隧道洞门设计完整版
隧道洞门设计完整版
![隧道洞门设计完整版](https://img.taocdn.com/s3/m/f7d80bd3aaea998fcc220ef0.png)
隧道洞门设计HEN system office room [HEN 16H-HENS2AHENS8Q8-HENH1688]和隧道端洞门设计一,技术标准及执行规范1.技术标准设讣行车速度:40km/h隧道主洞建筑限界净宽:++2X++二隧道建筑限界净高:路基宽:2.遵循规范《公路工程技术标准》JTG B01-2003《公路隧道设计规范》JTG D70-2004《公路隧道通风照明设计规范》《公路工程抗震设计规范》JTJ004-89《锚杆喷射混凝土支护技术规范》GB50086-2001《地下丄程防水技术规范》GB50108-2001二、工程概况根据隧道需风量分析确定,本隧道釆用自然通风。
隧道内的供电照明负荷和应急照明按一级负荷考虑。
1、地形、地貌隧道区地貌属于丘陵低山地貌。
隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近S?(向,隧道走向与其基本平行。
在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。
隧道轴线通过路段地面标高222〜310m,相对高差约88m,隧道顶板上覆围岩最大卑度约。
地形坡度25〜55°左右。
山坡植被稀少,主要为灌木丛,坡面多出露基岩。
隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较卑,洞口轴线与地形等高线呈小角度相交。
黄泥界端洞口段地处S\向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。
2.圉岩分级根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。
根据计算结果,强风化片岩和花岗岩围岩分级均为V级。
3.水文地质根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。
根据钻孔内抽水试验可知:其地下水量〈d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。
根据《公路工程地质勘察规范》(JTJ064-98)附录D,隧道区地下水及地表水对混凝土结构均无腐蚀性。
隧道洞门图内容(精)
![隧道洞门图内容(精)](https://img.taocdn.com/s3/m/3061ba07227916888486d7d2.png)
THANK YOU
szm8@
工程识图与CAD
洞门图内容
主讲:孙再鸣
洞门图内容
表示隧道洞门各个部分的结构形状尺寸的图 样叫隧道洞门图。 我们一起阅读翼墙式隧道洞门图
洞门图内容-图样组成
正面图 平面图 剖面图 断面图 排水系统详图
1
正面图
正面图是沿着线路方 向对隧道洞门进行投射而 得到的投影。
2
平面图
平面图主要表达洞门 处各排水沟走向及连接情 况。
3
4
剖视图 断面图
1-1剖视图表明:端墙的厚度和倾斜度,端墙顶水沟的 断面形状和尺寸以及翼墙顶的坡度等。 2-2断面图和3-3断面图表明:翼墙的厚度及倾斜度, 翼墙顶排水沟的断面形状和尺寸等。
5
排水系统详图
排水系统详图主要表示各排水沟 的详细构造及做法,隧道内外水沟 的详细构造及做法,隧道内外水沟的 连接等。
隧道翼墙式洞门结构设计计算全解(详细)
![隧道翼墙式洞门结构设计计算全解(详细)](https://img.taocdn.com/s3/m/398c6b63240c844768eaee9f.png)
隧道翼墙式洞门结构设计计算全解4.1洞门设计步骤《规范》关于洞口的一般规定1.洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定.2.隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定.3.洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排水系统综合考虑布置.4.洞门设计应与自然环境相协调.4.1.1确定洞门位置洞口位置的确定应符合下列要求1.洞口的边坡及仰坡必须保证稳定.2.洞口位置应设于山坡稳定、地质条件较好处.3.