反义核苷酸技术

合集下载

反义寡核苷酸aso的递送系统_解释说明

反义寡核苷酸aso的递送系统_解释说明

反义寡核苷酸aso的递送系统解释说明1. 引言1.1 概述反义寡核苷酸(antisense oligonucleotide, ASO) 是一种具有广泛应用前景的基因治疗工具,它通过与特定mRNA分子序列互补结合,从而抑制或调控目标基因的表达。

ASO递送系统是将ASO有效地运送到靶位点的关键问题,它包括了手性寡核苷酸的设计、载体选择和优化策略,以及递送机制研究等方面。

1.2 文章结构本文将重点讨论反义寡核苷酸ASO的递送系统。

首先介绍反义寡核苷酸ASO 的概念和作用机制,明确其在基因治疗领域的重要性和应用前景。

接着,详细讨论目前存在的问题和挑战,如ASO递送效率低、稳定性差等。

然后,我们将介绍ASO递送系统的设计与原理,包括手性寡核苷酸设计原理、载体选择和优化策略以及递送机制研究进展。

接下来,在第四部分中探讨了ASO递送系统在遗传病治疗和肿瘤治疗中的应用前景,并探索了其他领域中的可能应用方向。

最后,通过总结和展望,提出未来关于ASO递送系统的研究方向。

1.3 目的本文的目的是全面介绍反义寡核苷酸ASO的递送系统。

通过对手性寡核苷酸设计原理、载体选择和优化策略以及递送机制研究进展的深入探讨,旨在提供关于ASO递送系统设计与优化的重要参考。

此外,本文还将预测ASO递送系统在遗传病治疗、肿瘤治疗以及其他领域中可能的应用前景,为相关领域的科学家和医生提供指导和启示。

最后,我们希望通过文章的撰写能够推动反义寡核苷酸ASO 递送系统领域的发展,并促进其在基因治疗中的应用成果。

2. 反义寡核苷酸ASO的递送系统2.1 反义寡核苷酸ASO简介反义寡核苷酸(Antisense oligonucleotide,ASO)是一种能够通过与靶标RNA 特异性杂交而调控基因表达的短链核酸分子。

ASO具有特异性、可调节性和高度选择性的特点,广泛应用于基因治疗、药物开发和生物学研究等领域。

ASO 的作用机理主要包括:阻断mRNA转录、刺激mRNA降解以及干扰蛋白质合成等。

反义寡核苷酸的药代动力学研究进展

反义寡核苷酸的药代动力学研究进展

[12] Mamiya K,Ieiro I ,Shimam oto J ,et al .The effects of ge 2netic polym orphisms of CY P2C9and CY P2C19on phenytoin metabolism in Japanese adult patients with epilepsy :studies in stereoselective hydroxylation and population pharmacoki 2netics[J ].Epilepsia ,1998,39(12):1317-1323.[13] K irchheiner J ,Brockm oller J ,Meineke I ,et al .Impact ofCY P2C9amino acid polym orphisms on glyburide kinetics and on the insulin and glucose response in healthy v olunteers[J ].Clin Pharmcol Ther ,2002,71(4);286-296.[14] Leger F ,Seronie 2Vivien S ,Makdessi J ,et al .Impact ofthe biochemical assay for serum creatinine measurement on the individual carboplatin dosing :a prospective study[J ].Eur J Cancer ,2002,38(1):52-56.[15] Frame B ,Miller R ,Lalonde R L.Evaluation of mixturem odeling with count data using NONME M[J ].J Pharma 2cokinet Pharmacodyn ,2003,30(3):167-184.反义寡核苷酸的药代动力学研究进展尚明美综述 刘秀文,汤仲明,陈惠鹏审校(军事医学科学院放射医学研究所,北京 100850)摘要:反义药物在经历了20年后,又迎来了一个蓬勃的发展阶段。

