大跨度板如客厅,卧室等部位,形状多为无规则曲线,少为网状;长度为几公分到1米多不等,深度有几毫米到十几公分不等;有的位于板上表面,有的位于板下表面,有的则形成上下贯穿的裂纹继而产生渗漏现象。

裂缝产生原因分析和处理方案如下。

一、裂缝产生的原因裂缝的成因较为复杂,比如板的跨中无抗裂钢筋网,板角及墙体的阳角处未设置足够的负筋等,本方案主要要从施工及管理方面进行分析,具体如下:1、楼面砼上荷载过早或荷载过于集中及支座处的负弯矩施工中在混凝土未达到规定强度,过早拆模,或者在混凝土未达到终凝时间就上荷载等。

这些因素都可直接造成混凝土楼板的弹性变形,致使砼早期强度低或无强度时,承受弯、压、拉应力,导致楼板产生内伤或断裂。

施工中不注意钢筋的保护,把板面负筋踩弯等,板的负筋位置偏下,致使板在负弯矩范围内首先开裂,继而在荷载作用下裂缝继续延伸。

终凝后上荷过于集中也会造成网状裂缝。

2、楼板内埋设电线套管板内PVC管使板内有效截面受到不同程度的削弱。

又因该管与混凝土的线胀系数不一致,粘结效果差,这时沿电线套管埋设方向就有可能因为应力集中而出现裂缝。

还有,水电管线多管重叠,致使板的有效厚度减少,沿管线方向会造成裂缝。

3、砼欠振或振捣不密实及支撑体系拆除后,砼在自身重力及(或)施工荷载作用下楼板在支座附近上部及跨中底部产生水平拉力,因欠振或振捣不密实砼内部压应力小于拉力而产生裂缝;另外混凝土初凝前不能有效振捣的搓毛造成裂缝是主要原因。

4、任意加大砼坍落度为了施工方便,任意加大板的砼坍落度,甚至在现场加水,造成浆料过多,混凝土离析;混凝土浇筑时表面为刮平方便随意浇水,部分浆料相对集中,表面收缩过大造成裂缝。

5、养护不当养护不当也是造成现浇混凝土板裂缝的主要原因。

过早养护会影响混凝土的胶结能力。

混凝土开裂原因分析报告及解决方法

混凝土开裂原因分析报告及解决方法

混凝土开裂原因分析报告及解决方法混凝土因其取材广泛、价格低廉、抗压强度高、可浇筑成各种形状,并且耐火性好、不易风化、养护费用低,成为当今世界建筑结构中使用最广泛的建筑材料。

混凝土最主要的缺点是抗拉能力差、脆性大、容易开裂。

大量的工程实践和理论分析表明,几乎所有的混凝土构件均是带裂缝工作的,只是有些裂缝很细,甚至肉眼看不见(<0.05mm),一般对结构的使用无大的危害,可允许其存在;我国现行建筑、铁路、公路、水利等部门设计规范均采用限制构件裂缝宽度的办法来保障混凝土结构的正常使用。

有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土碳化、保护层剥落、钢筋腐蚀,使混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用,必须加以控制。

混凝土开裂可以说是“常发病”和“多发病”,经常困扰着工程技术人员。

其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。

实际上,混凝土裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。

本报告对混凝土裂缝的种类和产生的原因作较全面的分析并提出相应的防治措施,供同行、专家参考、探讨。

混凝土裂缝的种类,就其产生的原因,大致可划分如下几种:一、荷载引起的裂缝混凝土构件在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

(一)直接应力裂缝是指外荷载引起的直接应力产生的裂缝。

裂缝产生的原因有:1、设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。

结构设计时不考虑施工的可能性;设计断面不足(宁波跨海大桥);钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