位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞.4.跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定.5.漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定.6.洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施.7.洞门宜与隧道轴线正交;地质条件较好; 做好防护;设置明洞.洞口地质条件洞口入口端位于山体斜坡下部,斜坡自然坡度约45°左右,隧道轴线与地形等高线在右洞为大角度相交,位置较好,围岩上部为覆盖层为碎石质,厚度为0.6米-1.7米,下部为砂质板岩,全风化岩石厚为0-2.0米强风化岩厚为0-6.4米,砂质板岩与变质砂岩中风化厚度为8.1-15.8米;为软岩,薄层状结构,岩体破碎,软岩互层,主要结构面为层面及节理裂隙面,结构面的不利组合对围岩有影响;地下水以基岩裂隙水为主,围岩为弱透水,可产生点滴状出水,局部可产生线状出水;围岩稳定性差.4.1.2确定洞门类型洞门类型及适用条件洞门的形式很多,从构造形式、建筑材料以及相对位置等可以划分许多类型.目前,我国公路隧道的洞门形式有: 端墙式洞门翼墙式洞门环框式洞门台阶式洞门柱式洞门遮光棚式洞门等.端墙式洞门适用于岩质稳定的Ⅲ级以上围岩和地形开阔的地区,是最常使用的洞门型式翼墙式洞门适用于地质较差的Ⅳ级以下围岩,以及需要开挖路堑的地方.翼墙式洞门由端墙及翼墙组成.翼墙是为了增加端墙的稳定性,同时对路堑边坡也起支撑作用.其顶面一般均设置水沟,将端墙背面排水沟汇集的地表水排至路堑边沟内环框式洞门当洞口岩层坚硬、整体性好(I级围岩)、节理不发育,路堑开挖后仰坡极为稳定,并且没有较大的排水要求时采用台阶式洞门当洞门傍山侧坡地区,洞门一侧边坡较高时,为减小仰坡高度及外露长度 ,可以将端墙顶部改为逐步升级的台阶形式,以适应地形的特点,减少仰坡土石方开挖量.遮光棚式洞门当洞外需要设置遮光棚时,其入口通常外伸很远.遮光构造物有开放式和封闭式之分,前者遮光板之间是透空的 ,后者则用透光材料将前者透空部分封闭.但由于透光材料上面容易沾染尘垢油污,养护困难,所以很少使用后者.形状上又有喇叭式与棚式之分洞门形式的选择按分类,隧道右线属长隧道,基本服从于路线走向,路线与地形等高线基本正交,洞门按受力结构设计.洞门形式结合实际地形、地质情况选定.根据洞门所处地段的地形地貌及工程地质条件,遵从“早进洞,晚出洞”的设计原则,并考虑洞门的实用、经济、美观等因素,因此本隧道使用翼墙式洞门(带挡土墙),使用翼墙式洞门.4.1.3 洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:(1)洞门仰坡坡脚至洞门墙背的水平距离不宜小于 1.5米,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于 1.0米,洞门墙顶高出仰坡脚不小于0.5米.(2)洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定.(3)洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度 ,保证洞门的稳定.基底埋入土质地基的深度不小于 1.0米,嵌入岩石地基的深度不小于0.5米;基底标高应在最大冻结线以下不小于0.25米.基底埋置深度应大于墙边各种沟、槽基底的埋置深度 .(4)松软地基上的基础,可采取加固基础措施.洞门结构应满足抗震要求.4.1.4 验算满足条件采用挡墙式洞门时,洞门墙可视为挡土墙,按极限状态验算,并应验算绕墙趾倾覆及沿基底滑动的稳定性.验算时应符合表3.1和表3.2(《公路隧道设计规范》JTG-2004)的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定.表4.1 洞门设计计算参数表4.2 洞门墙主要验算规定4.2龙洞翼墙式洞门结构设计计算4.2.1计算参数计算参数如下:(1)边、仰坡坡度 1:1.25;(2)仰坡坡脚ε=39°,tanε=0.8,α=9°;(3)地层容重γ=18KN/米3;(4)地层计算摩擦角φ=45°;(5)基底摩擦系数0.4;(6)基底控制应力【σ】=0.3米pa4.2.2建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为米u100,水泥砂浆的强度等级为米10.