吗啉反义寡核苷酸在基因功能研究中的应用

吗啉反义寡核苷酸在基因功能研究中的应用

吗啉反义寡核苷酸在基因功能研究中的应用何萌萌;薛良义【摘要】吗啉反义寡核苷酸属于第三代反义寡核苷酸,主要通过阻断mRNA的剪接过程来抑制目的基因的功能.吗啉反义寡核苷酸技术现已广泛应用于发育过程中基因功能的研究;鉴于吗啉反义寡核苷酸能与病毒特异mRNA结合,形成的双链物可有效阻断病毒RNA的转录,从而抑制病毒的复制,所以该技术已应用于医学研究,如治疗病毒感染、癌症、肌营养不良症和早老综合症等疾病.主要阐述了吗啉反义寡核苷酸的结构特点、作用机制、与其它反义技术的比较,以及该技术的应用与展望.%Phosphorodiamidate morpholino oligomers are belong to the third generation of antisense oligonucleotides, and can inhibit the function of the target gene mainly by blocking mRNA splicing. Morpholino antisense oligonucleotide technology was widely used in the research of gene function during developmental process. The phosphorodiamidate morpholino oligomers and the specific viral mRNA can form the double-stranded material, which effectively block the transcription of viral RNA, and therefore inhibit the viral replication. So this technology is also used in the medical research such as treating viral infections, cancer, muscle nutrition dysplasia syndrome and Alzheimer disease. This article focused on the structure and functional mechanism of phosphorodiamidate morpholino oligomers, comparison with other antisense technologies, the applications and prospects of the technology.【期刊名称】《生物学杂志》【年(卷),期】2012(029)006【总页数】4页(P77-79,83)【关键词】吗啉反义寡核苷酸;基因功能;应用【作者】何萌萌;薛良义【作者单位】宁波大学海洋学院,宁波315211;宁波大学海洋学院,宁波315211【正文语种】中文【中图分类】Q524吗啉反义寡核苷酸(phosphorodiamidate morpholino oligomers,即PMO)因其核苷酸骨架上的吗啉环而得名,吗啉环取代了RNA中的核糖核苷酸环或者DNA中的脱氧核糖核苷酸环[1]。

基因功能研究方法

基因功能研究方法
22
3.2 反义RNA技术 反义RNA 技术是利用基因重组技术,构建人工表达载 体,使其离体或体内表达反义RNA ,反义RNA 能与靶mRN A形成较稳定的二聚体,从而抑制靶基因的表达。其作 用机理可能在DNA 复制、转录及翻译多水平上抑制靶 基因的表达。
23
3.3 核酶技术
核酶(Ribozyme) 技术是一类具催化活性的特殊RNA 分 子,通过碱基配对原则特异性灭活靶RNA 分子。可裂解 与其互补的mRNA及在DNA内插入DNA片段构成三链结构, 单个核酶分子可以结合多个mRNA 分子并使之在特定部 位断裂,而其本身具有较稳定的空间结构,不易受RNase 攻击,因而催化效率比反义RNA 高。常见的核酶有锤头 状、发夹状和斧头状三种,应用最多的是锤头状核酶。
5
芯片的制作
• 目前常用的基因芯片制作方法:

接触点样法、喷黑法、原位合成法。
• 接触点样法:是将样品直接点在基体上,其优点是仪器结 构简单、容易研制,是一种快速、经济、多功能的仪器, 可以在3.6cm2面积内点上10000个cDNA。不足之处是每个 样品都必须合成好、经过纯化、事先保存的。
6
• 喷黑法:是以定量供给的方式,通过压电晶体或其他推进 形式从很小的喷嘴内把生物样品喷射到玻璃载体上。同样 需要合成好的纯样品,包括cDNA、染色体DNA片段和抗体。 在1cm2面积上可喷射10000个点。
3
原理: 将成千上万条DNA片段(cDNA、表达序列标 签(expressed sequence tag ,EST) 或特异的寡核苷 酸片段) 按横行纵列方式有序点样在固相支持物上。 固相支持物为硝基纤维膜或尼龙膜时称为微阵列。固 相支持物改为指甲盖大小的玻片或硅片时所形成的微 阵列就称为DNA芯片。

ETR反义寡聚核苷酸抑制血管SMC增(殖及内膜增生

ETR反义寡聚核苷酸抑制血管SMC增(殖及内膜增生

钱济先博士后研究I作报告旺-actmCPMDMEMET参。

弱ETBF.1273H—TdRMTTNBSOD0DNSMC符号表平滑肌特异肌动蛋白每分闪烁计数Dulbecco最低必需培养液内皮素I型内皮素受体Ⅱ型内皮素受体多聚凝胶3氢脱氧腾苷噻唑蓝比色试验小牛血清光密度,OligoDNA计量单位10D260=33“g反义寡聚核苷酸平滑肌细胞。

钱济先博士后研究工作报告文献回顾~血管内膜增生和SMC增殖的反义治疗摘要:反义技术在血管sMC增殖和内膜增生的基因活疗中占有重要的地位,目前人们对反义靶基因序列、载体系统和生物学效应方面进行了深入研究,可望在血管基因治疗领域内取得一定的突破,但对反义载体的可控性和反义药物的安全性等问题尚需作进一步研究。

关键词;反义核酸,血管,SMC增殖自体静脉移植和经皮血管腔内成形术已广泛应用于血管损伤及血管疾病的血流重建,技术方法成熟,早期通畅率在95%以上,但移楦静脉术后常发生狭窄,晚期通畅率有逐年卜J降之势;血管腔内成形术后再狭窄率达30%以上,严重影响治疗效果。