2、施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

浇完混凝土为什么会开裂

浇完混凝土为什么会开裂

浇完混凝土为什么会开裂当我们在建筑工程中进行混凝土浇筑后,有时会发现出现裂缝的情况。

这些裂缝可能不仅会影响建筑物的美观,还可能对结构的稳定性和耐久性造成负面影响。

那么,浇完混凝土为什么会开裂呢?首先,要了解混凝土为什么会开裂,我们需要知道混凝土是一种人工制造的复合材料,主要由水泥、骨料、粉煤灰、矿渣粉等原材料组成。

在混凝土的施工过程中,由于各种因素的综合作用,混凝土内部会产生内部应力,从而导致裂缝的形成。

首先,其中一个原因是由于混凝土的收缩。

在混凝土的凝固和硬化过程中,水泥浆体中的水逐渐蒸发,混凝土体积会发生收缩。

这种收缩会导致混凝土内部产生拉应力,当拉应力超过混凝土的抗拉强度时,就会形成裂缝。

其次,温度变化也是导致混凝土开裂的一个重要原因。

在混凝土施工完成后,如果在不同时间、季节或气候条件下受到温度变化的影响,会导致混凝土的体积发生变化,从而产生温度应力。

当这种温度应力超过混凝土的承受范围时,就会引起裂缝的生成。

此外,施工过程中的操作不当也容易导致混凝土开裂。

比如,在浇筑混凝土时,如果振捣不均匀或不到位,会导致混凝土内部存在空隙和孔洞,进而影响混凝土的结构完整性,增加混凝土开裂的可能性。

最后,混凝土的配合比也是影响混凝土是否开裂的重要因素之一。

如果混凝土中水灰比过高或者使用了劣质原材料,会导致混凝土本身质量下降,抗压强度减小,从而容易发生开裂现象。

总的来说,混凝土在施工过程中开裂是一个较为常见的问题,但可以通过科学施工、合理设计配合比、控制温度变化等手段来减少开裂的可能性。

只有在混凝土的施工和养护过程中注意这些关键因素,我们才能更好地避免混凝土开裂带来的负面影响,确保建筑物的结构安全和稳定。

1。

混凝土柱裂缝原因及修补方法

混凝土柱裂缝原因及修补方法

混凝土柱裂缝原因及修补方法一、背景介绍混凝土结构是现代建筑中常用的一种结构体系,混凝土柱作为支撑建筑的重要部件,在使用过程中往往会出现裂缝,严重影响其稳定性和使用寿命。

因此,了解混凝土柱裂缝的原因及修补方法,对于保障建筑安全和延长其使用寿命有着重要的意义。

二、混凝土柱裂缝的原因1.混凝土柱自身的原因(1)材料的不均匀性:混凝土柱制作时,由于混凝土内部应力不一致,以及混凝土中的空隙、骨料粒度不一,会导致混凝土柱表面出现裂缝。

(2)施工过程中的损伤:混凝土柱在施工过程中,如未按规范操作,比如混凝土浇筑时振捣不均匀等,会导致混凝土柱表面出现裂缝。

(3)温度应力:混凝土柱长期处于不同的温度环境中,温度变化会导致混凝土柱内部产生应力,从而导致表面裂缝的产生。

2.外部环境的原因(1)荷载作用:混凝土柱承受荷载时,如果荷载较大或不均匀,会导致混凝土柱表面裂缝的产生。

(2)地震作用:地震时,混凝土柱会受到地震力的作用,地震力会导致混凝土柱表面裂缝。

(3)环境腐蚀:混凝土柱长期处于潮湿的环境中,如海边、河边等,会导致混凝土柱表面腐蚀,产生裂缝。

三、混凝土柱裂缝的修补方法1.表面修补表面修补是最常用的混凝土柱修复方法,适用于表面裂缝较小的混凝土柱,其具体步骤如下:(1)清理表面:清理混凝土柱表面的灰尘、油污等杂物,使用高压水枪冲洗表面,使其干净。

(2)修补:将表面裂缝处的混凝土清理干净,用混凝土修补材料填充裂缝,抹平表面,使其与原来的混凝土表面平齐。

(3)养护:修补后的混凝土柱需要进行养护,一般需要在修补后的24小时内进行保护,避免其干燥过快。

2.内部修补内部修补是针对混凝土柱内部裂缝较大或较深的情况,其具体步骤如下:(1)定位:通过检测和测量,确定混凝土柱内部裂缝的位置和大小。

(2)凿除:用凿子将混凝土柱内部裂缝处的混凝土凿除,清理干净,使其表面平整。

(3)填充:将填充材料灌入混凝土柱内部裂缝处,填充到位,使其与原来的混凝土表面平齐。

混凝土总是开裂,原来是这个原因导致的!

混凝土总是开裂,原来是这个原因导致的!