(2)容许压应力【σa】=2.2米pa,重度γt=22KN/ 米3.4.2.3洞门各部尺寸的拟定根据《公路隧道设计规范》(JTG-2004),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=13.35米;其中基底埋入地基的深度为1.59米,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度 1.8米,洞门翼墙与仰坡间的的水沟深度为0.5米,洞门墙顶高出仰坡坡脚1.05米,洞口仰坡坡脚至洞门墙背的水平距离为2.5米,墙厚2.48米,设计仰坡为1:1.25,具体见图纸.4.3洞门验算4.3.1洞门土压力计算根据《公路隧道设计规范》(JTG-2004),洞门土压力计算图示具体见图3.2.图3.2 洞门土压力计算简图最危险滑裂面与垂直面之间的夹角:tan w=式中:ϕ——围岩计算摩擦角;ε——洞门后仰坡坡脚;α——洞门墙面倾角 代入数值可得:tan 0.679934.21oωω===根据《公路隧道设计规范》(JTG —2004),土压力为;2001[()]2E H h h h b γλξ'=+-(tan tan )(1tan tan )tan()(1tan tan )ωααελωϕωε--=+-由三角关系得:tan tan a h ωα'=- tan 1tan tan o a h εαε=-式中: E ——土压力(KN);γ——地层重度 (KN/米3)λ——侧压力系数; ω——墙背土体破裂角;b ——洞门墙计算条带宽度 (米),取b=1.0米; ξ——土压力计算模式不确定系数,可取ξ=0.6. 把数据代入各式,得:(tan 34.21tan 9)(1tan 9tan 39)0.1928tan(34.2139)(1tan 34.21tan 39)o o o o o o o o λ--==+-2.5' 4.7937tan 34.21tan 9o oh ==-米2.5tan 39 2.32231tan 9tan 39oo o oh m ⨯==-洞门土压力E :221[(')]21180.1928[13.35 2.3223(4.7937 2.3223)] 1.00.62191.4783o o E H h h h b KNγλξ=+-=⨯⨯⨯+⨯-⨯⨯=kN E E x 7604.178)921.34cos(4783.191)cos(=︒-︒⨯=-⋅=αδkN E E y 6197.68)921.34sin(4783.191)sin(=︒-︒⨯=-⋅=αδ式中:δ——墙背摩擦角 22453033O o δϕ==⨯=4.3.2抗倾覆验算翼墙计算图示如图3.3所示,挡土墙在荷载作用下应绕O 点产生倾覆时应满足下式:1.6y M k M=≥∑∑式中: K 0——倾覆稳定系数,0 1.6k ≥;y M ∑——全部垂直力对墙趾O 点的 稳定力矩; 0M ∑——全部水平力对墙趾O 点的 稳定力矩;图3.3 墙身计算简图由图3.3可知:墙身重量G :13.35 2.4818 1.0595.9440G KN =⨯⨯⨯=E x 对墙趾的 力臂:13.354.4533x H Z m ===E y对墙趾的 力臂:(tan )/3 2.4813.35tan9/3 3.1848o y Z B H m α=+=+⨯=G 对墙趾的 力臂:tan 2.4813.35tan 9 2.297222oG B H Z m α++⨯=== 595.940 2.297268.6197 3.18481587.5529y G y y M G Z E Z KN M=⨯+⨯=⨯+⨯=⋅∑178.7604 4.45795.4837x x ME Z KN M=⨯=⨯=⋅∑代入上式得:001587.48371.9957 1.6795.4837yM K M===>∑∑故抗倾覆稳定性满足要求.4.3.3抗滑动验算对于水平基底,按如下公式验算滑动稳定性: 1.3c N f K E⋅=≥∑∑式中: K c ——滑动稳定系数N ∑——作用于基底上的 垂直力之和; E ∑——墙后主动土压力之和,取E ∑=E x ; f ——基底摩擦系数,取f=0.4 由图3.3得: ()(595.944068.6197)1.4870 1.3178.7604y c xG E K E ++===>故抗滑稳定性满足要求.4.3.4基底合力偏心矩验算设作用于基底的 合力法向分力为N ∑,其对墙趾的 