血管狭窄和再狭窄的根本原因是内膜过度增生,增生的细胞学基础主要是平滑舰细胞(SMC)由中膜向内膜移行并过度增殖。

目前,人们运用介入和药物治疗的方法取得一些效果,但结果仍不理想,在这种情况下,反义技术应运而生。

一、反义技术的概念和概况反义是相对于结台的靶基因序列正义链而言的,根据这一原则,由人工台成的寡核苷酸就称为反义寡核苷酸,通过与互补核酸氢键的特异结合,实现核酸序列的特异识别。

人体基因约有3×109碱基对,从统计学意义上讲,一条17个碱基的寡核苷酸序列只在人体基因中出现一次,因此这种长度的反义寡核苷酸具有极高的特异性。

如果靶基因的核酸序列已知,就可根据碱基配对原理写出反义寡核苷酸的化学结构,进行设计台成,再通过反义技术实现对靶基因的控制。

所谓反义技术就是将反义寡核苷酸经一定途径导入细胞,与特定的互补基因相结台,抑制该基因的复制、转录和翻译.使其表达产物台成释放减少。

ionis配体偶联反义(lica)技术的原理

ionis配体偶联反义(lica)技术的原理

ionis配体偶联反义(lica)技术的原理IONIS配体偶联反义(LICA)技术是一种创新的药物研发方法,旨在提高反义寡核苷酸(ASO)的靶向性和疗效。

LICA技术的核心原理在于将特定的配体(如GalNAc)与反义寡核苷酸(ASO)偶联,从而实现针对特定组织和细胞的精准递送。

在LICA技术中,配体被选择性地与ASO结合,形成配体-ASO复合物。

这种复合物能够识别并结合到目标细胞表面的特异性受体上,进而通过细胞内吞作用进入细胞内部。

一旦进入细胞,ASO就能够发挥其反义作用,通过碱基配对原则与特定的mRNA结合,进而调控基因表达或诱导mRNA降解,从而达到治疗疾病的目的。

LICA技术的优势在于其能够提高ASO的靶向性和疗效,同时降低药物剂量和副作用。

通过选择适当的配体,LICA技术可以实现针对特定组织和细胞的精准递送,从而提高药物在目标部位的浓度,减少在非目标部位的分布。

此外,LICA技术还可以延长ASO在体内的半衰期,从而提高其疗效持续时间。

LICA技术目前仍处于不断发展和完善阶段,其应用范围和疗效仍需进一步研究和验证。

同时,LICA技术也面临着一些挑战,如配体的选择、ASO的稳定性和安全性等问题,需要在未来的研究中加以解决。

LICA(配体偶联反义)技术在疾病治疗方面的应用主要集中在那些可以通过调节特定基因表达来治疗的疾病。

由于LICA技术能够精准地递送反义寡核苷酸(ASO)到目标细胞,并调控特定基因的表达,因此它在多种疾病治疗中具有潜力。

具体来说,LICA技术可能适用于以下类型的疾病治疗:1.遗传性疾病:对于由基因突变引起的遗传性疾病,LICA技术可以通过调节突变基因的表达来减轻症状或治疗疾病。

2.代谢性疾病:LICA技术可以针对代谢通路中的关键基因进行调节,以纠正代谢紊乱,从而治疗代谢性疾病,如糖尿病、高脂血症等。

3.感染性疾病:LICA技术可以针对病原体的基因进行调节,以抑制病原体的生长和繁殖,从而治疗感染性疾病。

乳腺癌反义寡核苷酸治疗的研究进展

乳腺癌反义寡核苷酸治疗的研究进展

乳腺癌反义寡核苷酸治疗的研究进展反义寡核苷酸技术(ASODN)作为一种新的分子生物学工具及新型药物受到医疗界越来越多的关注。

许多反义药物作为抗肿瘤药物已进入临床试验,并取得了令人欣喜的效果。

1 反义寡核苷酸的作用机理简介1.1反义寡核苷酸是在体外人工合成的能与体内某RNA或DNA序列互补结合的短序列单链DNA。

它可以作为反义药物与细胞内特异的靶序列互补,从而抑制基因表达。

该技术的作用原理主要通过下列途径发挥作用:(1)ASODN与DNA结合,抑制DNA复制和转录,它通过在DNA结合蛋白的识别点处与DNA双螺旋结合形成三螺旋,阻止基因的转录和复制。