混凝土总是开裂,原来是这个原因导致的!一、普通混凝土裂缝产生的原因1.荷载引起的裂缝混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

直接应力裂缝是指外荷载引起的直接应力产生的裂缝,次应力裂缝是指由外荷载引起的次生应力产生裂缝。

荷载裂缝特征依荷载不同而异呈现不同的特点。

这类裂缝多出现在受拉区、受剪区或振动严重部位。

但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

2.收缩引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。

在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。

温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。

3.荷载引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。

在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

塑性收缩,发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。

塑性收缩所产生量级很大,可达1%左右。

在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。

在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。

为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩),混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。

因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混凝土总是开裂,原来是这个原因导致的1、荷载引起的裂缝混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

直接应力裂缝是指外荷载引起的直接应力产生的裂缝,次应力裂缝是指由外荷载引起的次生应力产生裂缝。

荷载裂缝特征依荷载不同而异呈现不同的特点。

这类裂缝多出现在受拉区、受剪区或振动严重部位。

但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

2、收缩引起的裂缝混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。

在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。

温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。

3、荷载引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。

在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

塑性收缩,发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。

塑性收缩所产生量级很大,可达1%左右。

在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。

在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩),混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。

因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。

混凝土硬化后收缩主要就是缩水收缩。

如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

自生收缩,自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

炭化收缩,大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。

炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。

炭化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

4、地基础变形引起的裂缝由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。

5、钢筋锈蚀引起的裂缝由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。

由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护层厚度(当然保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其应慎重。

6、冻胀引起的裂缝大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的过冷水(结冰温度在-78度以下)在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。

尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%~50%。

冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管道方向的冻胀裂缝。

7、施工材料质量引起的裂缝混凝土主要由水泥、砂、骨料、拌和水及外加剂组成。

配置混凝土所采用材料质量不合格,可能导致结构出现裂缝。

8、施工工艺质量引起的裂缝在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。

裂缝出现的部位和走向、裂缝宽度因产生的原因而异。

1、表面修复常用的方法有压实抹平,涂抹环氧粘结剂,喷涂水泥砂浆或细石混凝土,压抹环氧胶泥,环氧树脂粘贴下班丝布,增加整体面层,钢锚栓缝合等。

表面涂抹和表面贴补法表面涂抹适用范围是浆材难以灌入的细而浅的裂缝,深度未达到钢筋表面的发丝裂缝,不漏水的缝,不伸缩的裂缝以及不再活动的裂缝。

表面贴补(土工膜或其它防水片)法适用于大面积漏水(蜂窝麻面等或不易确定具体漏水位置、变形缝)的防渗堵漏。

2、局部修复法常用的方法有充填法、预应力法,部分凿除重新浇筑混凝土等。

用修补材料直接填充裂缝,一般用来修补较宽的裂缝,作业简单,费用低。

宽度小于0.3m m,深度较浅的裂缝、或是裂缝中有充填物,用灌浆法很难达到效果的裂缝、以及小规模裂缝的简易处理可采取开V型槽,然后作填充处理。

3、水泥压力灌浆法4、适用于缝补宽度≥0.5m m的稳定裂缝。

此法应用范围广,从细微裂缝到大裂缝均可适用,处理效果好。

利用压送设备(压力0.2~0.4M p a)将补缝浆液注入砼裂隙,达到闭塞的目的,该方法属传统方法,效果很好。

也可利用弹性补缝器将注缝胶注入裂缝,不用电力,十分方便效果也很理想。

4、化学灌浆可灌入缝宽≥0.05m m的裂缝。

5、减少结构内力常用的方法有卸荷或控制荷载,设置卸荷结构,增设支点或支撑。

改简支梁为连续梁等。

6、结构补强常用的方法有增加钢筋,加厚板,外包钢筋混凝土,外包钢,粘贴钢板,预应力补强体系等。

因超荷载产生的裂缝、裂缝长时间不处理导致的混凝土耐久性降低、火灾造成的裂缝等影响结构强度可采取结构补强法。

包括断面补强法、锚固补强法、预应力法等混凝土裂缝处理效果的检查包括修补材料试验;钻心取样试验;压水试验;压气试验等。

7、改变结构方案,加强整体刚度例如:框架裂缝采用增设隔板深梁法处理。

8、混凝土置换法混凝土置换法是处理严重损坏混凝土的一种有效方法,此方法是先将损坏的混凝土剔除,然后再置换入新的混凝土或其他材料。

常用的置换材料有:普通混凝土或水泥砂浆、聚合物或改性聚合物混凝土或砂浆。

9、电化学防护法电化学防腐是利用施加电场在介质中的电化学作用,改变混凝土或钢筋混凝土所处的环境状态,钝化钢筋,以达到防腐的目的。

阴极防护法、氯盐提取法、碱性复原法是化学防护法中常用而有效的三种方法。

这种方法的优点是防护方法受环境因素的影响较小,适用钢筋、混凝土的长期防腐,既可用于已裂结构也可用于新建结构。

10、仿生自愈合法仿生自愈合法是一种新的裂缝处理方法,它模仿生物组织对受创伤部位自动分泌某种物质,而使创伤部位得到愈合的机能,在混凝土的传统组分中加入某些特殊组分(如含粘结剂的液芯纤维或胶囊),在混凝土内部形成智能型仿生自愈合神经网络系统,当混凝土出现裂缝时分泌出部分液芯纤维可使裂缝重新愈合。

11、其它方法常用方法有拆除重做,改善结构使用条件,通过试验或分析论证不作处理等。

大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。

这种裂缝有表面裂缝和贯通裂缝两种。

表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝土抗拉强度而引起的。

贯通裂缝是由于大体积混凝土在强度发展到一定程度,混凝土逐渐降温,这个降温差引起的变形加上混凝土失水引起的体积收缩变形,受到地基和其他结构边界条件的约束时引起的拉应力,超过混凝土抗拉强度时所可能产生的贯通整个截面的裂缝。

这两种裂缝不同程度上,都属有害裂缝。

高强度的混凝土早期收缩较大,这是由于高强混凝土中以30%~60%矿物细掺合料替代水泥,高效减水剂掺量为胶凝材料总量的1%~2%,水胶比为0.25~0.40,改善了混凝土的微观结构,给高强混凝土带来许多优良特性,但其负面效应最突出的是混凝土收缩裂缝几率增多。

高强混凝土的收缩,主要是干燥收缩、温度收缩、塑性收缩、化学收缩和自收缩。

混凝土初现裂纹的时间可以作为判断裂纹原因的参考:塑性收缩裂纹大约在浇筑后几小时到十几小时出现;温度收缩裂纹大约在浇筑后2到10d出现;自收缩主要发生在混凝土凝结硬化后的几天到几十天;干燥收缩裂纹出现在接近1年龄期内。

1、干燥收缩当混凝土在不饱和空气中失去内部毛细孔和凝胶孔的吸附水时,就会产生干缩,高性能混凝土的孔隙率比普通混凝土低,故干缩率也低。

2、塑性收缩塑性收缩发生在混凝土硬化前的塑性阶段。

高强混凝土的水胶比低,自由水分少,矿物细掺合料对水有更高的敏感性,高强混凝土基本不泌水,表面失水更快,所以高强混凝土塑性收缩比普通混凝土更容易产生。

3、自收缩密闭的混凝土内部相对湿度随水泥水化的进展而降低,称为自干燥。

自干燥造成毛细孔中的水分不饱和而产生负压,因而引起混凝土的自收缩。

高强混凝土由于水胶比低,早期强度较快的发展,会使自由水消耗快,致使孔体系中相对湿度低于80%,而高强混凝土结构较密实,外界水很难渗入补充,导致混凝土产生自收缩。

高强混凝土的总收缩中,干缩和自收缩几乎相等,水胶比越低,自收缩所占比例越大。

与普通混凝土完全不同,普通混凝土以干缩为主,而高强混凝土以自收缩为主。

4、温度收缩对于强度要求较高的混凝土,水泥用量相对较多,水化热大,温升速率也较大,一般可达35~40℃,加上初始温度可使最高温度超过70~80℃。

一般混凝土的热膨胀系数为10×10-6/℃,当温度下降20~25℃时造成的冷缩量为2~2.5×10-4,而混凝土的极限拉伸值只有1~1.5×10-4,因而冷缩常引起混凝土开裂。

5、化学收缩水泥水化后,固相体积增加,但水泥-水体系的绝对体积则减小,形成许多毛细孔缝,高强混凝土水胶比小,外掺矿物细掺合料,水化程度受到制约,故高强混凝土的化学收缩量小于普通混凝土。

相关文档
最新文档