力臂为Z N ,合力偏心矩为e,则:1587.5529795.48371.1919595.944068.6197yG y y x xn yM MG Z E Z E Z Z G E Nm-⨯+⨯-⨯==+-==+∑∑∑2.48 1.19190.0481022n B e Z =-=-=> 合力在中心线的 右侧.0.04810.41336Be =<=计算结果满足要求. max 299.1767min 236.76176(595.944068.6197)60.0409(1)(1)2.48 2.48KpaKpa Ne BB σ+⨯=±=⨯±=∑max 299.1767[]0.3Kpa Mpa σσ=<=,计算结果满足要求.4.3.5墙身截面偏心矩及强度 验算 (1)墙身截面偏心矩e0.3Me B N=< 式中: 米——计算截面以上各力对截面形心力矩的 代数之后; N ——作用于截面以上垂直力之后.13.3513.35 2.48()178.7604()68.6197232232312.6534x y H H B M E E KN m=⋅--⋅=⨯--⨯=⋅595.944068.6197664.5637y N G E KN =+=+=将数据代入墙身偏心矩E 的 公式,可得:312.65340.47050.30.744664.5637M e B N ===<=,计算结果满足要求.(2)应力σ6(1)Ne BBσ=+∑6664.563760.4705(1)(1)572.9771[] 2.22.48 2.48a Ne kpa Mpa BB σσ⨯=+=±=<=∑ 满足要求.通过以上的 验算,说明龙洞端翼墙式洞门的 尺寸合理.详图见设计图纸.排水设计隧道排水应根据防排堵截结合,因地制宜,综合治理的 原则,采用切实可靠地设计和施工措施,达到防水可靠排水畅通经济合理的 目的 . 1.在洞口仰坡5米以外,设置天沟,并加以铺砌.2.对洞顶地表的 陷穴,深穴加以回填,对裂缝进行堵塞.3.对洞顶天然沟槽加以整治,是山洪宣泄畅通.4.在地表水上游设截水导流沟.5.在仰坡到洞顶处2米左右设计排水沟.6.边坡设计排水沟.纵段剖面纵剖面图平面图纵剖面图排水平面图排水纵剖面图。
12 山岭隧道洞门结构及洞口景观设计
![12 山岭隧道洞门结构及洞口景观设计](https://img.taocdn.com/s3/m/d76c408204a1b0717fd5ddf9.png)
根据材料力学,可计算洞 门墙任一截面的弯矩:
M(z) q1z3 6l
M(z) q1z3 q2(z a)3
6l
6l
(0 z a)
(a z l)
山岭隧道
34
洞门墙任一表面的剪力为:
Q(z) q1z 2 2l
Q(z) q1z 2 q2 (z a)2
喇叭口型排水设计
正切直线渐变Ⅰ型喇叭口 正切直线渐变Ⅱ型喇叭口
正切曲线渐变Ⅰ型喇叭口
山岭隧道
正切曲线渐变Ⅱ型喇叭口
9
除了洞口结构的基本造型和防排水设计外,洞口的铭牌 设置原则也应该引起重视。隧道的铭牌应根据洞口的尺寸来 确定铭牌尺寸的大小,以达到铭牌与洞口的和谐统一,铭牌 安放的位置可以在隧道洞口坡面上,也可以作成碑或牌或洞 口小品立于洞口的一侧,也可以因地致宜刻于洞口附近的岩 壁上或直接镶嵌于洞口衬砌上。
Kn(i) =K(le(i) +le(i+1) )B Kt(i) =Kn(i)/2(1+u) fN
山岭隧道
KKx
=EI t =EA
t
41
景观设计
景观设计,第一条原则就是要尊重自然,尊 重天地,尊重自然的山,自然的地形地貌、自然 的水。此外,景观设计还应遵守以下基本原则:
1.适用性 2.经济性 3.美观性
相对于传统洞门,这节课重点讲述新型洞门,新 型洞门应本着简洁大方,美观实用,保护环境的原则, 以不刷坡或少刷坡施作的突出山体的切削式洞门为主 要建筑形式。
山岭隧道
4
根据切削方式的不同及一些功能上的要求,铁 路隧道洞口结构的基本类型包括:直切,正切,倒 切,弧形挡墙几种,又根据洞口与山体的相交关系 分为正交和斜交两种情况
隧道洞门结构CAD平面图
![隧道洞门结构CAD平面图](https://img.taocdn.com/s3/m/e9cbeecd03d276a20029bd64783e0912a3167c15.png)
洞门设计
![洞门设计](https://img.taocdn.com/s3/m/3ae8158983d049649a665803.png)
洞口位置的确定应符合下列要求