(2) ASODN可影响真核生物mRNA核内加工的步骤,如5’端加帽结构、3’端加polyA及剪接的过程,从而抑制了mRNA的成熟过程。

(3)ASODN与目标mRNA特异性碱基互补结合,阻断RNA加工、成熟,阻止核糖体与起始因子的结合,影响核糖体沿mRNA移动,从而阻止翻译。

1.2天然的ASODN能够很快被在细胞内存有的大量的核酸外切酶和核酸内切酶降解。

因此,ASODN必须要经过修饰才能在体内发挥作用。

研究表明,硫代修饰之后的ASODN稳定,具有良好的水溶性,并容易大批量人工合成来应用于临床的研究。

所以,目前硫代磷酸型的ASODN已应用于各个水平的研究领域中。

1.3反义寡核苷酸在乳腺癌的治疗研究中的应用主要通过抑制乳腺癌细胞生长、增殖、分化诱导凋亡,抑制乳腺癌细胞的转移和侵袭,降低乳腺癌的多药耐药性来实现。

1.4反义基因技术具有明显的优点,由于DNA序列在一般情况下是单拷贝,而mRNA是多拷贝,因此ASODN相比于反义RNA只需少量的ODN与DNA靶序列结合,就可以具有很强的抑制效果。

它治疗乳腺癌特异性高,副作用少,与化疗、放疗和靶向药物结合有协同作用,并已逐步从实验室走向临床。

2 针对主要的进入临床前试验的致乳腺癌基因的反义寡核苷酸的研究理论上认为任何致乳腺癌基因都可以成为ASODN的作用靶点,目前主要以细胞凋亡抑制基因、乳腺癌转移和血管生成基因、生长因子及受体、信号传导通路等作为常用的分子靶点。

第二代反义寡核苷酸的研究

第二代反义寡核苷酸的研究

antivirals that inh ibit cytom egalovirus,antivirals that inh ibit herpesvirus and antivirals that inh ibit influenza virus.T h is review discusses their pharm aco logical p roperties,m ain adverse drug reac2 ti ons,therapeutic use and introduces som e advances in the research of antivirals.Key words A ntiviral agents Pharm aco logical p roperties T herapeutic use(收稿:1998207220,修回:1998211209)第二代反义寡核苷酸的研究Ξ朱冬晖 魏东芝(华东理工大学生物反应器工程国家重点实验室 生物化学研究所 上海 200237)摘 要 第一代反义核酸寡核苷酸硫代磷酸酯,是目前研究最广泛、最成熟的反义核酸药物,已进入临床试验阶段,但其具有一定的毒副作用;第二代反义核酸,包括嵌合寡核苷酸、杂合寡核苷酸等,是在硫代寡核苷酸的基础上,再引入其它的修饰基团,从而提高其生物活性,减少毒副作用。

本文着重介绍了第二代反义核酸的生物物理学性质,药动学及其与第一代反义核酸毒性的比较。

关键词 反义寡核苷酸 化学修饰 生物物理学 药物动力学 副作用 反义寡核苷酸通过序列特异地与靶m RNA结合而抑制基因表达,从而可以成为一类理想的、在基因水平调控的治疗药[1,2]。

因具有较好的抗酶解活性,寡核苷酸硫代磷酸酯(p ho spho ro th i oate o ligonucleo tides, PS2ODN s),已成为目前最广泛研究的寡核苷酸类似物之一,并已应用于临床[3]。

反义寡聚核苷酸

反义寡聚核苷酸

首次应用合成的寡核苷酸成功的抑制基因的表达 ColE1 DNA复制研究中发现反义调节机制
Zamenick和Stephenson Itoh和Tomizawa
第二代反义核酸药物
Hybridon公司
首次提出反义核酸可用于下调原核生物与真核生物基因的表达 Coleman等
首次报道反义链下调一种细菌基因的表达
树枝状高聚物
转运带负电荷的ASODN,并形 成稳定的复合物
第一种ASODN药物---Vitravene
98年,第一种ASODN药物由FDA批准 使用 用于治疗一种由CMV(巨细胞病毒)引 起的眼部传染病---巨细胞病毒性视网 膜炎 流行于艾滋病人中
巨细胞病毒性视网膜炎
把药物注射到玻璃体中,然后被 视网膜中的受染细胞吸收,进入 细胞的ASODN与病毒的mRNA 结合
tat为HIV-l重要的调节基因,编码 反式激活因子 Tat蛋白 在逆转录病毒启动子LTR之后连接 反义tat与多聚TAR的构建物(LTR25TAR-AS-TAT) ,具有反义tat 及TAR诱饵的双重作用
发展史History时间/年1953 1957 1969 1978 1980 1981 1984 1987 1988 1988 1990 1997
事件
首次提出“反义”定义 三螺旋核酸概念的提出 第一代反义核酸药物(福米韦生,Fomivirsen)诞生
人或机构
Watson Davies Isis制药公司
24.1反义技术简介
反义技术(antisense technology)就是采用反义核
酸分子抑制、封闭或破坏靶基因的技术。
反义核酸是指与具有遗传信息的“正义”(positive sense)核酸链互补的核酸序列,与靶基因具有互补序列的 DNA或RNA片段,可通过碱基互补配对原则原理与特定靶基因 或mRNA形成杂交链,从而阻断基因转录和翻译。它包括反义 RNA、反义DNA及核酶(ribozyme),可通过人工合成和从生 物中提取获得它们。

反义寡核苷酸技术在植物中的应用现状

反义寡核苷酸技术在植物中的应用现状

asODN 技术是一类经人工合成或构建的反义表达载体, 用于表达的寡核苷酸片段,通过碱基互补原理,干扰基因的 解旋、复制、转录、mRNA 的剪接加工、输出和翻译等各个环 节,从而调节细胞的生长、分化等。asODN 技术首次在抑制 肉瘤病毒复制和细胞转化时被提出,之后便逐渐被应用于肿 瘤细胞的表达抑制。鉴于植物细胞对 asODN 片段吸收的限 制性,asODN 技术在植物上的应用在“糖溶液途径”被证实后 在植物基因上的研究才逐步开始,但仍需要对其进行进一步 的优化设计,以更好发挥 asODN 技术的优势。
段后,asODN 技术在植物上的应用也逐渐开始。文章对 asODN 技术在植物上的应用进行综述,为相关工作的开展提供参考。
关键词 反义寡核苷酸技术;糖溶液;基因表达;应用现状
中图分类号 Q789
文献标志码 A
doi:10.3969/j.issn.1673-887X.2021.06.027
Application Status of Antisense Oligonucleotide Technology in Plants
为 更 好 地 促 进 asODN 技 术 在 植 物 上 的 应 用 ,Chuanxin
Copyright©博看网 . All Rights Reserved.
调查研究
王 潇:反义寡核苷酸技术在植物中的应用现状
asODN 技术有着独特的优势,主要是对基因进行瞬时沉 默抑制,从而研究基因在植物中的功能。此技术一定程度上 可弥补其他技术的缺陷,与标记基因相比在对转基因植物进 行选择时不改变植物性状或应用于像茶树这类存在转基因 难题的植物以沉默基因。因此,asODN 技术在研究植物基因 方面有很大的应用价值。 1 反义寡核苷酸技术在植物中的研究进展 1.1 糖溶液中植物对 asODN 的吸收

反义核酸技术

反义核酸技术

反义核酸技术(antisense technology) 主要包括反义RNA ( antisense RNA) 和反义寡核苷酸(antisense oligonucleotide) ,可以通过多种机制快速、可预测地调节培养组织或细胞的基因表达,用来快速、有效地测定基因功能。

RNA 干扰技术天然反义RNA 广泛存在于原核和真核细胞内, 通过与靶基因形成RNA-RNA 或RNA-DNA 双螺旋, 对基因功能起重要的调节作用。

RNA 干扰技术(RNA interference ,RNAi) 正是利用了反义RNA 与正链RNA 形成双链RNA ,特异性抑制靶基因轉录後表达这一原理,成为研究轉录後调控的有效工具, 广泛用于功能基因组学、基因治疗和轉录调控机制研究。

在这一技术中,早期使用双链RNA (double-strand RNA , dsRNA) 作为干扰剂,核心技术是小分子干扰RNA( small interfering RNA , siRNA) 的设计与合成(哺乳动物通常选择21~23 bp dsRNA ,其他生物选择更长的片段) ,另外,还包括siRNA 的标记、轉染和RNAi 的检测。

然而,基因敲除实验显示RNAi 存在一定程度的非特异性。

分析认为,RNAi 最初在哺乳动物细胞中所获得的成功,部分是由于所使用的短链dsRNA 激活了胞内dsRNA 依赖的蛋白激酶,引起细胞反应并不断累积。

新近两方面技术的发展使得RNAi 在哺乳动物细胞中更加奏效: (1) 使用能使siRNA 稳定表达的新的载体系统[21 ] ; (2) 利用人U6核内小RNA ( snRNA) 启动子进行单一RNA 轉录单位的核内表达[22 ] 。

即通过轉染dsRNA 的胞内表达并在胞内降解成约20 bp 的dsRNA ,後者通过RNA依赖的RNA 合成酶复制,并结合到核酸酶复合物上,形成RNA 诱导的轉录沉默复合体(RNA-induced silencing complex ,RISC) ,降解靶mRNA。