1 洞口的边坡及仰坡必须保证稳定。 2 洞口位置应设于山坡稳定、地质条件较好处。 3 位于悬崖陡壁下的洞口,不宜切削原山坡;应避 免在不稳定的悬崖陡壁下进洞。 4 跨沟或沿沟进洞时,应考虑水文情况,结合防排 水工程,充分比选后确定。 5 漫坡地段的洞口位置,应结合洞外路堑地质、弃 渣、排水及施工等因素综合分析确定。 6 洞口设计应考虑与附近的地面建筑及地下埋设物 的相互影响,必要时采取防范措施。
端墙式洞门
适用于岩质 稳定的Ⅲ级 以上围岩和 地形开阔的 地区,是最 常使用的洞 门型式
翼墙式洞门
适用于地质较差 的Ⅳ级以下围岩, 以及需要开挖路 堑的地方。翼墙 式洞门由端墙及 翼墙组成。翼墙 是为了增加端墙 的稳定性,同时 对路堑边坡也起 支撑作用。其顶 面一般均设置水 沟,将端墙背面 排水沟汇集的地 表水排至路堑边 沟内
洞门构造
洞门构造
1、确定洞门各部位的尺寸
2、确定洞门采用的材料等级 3、确定洞门基础埋深 4、确定洞门计算参数
隧道洞门构造
⑴
洞门仰坡坡脚至洞门墙背后的水平距离不 小于1.5m,水沟沟底与衬砌拱顶外缘的高度 不应小于1.0 m,洞门墙顶应高出仰坡脚0.5m 以上。 ⑵ 洞门墙基基底埋入土质地基的深度不应 小于1.0m,嵌入岩石地基的深度不应小于 0.5m ,墙基底埋设的深度应大于墙边各种沟、 槽基础底埋设的深度; ⑶ 松软地基上的基础,当地基强度不足时, 可采用扩大,加固基础等措施。
1 E [ H 2 h0 (h h0 )]b 2
土压力
(tan tan )(1 tan tan ) tan( )(1 tan tan )
洞门与洞口构造物设计
![洞门与洞口构造物设计](https://img.taocdn.com/s3/m/b8a9ea2233d4b14e84246814.png)
第9章洞门与洞口构造物设计9.1 一般规定9丄1洞门的设计原则(1)隧道洞口应设置洞门。
其结构形式除有端墙、翼墙、柱式三种基本形式外, 还可根据洞门所在处的地形、自然环境和人文环境,设计成台阶式、城墙式、削竹式、喇叭口式、单圆弧形和多圆弧形等多种形式。
(2)当在洞口轴线与地形等高线斜交,且围岩级别在III级及以上时,可采用为斜交式洞门。
斜交式洞门一般采用端墙式结构,其端墙与洞口轴线的交角不宜小于60。
软弱地层中不宜采用斜交洞门。
(3)位于城镇、风景区、自然保护区等附近的洞门,应考虑环境协调和建筑美观的要求。
(4)桥隧相连的洞口,应保证桥台与洞口段施工安全及边坡的永久稳定,避免桥台施工对隧道洞口产生的不良影响;必要时可将桥台设置于隧道内。
图9-1-1仰坡与洞门构造距离示意图(尺寸单位:m)9.1.2 一般规定1 •洞门的构造要求(1)如图9-1-1所示,洞口仰坡坡脚至洞门墙背的水平距离不宜小于1. 5m; 洞门与仰坡之间的排水沟底部至衬砌外缘的高度应不小于1. 0m;洞门墙顶高出仰坡脚应不小于0. 5mo(2)洞门与仰坡之间的排水沟宜设置于洞门墙体上。
如设置于回填土上,其填土应夯填密实或用低强度等级的垢工回填,并在沟底设置防渗层。
设置于回填土上排水沟,由于回填土窑实度的影响,在营运期间会经常发生排水沟开裂病害,地表水下渗至洞门墙背,严重影响洞门安全。
因此,建议在回填土上不布设排水沟。
(3)洞门墙应保证结构物的强度、稳定性和抗震性。
(4)根据实际需要,洞门墙可设置伸缩缝、沉降缝、泄水孔;伸缩缝的宽度一般为2cm,缝内沿墙的内、外、顶三边宜填塞沥青麻絮,其填塞深度不小于20cm。
(5)在洞门墙背与回填土体之间,宜设置砂砾透水层或纵横透水管。
为有效地减少洞门墙墙背水压力,应在墙身设置泄水孔,泄水孔底部应设隔水层,以免积水渗入墙基底部。
一般泄水孔布置在墙身下部离路面约30cm高处,间隔2m 左右,孔径一般可取410cm。
隧道洞门设计
![隧道洞门设计](https://img.taocdn.com/s3/m/1573ef0e3d1ec5da50e2524de518964bcf84d283.png)
环框式洞门
❖ 当洞口岩层坚硬、 整体性好(I级围 岩)、节理不发 育,路堑开挖后 仰坡极为稳定, 并且没有较大的 排水要求时采用
削竹式洞门
❖ 当洞口为松软的堆积层时,通常应避免大刷 坡、边坡,一般宜采用接长明洞,恢复原地 形地貌的办法。此时,可采用削竹式洞口。
❖ 洞口坡面较平缓,一般应与自然地形坡度相 一致。
❖ 3 洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及 截水沟,并和路基排水系统综合考虑布置。