名词解释分子生物学

名词解释分子生物学

分子生物学名词解释基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组半保留复制(semiconservative replication):一种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。

因此,复制完成时将有两个子代DNA分子,每个分子的核苷酸序列均与亲代分子相同,半不连续复制(Semi-ondisctinuousreplication)。

是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。

dNTP,deoxy-ribonucleoside triphosphate(脱氧核糖核苷三磷酸)的缩写。

是包括dATP, dGTP, dTTP, dCTP,dUTP等在内的统称,N是指含氮碱基,代表变量指代A、T、G、C、U等中的一种。

在生物DNA、RNA合成中,以及各种PCR(RT-PCR(reverse transcription PCR)、Real-time PCR)中起原料作用。

转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列.多顺反子(polycistronicmRNA)在原核细胞中,通常是几种不同的mRNA连在一起,相互之间由一段短的不编码蛋白质的间隔序列所隔开,这种mRNA叫做多顺反子mRNA。

这样的一条mRNA链含有指导合成几种蛋白质的信息。

基因表达:(gene expression)是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和生物学效应的全过程外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。

外显子是最后出现在成熟RNA中的基因序列,又称表达序列。

反义寡核苷酸化学修饰酶类药物的研究进展

反义寡核苷酸化学修饰酶类药物的研究进展

[关键词]:化学修饰,靶向技术,序列选择,靶向转运摘要:反义寡核苷酸()类药物是人工合成并经化学修饰地寡核苷酸()片段,能通过自身设计地特定序列与靶结合,在基因水平干扰致病蛋白地产生.由于其高度地选择性和较低地副作用,-类药物已成为近年来药物研究和开发地热点.最近,类药物福米韦生()通过美国批准为第一个进入市场地反义药物.其他类药物,/和等在临床试验中也表现出良好地疗效. 文档收集自网络,仅用于个人学习-作为基因表达地反向抑制剂,首先必须具备三个主要条件:即它应有足够地稳定性、对目地基因地选择性以及对细胞地通透性和靶向性.满足三个首要条件地方法主要是针对在化学修饰、序列选择、靶向转运等方面加以改善. 文档收集自网络,仅用于个人学习反义寡核苷酸地化学修饰不经修饰地不论在体液内还是细胞中都极易被降解,不能发挥其反义作用.因而采用经化学修饰地,以减少核酸酶对地降解.对化学修饰地方法主要针对三方面,即碱基修饰、核糖修饰和磷酸二酯键修饰.碱基修饰主要为杂环修饰、甲基胞嘧啶和二氨基嘌呤;核糖修饰主要为己糖.’-甲基取代核糖、环戊烷、α构象核糖;磷酸二酯键修饰主要为硫代和甲基代修饰等. 文档收集自网络,仅用于个人学习其中硫代寡核苷酸(,-)、混合骨架寡核苷酸(,)和多肽核酸(,)应用广泛,成为具有代表性地第一、二、三代. 文档收集自网络,仅用于个人学习硫代寡核苷酸由于磷酸二酯键是核酶地主要靶点,因此采用硫化试剂将磷酸二酯键硫化成为类结构,是增强稳定性地有效途忡. 是迄今研究最深入、应用最广泛地一类 .作为第一代药物,-只有良好地水溶性、稳定性及易于大量合成,基本能满足临床治疗地需要.与天然相比,-通过细胞内吞作用进入细胞内平衡所需时间更长,最终细胞内浓度也更高;其一般都大于,极大地提高了对核酸酶地耐受能力.-抑制基因地表达通过两种方式,即诱导以降解目地或与目地形成杂交体而干扰地加工和翻译.其副作用主要来自其携带地负电荷和免疫原性:由于-带有大量地负电佝,能与多种因子结合从而导致非特异效应.体外实验表明,-及其核酸降解物能与血清蛋白、细胞表向受体结合,或者进入细胞内与某些碱性蛋白质或酶结合,产生非特异效应.另外研究还发现,及其核酸降解物中含有多个连续地胞苷磷酸鸟苷()序列,会产生非序列特异性地抑制作用. 文档收集自网络,仅用于个人学习混合骨架寡核苷酸是人们根据不同修饰地特性而加以各种组合设计而成.与相比,通过不同化学修饰地组合降低了硫代磷酸二酯键地数量,减少了自身携带地负电荷,降低了体内降解速度并改变了核酸降解物地种类,从而减少了由硫代导致地副反应;提高了与靶地结合能力并提高诱导降解地能力. 等在大鼠试验中,静脉给药后在多种组织中均有分布,给药后主要仍以完整地形式存在;比对照地在体内地稳定性、体内各组织地分布、代谢等方面均有提高;仍观察到一些轻微副作用,如部分酶原凝血时间延长、淋巴细胞增殖、有浓度依赖地补体溶血作用等,但程度要小于相同剂量地. 文档收集自网络,仅用于个人学习多肽核酸结构上是以氨基乙基甘氨酸为基本单元,碱基通过一个甲基联基与类肽链骨架相连.由于结构与类似,其两相邻碱基间距及碱基与类肽链骨架间地距离均相近,与以及与之间均可形成配对.体外试验证明,与结合可抑制逆转录过程,与双链发生链侵入反应后,可有效阻断限制性内切酶对酶切位点地识别和切割,从而阻断蛋白地表达.与前两代相比,具有更强地亲和力及更好地特异性,往往更短地片段即可获得相同地反义效果;具有良好地蛋白酶和核酸酶抗性,在细胞培养液及体内不易降解,半衰期更长;经修饰后具有良好地细胞膜穿透性,其应用前景广阔. 文档收集自网络,仅用于个人学习反义寡核苷酸地序列选择必须与靶互相结合形成杂交分子才能发挥对目地基因地反向抑制作用,因而与其靶结合地亲和力成为其发挥反义效力地首要因素.从理论上讲,与互补地序列越长,其结合能力越强.但事实上,较长地难以通透细胞膜并极易被降解,无法发挥反义作用.而且,体内地分子结构上具有高度地分子折叠,并含有大量结合地偶联蛋白,人们很难预测那些未理藏起来易于接近地序列. 文档收集自网络,仅用于个人学习对于体内结构地复杂性,人们在靶序列地选择上通常选择一些优先序列:例如选择启动子编码区附近或翻译起始区作为靶序列;在原核生物中,针对()序列及其附近区域地阶更有效;在真核生物中,针对’端非编码区可能比针对编码区地更有效. 文档收集自网络,仅用于个人学习如果在优先区域选择靶序列不能成功,或者其他区域地选择更有价值,则需采用其他地方法确定靶序列:例如等采用""法确定敏感序列,从’端到’端合成一系列,然后检验其反义能力,这种方法是有效地,但是人力物力投资巨大;等在合成系列基础上,检测它们与兔β球蛋白形成异二聚体地能力,方法简单,但由于地折叠在体内和体外有很大不同,其实用价值还有待于进一步地体内验证;等采用半随机化文库,探索具有作用部位地候选靶序列,对序列进行有效预计,结果与体内试验有很好地相关性. 文档收集自网络,仅用于个人学习反义寡核苷酸地靶向转运发挥其反义作用,必须在细胞内靶结合部位达到有效浓度.而一般是多阴离子化合物,大多经过多种吞噬方式进入细胞发挥其反义作用.由于这是一种耗能过程,并且转运具有饱和性,要用很高地浓度才能在细胞水平观察到对目地基因地明显抑制作用.较低地细胞通透性使很难在靶细胞内达到治疗所需浓度.许多研究者针对研制出多种良好地靶向转运系统以提高地摄取速率和转运特异性,极大地改善了地细胞通透性和靶向性. 文档收集自网络,仅用于个人学习脂质体介导地靶向转运将包埋于脂质体中是提高其细胞通透性地有效方法.目前,采用较多地为阳离子脂质体.当被包裹于双层结构地脂质体中时,首先减少了机体对药物地生物转化以及核酶地攻击,增加到达靶细胞地有效浓度.脂质体自身带有地正电荷使其更容易粘附于带有负电荷地动物细胞表面,脂质尾则使其易于通过细胞膜地脂质双层. 文档收集自网络,仅用于个人学习应用这种转运系统应用地最大问题是脂质体对地包裹效率极低,一般只有%~%.如果增加脂质体地体积以提高包封率,反而会降低靶细胞对脂质体地摄取,并会降低复合物在血液中被动转运地效率.增加脂质体包裹效率地方法包括在脂质体复合物内引入融合基因蛋白或其他轭合物(如胆固醇等.等将地′端通过二硫键与胆固醇连接后,发现修饰地与脂质体地结合能力提高了倍,并且不影响其本身地反义效力,研究表明,与胆固醇偶联是提高脂质体包封率地有效途径. 文档收集自网络,仅用于个人学习免疫介导地靶向转运免疫介导主要包括受体配体介导和抗体抗原介导.这种靶向转运系统是指当作用地靶细胞或组织含有一些专一性受体或抗原时,将其配体或抗体与分子连接,经过特定地免疫识别作用使得在靶细胞膜上某些特定区域富集,再通过细胞地胞吞作用实现药物向细胞内地转运.因此,免疫介导不仅大大增强了对靶细胞地专一性,而且通过免疫结合使进入细胞地转移效率也大为提高. 文档收集自网络,仅用于个人学习免疫介导地靶向转运大致可分为两种类型:()针对靶向地机体组织器官所特有地受体或抗原进行免疫介导,如哺乳动物肝细胞存在特有地无唾液酸糖蛋白受体,通过此受体地免疫介导可将特异导向肝脏以治疗肝炎等疾病;()针对靶向地致病细胞表达地大量受体或抗原进行地免疫介导,如上皮细胞瘤表达过量地上皮生长因于受体,可以用来导入治疗剂进入肿瘤细胞发挥作用. 文档收集自网络,仅用于个人学习实际研究中常将免疫介导与脂质体介导两种方法结合使用,利用免疫脂质体为载体以特异转运 .等研究了作用于细胞受体分子地免疫脂质体包埋地对增殖地影响.结果发现,免疫脂质体包埋地可有效抑制地增殖,而仅用脂质体包埋或游离地对没有活性.以免疫脂质体为载体地靶向给药方式可能是将来对病毒、肿瘤实施靶向治疗地理想方法之一. 文档收集自网络,仅用于个人学习毫微粒技术地应用毫微粒是一种极小地颗粒,能携带药物分布全身,直至到达太狭窄地不能通过地部位为止.毫微粒技术利用机体内毛细血管直径随器官不同和特异部位不同而异地特点,通过部位特异地毛细血管诱捕毫微粒而实现特异性转运.等合成了~地毫微粒以吸附一段作用于点突变基因-地,研究结果表明,这种毫微粒可有效地抑制基因地表达,所需浓度仅为游离地%,进一步地体内试验还证明该化合物可以抑制裸鼠身上-基因依赖性肿瘤地生长. 文档收集自网络,仅用于个人学习结语作为一种新型地基因治疗药物,在心血管疾病、肿瘤、感染和炎症等多种疾病地治疗上均可得到广泛应用.随着研究地深入,在稳定性、选择性以及对细胞地通透性和靶向性等方面不断完善.地各种化学修饰包括第二代、第三代明显增强其反义作用和对核酸酶地稳定性;对结构研究地深入、计算机辅助药物设计及生物芯片技术地发展有望进一步优化靶向序列地选择;多种药物靶向转运系统地应用大为改善了类药物地生物利用度及其对作用部位地通透性和靶向性.这些方面地研究进展必将使类药物具有更为广阔地应用前景.文档收集自网络,仅用于个人学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