❖ 4 洞门设计应与自然环境相协调。
隧道洞口位置一般有以下几种形式
❖ 1) 坡面正交型 ❖ 2) 坡面斜交型 ❖ 3) 坡面平行型 ❖ 4) 山脊突出部进人型。 ❖ 5) 沟谷部进入型
图7-1 隧道洞口轴线与地形的关系 1-坡面正交型;2-坡面斜交型;3-坡面平行型;
❖ 端墙式洞门 ❖ 翼墙式洞门 ❖ 环框式洞门 ❖ 台阶式洞门 ❖ 柱式洞门 ❖ 削竹式洞门 ❖ 遮光棚式洞门等。
端墙式洞门
❖ 适用于岩质 稳定的Ⅲ级 以上围岩和 地形开阔的 地区,是最 常使用的洞 门型式
翼墙式洞门
❖ 适用于地质较差 的Ⅳ级以下围岩, 以及需要开挖路 堑的地方。翼墙 式洞门由端墙及 翼墙组成。翼墙 是为了增加端墙 的稳定性,同时 对路堑边坡也起 支撑作用。其顶 面一般均设置水 沟,将端墙背面 排水沟汇集的地 表水排至路堑边 沟内
tan
tan(1 tan2) tan(1 tan tan)
❖ 土压力
E
1 [H
2
2
h0 (h
h0 )]b
(tan tan)(1 tan tan ) tan( )(1 tan tan )
h
tan tan
❖ 抗倾覆验算 ❖ 抗滑动验算 ❖ 墙身偏心距验算 ❖ 墙身强度验算
(仅供参考)第6章--山岭隧道洞门结构及洞口景观设计
![(仅供参考)第6章--山岭隧道洞门结构及洞口景观设计](https://img.taocdn.com/s3/m/1f2644eb0912a21615792912.png)
第六章 山岭隧道洞门结构及洞口景观设计
第六章 山岭隧道洞门结构及洞口景观设计
第一节 概 述
隧道洞门作为整个隧道的外露部分,应该起到整条隧道的突出标志的作用,除了发挥其结构功 能外,还应该对周围的总体环境有一种符号和象征的意义。洞门型式的特点和美观影响人们对整个 隧道工程的评价。我国传统铁路隧道洞门根据地形特点分为基本型、变化型、和特殊型三大类十六 种型式,但始终脱离不了端墙、柱式的形式。传统洞门设计常常从力学和安全角度出发,照搬标准 图模式,适应地形特点变化作些修改,洞门结构型式上创新较少;而且墙式洞门施工过程中,开挖 进洞均需不同程度地对隧道洞口附近的边坡和仰坡进行刷坡处理。过多的刷坡破坏了原有植被及地 貌,有时甚至危及洞口附近山体的稳定。施工期间大面积的刷坡改变了洞口周边的生态环境,远远 不能满足当前生态和环境保护等方面的需要。因此传统的铁路隧道洞门型式和施工方法在一定程度 上是需要革新和补充完善的。随着社会的发展,人们对洞门建筑的要求已不仅仅停留在结构的功能 上,而对美学和环境的要求越来越重视,力求达到建筑学、园林学、美学理论的完美统一。
第 6 页 共 29 页
第六章 山岭隧道洞门结构及洞口景观设计
经建立的洞口建筑设计数据库,大约有近 200 多个样本。可以作为设计中的重要参考依据。 该数据库包括 1 个表,8 个表单,1 个报表,9 个查询和一些宏命令。 数据库结构如图 6-2-10 所示: 表的设计:表主要是隧道洞口信息表,表的结构见图 6-2-11。 数据库中隧道洞口信息表是其的主要的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道洞门设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】**隧道端洞门设计一,技术标准及执行规范1.技术标准设计行车速度:40km/h隧道主洞建筑限界净宽:++2×++=隧道建筑限界净高:路基宽:2.遵循规范《公路工程技术标准》JTG B01-2003《公路隧道设计规范》JTG D70-2004《公路隧道通风照明设计规范》《公路工程抗震设计规范》JTJ004-89《锚杆喷射混凝土支护技术规范》GB50086-2001《地下工程防水技术规范》GB50108-2001二、工程概况根据隧道需风量分析确定,本隧道采用自然通风。
隧道内的供电照明负荷和应急照明按一级负荷考虑。
1、地形、地貌隧道区地貌属于丘陵低山地貌。
隧道地处山体的左侧山坡地段,地形起伏较大,山高坡陡,山体走向近SN向,隧道走向与其基本平行。
在隧道的进出口地段发育路线走向呈小角度相交的小冲沟,呈“U”字型沟谷。
隧道轴线通过路段地面标高222~310m,相对高差约88m,隧道顶板上覆围岩最大厚度约。
地形坡度25~55°左右。
山坡植被稀少,主要为灌木丛,坡面多出露基岩。
隧道通城端洞口段地处冲沟附近的G106底下,地形较平缓,覆盖层较厚,洞口轴线与地形等高线呈小角度相交。
黄泥界端洞口段地处SN向冲沟内的G106底下,地形较缓,基岩裸露,洞口轴线与地形等高线呈小角度相交。
2.围岩分级根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。
根据计算结果,强风化片岩和花岗岩围岩分级均为Ⅴ级。
3.水文地质根据调查,隧道区的山体上未发现地表水体,亦未发现地下水出露点。
根据钻孔内抽水试验可知:其地下水量<d,但雨季受降雨影响,地表水将沿陡裂隙下渗,富集在F断层内,严重影响洞室的稳定,施工时应特别注意。
根据《公路工程地质勘察规范》(JTJ064-98)附录D,隧道区地下水及地表水对混凝土结构均无腐蚀性。
详细分析结果见工程地质报告。
三、洞门设计步骤《公路隧道设计规范》关于洞口的一般规定:1、洞口位置应根据地形、地质条件,同时结合环境保护、洞外有关工程及施工条件、营运要求,通过经济、技术比较确定。
2、隧道应遵循“早进洞、晚出洞”的原则,不得大挖大刷,确保边坡及仰坡的稳定。
3、洞口边坡、仰坡顶面及其周围,应根据情况设置排水沟及截水沟,并和路基排水系统综合考虑布置。
4、洞门设计应与自然环境相协调。
1确定洞门位置洞口位置的确定应符合下列要求:1、洞口的边坡及仰坡必须保证稳定。
2、洞口位置应设于山坡稳定、地质条件较好处。
3、位于悬崖陡壁下的洞口,不宜切削原山坡;应避免在不稳定的悬崖陡壁下进洞。
4、跨沟或沿沟进洞时,应考虑水文情况,结合防排水工程,充分比选后确定。
5、漫坡地段的洞口位置,应结合洞外路堑地质、弃渣、排水及施工等因素综合分析确定。
6、洞口设计应考虑与附近的地面建筑及地下埋设物的相互影响,必要时采取防范措施。
7、洞门宜与隧道轴线正交;地质条件较好;做好防护;设置明洞洞口地质条件根据野外地质调查结合岩块室内岩石试验成果可知,该隧道片岩和花岗岩均为强风化,饱和抗压极限强度Rb小于30Mpa,为软质岩,岩石抗风化能力弱。
洞身发育F次生小断层,受其影响岩石中节理裂隙发育,岩石特别破碎,围岩受地质构造影响程度较重~严重。
隧道地段节理裂隙较发育,2组节理裂隙平面上呈棱行,较规则,与区域地质构造方向一致,多数间距1~2m,多为微张~张开型,无充填,岩体被切割呈块状、片状。
隧道净空与限界的基本概念隧道净空:隧道衬砌内轮廓线所包围的空间,根据“隧道建筑限界”确定的。
隧道建筑限界:为了保证隧道内各种交通的正常运行与安全,而规定在一定宽度和高度范围内不得有任何障碍物的空间范围。
图公路隧道建筑限界(单位:cm)H-建筑限界高度;W-行车道宽度;LL -左侧向宽度;LR-右侧向宽度;C-余宽;J-检修道宽度;R-人行道宽度;h-检修道或人行道的高度;EL-建筑限界左顶角宽度,E L =LL;ER-建筑限界右顶角宽度,当LR≤1m时,ER=LR, 当LR>1m时,ER=1m建筑限界高度,高速公路、一级公路、二级公路取;三、四级公路取。
当设置检修道或人行道时,不设余宽;当不设置检修道或人行道时,应设不小于25cm的余宽。
检修道和人行道的设计高速公路和一级公路隧道内应设置检修道。
其它等级公路隧道,应根据隧道所在地区的行人密度、隧道长度、交通量及交通安全等因素确定人行道的设置。
检修道或人行道宜双侧设置;检修道或人行道的宽度按表规定选取;检修道或人行道的高度可按20—80cm取值,并综合考虑以下因素:1、检修人员步行时的安全;2、紧急情况时,驾乘人员拿取消防设备方便;3、满足其下放置电缆、给水管等的空间尺寸要求。
表公路隧道建筑限界横断面组成最小宽度(m)注:①三车道隧道除增加车道数外,其它宽度同表;增加车道的宽度不得小于。
②连拱隧道的左侧可不设检修道或人行道,但应设50cm(120km/h与100km/h时)或25cm(80km/h与60km/h时)的余宽。
③设计速度120km/h时,两侧检修道宽度均不宜小于;设计速度100km/h时,右侧检修道宽度不宜小于。
隧道路面横坡,当隧道为单向交通时,应取单面坡;当隧道为双向交通时,可取双面坡。
坡度应根据隧道长度,平、纵线形等因素综合分析确定,采用%。
当路面采用单面坡时,建筑限界底边线与路面重合;当采用双面坡时,建筑限界底边线应水平置于路面最高处。
隧道内轮廓设计除应符合隧道建筑限界的规定外,还应满足洞内路面、排水设施、装饰的需要,并为通风、照明、消防、监控、营运管理等设施提供安装空间,同时考虑围岩变形、施工方法影响的预留富裕量,使确定的断面形式及尺寸符合安全、经济、合理的原则。
隧道内路侧边沟应结合检修道、侧向宽度、余宽等布置,其宽度应小于侧向宽度,并布置于车道两侧。