检测方法: 基因表达谱芯片
脱靶效应
影响因素
siRNA浓度 转染试剂 1、针对同一靶基因设计2条以上抑制效率 在70%以上的不同siRNA序列,分别进行 如何尽量避免? 实验 2、采用不同转染试剂进行实验
一、RNAi基本概念及相关作用机制 二、siRNA序列设计及制备;脱靶效应 三、siRNA转染过程相关问题
方法: 化学方法,电转化 脂质体类 转染试剂 非脂质体聚合物类 EntransterTM 系列(EntransterTM-R) siRNA转染 1、细胞数量 2、siRNA浓度 3、血清 转染过程相关问题 4、抗生素 5、转染后换液 6、转染条件优化 7、RNAi检测方法
lipofectamineTM 2000和RNAiMAX
Lipofectamine® RNAiMAX ReagentBiblioteka cellssiRNA
Dilute Lipofectamine® RNAiMAX Reagent in Opti-MEM® medium
Dilute siRNA in Opti-MEM® medium
Add Diluted siRNA to Diluted Lipofectamine® RNAiMAX Reagent (1:1 ratio)
1、多设计几条siRNA 序列,以筛选最特 异、 最有效的siRNA序列
2、阴性对照
siRNA序列设计注意事项
3、阳性对照 4、siRNA荧光标记
1、化学合成法
siRNA制备方法
2、体外转录法 3、Dicer/RNaseⅢ酶 解
定义:
指siRNA转染中的非特异反应,这不仅包 括siRNA序列,还包括转染试剂本身或其他相 关因素对转染细胞的其他相关基因发生非特异 性的表达变化,从而导致假阳性和假阴性。
Add siRNA-reagent complex to cells
反义核酸技术
一、RNAi基本概念及相关作用机制 二、siRNA序列设计及制备;脱靶效应 三、siRNA转染过程相关问题
RNA干扰(RNA interference,RNAi)是双链RNA特异性地结合到 与之序列互补的mRNA上,导致mRNA降解,从而介导转录水平基因表 达抑制。
一、RNAi基本概念及相关作用机制 二、siRNA序列设计及制备;脱靶效应 三、siRNA转染过程相关问题
相关文档
最新文档