确定洞门类型洞门是用以保护洞口、排放流水并加以建筑装饰的支挡结构物。
它联系衬砌和路堑,是整个隧道结构的主要组成部分,也是隧道进出口的标志。
对于铁路隧道,隧道的场地就是其进出口洞门墙外表面与线路内轨顶面标高线交点之间的距离。
此外,洞门是隧道的咽喉,也是隧道的外露部分,在保证安全的同时,还应根据实际情况,选择适合的洞门形式,并应适当进行洞门美化和环境美化。
?洞门的作用有以下几方面:?一、减小洞口土石方开挖量二、稳定边仰坡?三、引离地面流水?装饰洞口?根据洞口地形、地质及衬砌类型等不同的情况和要求,洞门结构主要有以下两大类型:?一、隧道门-隧道门指修建在不设明洞的隧道洞口的支挡结构物,包括环框时洞门、短墙式洞门、翼墙式洞门、柱式洞门、台阶式洞门、斜洞门和耳墙式洞门等。
?二、明洞门-明洞门主要配合明洞结构类型设计,明洞有拱形明洞和棚洞之分,相应明洞门也分拱形明洞门和棚式明洞门两大类。
棚式明洞门并不单独设置,通常在棚洞洞口端横向顶梁上加设端墙,以拦截落石,避免其坠入线路影响行车安全。
洞门形式的选择按分类,姜源岭隧道K33+975端洞门,基本服从于路线走向,路线与地形等高线基本正交,洞门按受力结构设计。
洞门形式结合实际地形、地质情况选定。
根据洞门所处地段的地形地貌及工程地质条件,遵从“早进洞,晚出洞”的设计原则,并考虑洞门的实用、经济、美观等因素,因此本隧道洞口采用端墙式洞门,洞门简图见图。
端墙式洞门侧面洞门构造要求按《公路隧道设计规范》(JTG-2004),洞门构造要求为:1、洞门仰坡坡脚至洞门墙背的水平距离不宜小于,洞门端墙与仰坡之间水沟的沟底至衬砌拱顶外缘的高度不小于,洞门墙顶高出仰坡脚不小于。
2、洞门墙应根据实际需要设置伸缩缝、沉降缝和泄水孔;洞门墙的厚度可按计算或结合其他工程类比确定。
3、洞门墙基础必须置于稳固地基上,应视地基及地形条件,埋置足够深度,保证洞门的稳定。
基底埋入土质地基的深度不小于,嵌入岩石地基的深度不小于;基底标高应在最大冻结线以下不小于。
基底埋置深度应大于墙边各种沟、槽基底的埋置深度。
2.洞门结构设计计算、计算假设及相关规定洞门的端墙和翼墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。
本端墙式洞门按计算挡土墙的方法分别核算各不同墙高截面的稳定性和强度,以此决定端墙的厚度和尺寸。
为简化洞门墙的计算方法和便于施工,只检算端墙最大受力部位的稳定性和强度,据此确定整个端墙的厚度和尺寸,这样虽增加了一些圬工量,但从施工观点看.却是合理的。
由于洞门端墙紧靠衬砌,又嵌入边坡内,故其受力条件较挡土墙为好。
此有利因素可作为安全储备.在计算中是不予考虑的。
洞门翼墙与端墙一样,也可采用分条方法取条带计算。
由于翼墙与端墙是整体作用的;故在计算端墙时,应考虑翼墙对端墙的支撑作用。
计算时先检算翼墙本身的稳定性和强度,然后再检算端墙最大受力部位的强度及其与翼墙一起的滑动稳定。
在计算翼墙时,翼墙与端墙连结面的抗剪作用是不考虑的。
按挡土墙结构计算洞门墙时,设计是按极限状态验算其强度,并验算绕墙趾倾覆及沿基底滑动的稳定性。
验算时依据下表的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。
洞门验算表如表所示:表洞门墙的主要检算规定表洞门设计计算参数数按现场试验资料采用。
缺乏的试验资料,参照表选用。
表洞门设计计算参数数表计算参数计算参数如下:计算参数如下:?(1)边、仰坡坡度1:1;(2)仰坡坡脚ε=°,tanε=2,α=6°;(3)地层容重γ=20kN/m3;?(4)地层计算摩擦角φ=70°;?(5)基底摩擦系数;?(6)基底控制应力[ζ]=建筑材料的容重和容许应力(1)墙端的材料为水泥砂浆片石砌体,片石的强度等级为Mu100,水泥砂浆的强度等级为M10。
?(2)容许压应力[ζa]=,重度γt=22KN/?m3。
洞门各部尺寸的拟定根据《公路隧道设计规范》(JTJ026-90),结合洞门所处地段的工程地质条件,拟定洞门翼墙的高度:H=12m;其中基底埋入地基的深度为1,0m,洞门翼墙与仰坡之间的水沟的沟底至衬砌拱顶外缘的高度,洞门翼墙与仰坡间的的水沟深度为,洞门墙顶高出仰坡坡脚,洞口仰坡坡脚至洞门墙背的水平距离为,墙厚,设计仰坡为1:1最危险滑裂面与垂直面之间的夹角:tan w=()式中:ϕ——围岩计算摩擦角;ε——洞门后仰坡坡脚;α——洞门墙面倾角将数值代入式(4-1)可得:=故:ω=;。