数据统计分析和描述
数据的统计与分析方法

数据的统计与分析方法数据的统计与分析方法是指在收集和整理大量数据的基础上,运用合适的统计和分析技术,从中提取有用的信息和规律。
在各行各业中,数据的统计与分析方法被广泛应用,帮助人们做出科学的决策和预测,推动社会和经济的发展。
本文将介绍几种常见的数据统计与分析方法,包括描述统计、概率统计和回归分析。
一、描述统计描述统计是对数据进行整理和概括的方法,可以帮助人们更好地理解数据的特征。
主要包括以下几种常用技术:1. 中心位置度量:包括算术平均数、中位数和众数。
算术平均数是将所有数据相加后再除以数据的个数,能够反映数据的总体水平;中位数是将数据按大小排序后,位于中间位置的数,能够反映数据的中间水平;众数是数据中出现次数最多的数,能够反映数据的典型特征。
2. 变异程度度量:包括极差、方差和标准差。
极差是最大值与最小值之间的差异,能够反映数据的离散程度;方差是各数据与平均数之差的平方的平均数,能够反映数据的波动程度;标准差是方差的平方根,能够反映数据的分散程度。
3. 分布形态度量:包括偏度和峰度。
偏度是数据分布的不对称程度,可以通过计算三阶中心矩来度量;峰度是数据分布的陡峭程度,可以通过计算四阶中心矩来度量。
二、概率统计概率统计是以概率论为基础,通过对数据的概率分布进行分析和推断,得出数据的统计规律。
主要包括以下几种方法:1. 概率分布:常见的概率分布包括正态分布、泊松分布和指数分布,可根据数据的特征选择合适的概率分布模型,并利用统计方法进行参数估计。
2. 假设检验:假设检验是用于判断数据是否遵循某种假设的方法。
根据已有数据的样本统计量,与所设定的假设进行比较,通过计算得到的显著性水平,来决策是否拒绝或接受原假设。
3. 区间估计:区间估计是通过样本数据对总体的参数进行估计。
通过计算样本均值与标准差,结合概率分布的性质,得出参数在一定置信水平下的置信区间。
三、回归分析回归分析是用于研究变量之间相互关系的一种方法。
常用的8种数据分析方法

常用的8种数据分析方法1. 描述统计分析。
描述统计分析是对数据进行整体性描述的一种方法,它通过计算数据的均值、中位数、标准差等指标来揭示数据的一般特征。
这种方法适用于对数据的整体情况进行了解,但并不能深入挖掘数据背后的规律。
2. 统计推断分析。
统计推断分析是通过对样本数据进行统计推断,来对总体数据的特征进行估计和推断的方法。
通过统计推断分析,我们可以通过样本数据推断出总体数据的一些特征,例如总体均值、总体比例等。
3. 回归分析。
回归分析是研究自变量与因变量之间关系的一种方法,通过建立回归模型来描述两者之间的函数关系。
回归分析可以用于预测和探索自变量对因变量的影响程度,是一种常用的数据分析方法。
4. 方差分析。
方差分析是用来比较两个或多个样本均值是否有显著差异的一种方法。
通过方差分析,我们可以判断不同因素对总体均值是否有显著影响,是一种常用的比较分析方法。
5. 聚类分析。
聚类分析是将数据集中的对象划分为若干个类别的一种方法,目的是使得同一类别内的对象相似度高,不同类别之间的相似度低。
聚类分析可以帮助我们发现数据中的内在结构和规律,是一种常用的探索性分析方法。
6. 因子分析。
因子分析是一种用于研究多个变量之间关系的方法,通过找出共性因子和特殊因子来揭示变量之间的内在联系。
因子分析可以帮助我们理解变量之间的复杂关系,是一种常用的数据降维方法。
7. 时间序列分析。
时间序列分析是对时间序列数据进行建模和预测的一种方法,通过对时间序列数据的趋势、季节性和周期性进行分解,来揭示数据的规律和趋势。
时间序列分析可以用于预测未来的数据走向,是一种常用的预测分析方法。
8. 生存分析。
生存分析是研究个体从某一特定时间点到达特定事件的时间长度的一种方法,它可以用于研究生存率、生存曲线等生存相关的问题。
生存分析可以帮助我们了解个体生存时间的分布情况,是一种常用的生存数据分析方法。
总结,以上就是常用的8种数据分析方法,每种方法都有其特定的应用场景和优势,我们可以根据具体的问题和数据特点选择合适的方法进行分析,以期得到准确、有用的分析结果。
常用的8种数据分析方法

常用的8种数据分析方法1. 描述统计分析。
描述统计分析是最基本的数据分析方法之一,它主要通过对数据的描述性指标进行分析,例如平均数、中位数、标准差等,来揭示数据的一般特征。
描述统计分析可以帮助我们对数据的集中趋势、离散程度和分布形态进行直观的了解。
2. 相关分析。
相关分析是用来研究两个或多个变量之间关系的方法,通过计算它们之间的相关系数来衡量它们之间的相关程度。
相关分析可以帮助我们发现变量之间的内在联系,对于了解变量之间的影响关系非常有帮助。
3. 回归分析。
回归分析是一种用来研究变量之间因果关系的方法,它可以帮助我们建立变量之间的数学模型,从而预测或解释一个变量对另一个变量的影响。
回归分析在实际应用中非常广泛,可以用来预测销售额、市场需求等。
4. 方差分析。
方差分析是一种用来比较多个样本均值是否相等的方法,它可以帮助我们判断不同因素对于结果的影响是否显著。
方差分析在实验设计和质量控制中有着重要的应用,可以帮助我们找出影响结果的关键因素。
5. 聚类分析。
聚类分析是一种用来将数据样本划分为若干个类别的方法,它可以帮助我们发现数据中的内在结构和规律。
聚类分析在市场细分、客户分类等领域有着广泛的应用,可以帮助我们更好地理解不同群体的特征和需求。
6. 因子分析。
因子分析是一种用来研究变量之间的潜在结构和关系的方法,它可以帮助我们发现变量之间的共性因素和特点。
因子分析在市场调研和心理学领域有着重要的应用,可以帮助我们理解变量之间的内在联系。
7. 时间序列分析。
时间序列分析是一种用来研究时间序列数据的方法,它可以帮助我们发现数据随时间变化的规律和趋势。
时间序列分析在经济预测、股票走势预测等领域有着广泛的应用,可以帮助我们做出未来的预测和规划。
8. 生存分析。
生存分析是一种用来研究个体生存时间和生存概率的方法,它可以帮助我们了解个体生存的规律和影响因素。
生存分析在医学研究和风险评估中有着重要的应用,可以帮助我们预测个体的生存时间和风险。
常用的8种数据分析方法

常用的8种数据分析方法1. 描述性统计分析。
描述性统计分析是数据分析中最基本的方法之一,它通过对数据的集中趋势(均值、中位数、众数)和离散程度(标准差、方差)进行分析,帮助我们了解数据的分布情况,对数据进行初步的概括和描述。
2. 相关性分析。
相关性分析用于研究两个或多个变量之间的关系,通过计算它们之间的相关系数来衡量它们之间的相关性强弱。
相关性分析可以帮助我们了解变量之间的关联程度,从而为进一步的分析和决策提供依据。
3. 回归分析。
回归分析是用来研究一个或多个自变量对因变量的影响程度和方向的方法。
通过回归分析,我们可以建立数学模型来预测因变量的取值,或者分析自变量对因变量的影响程度,帮助我们理解变量之间的因果关系。
4. 时间序列分析。
时间序列分析是研究时间序列数据的一种方法,它可以帮助我们了解数据随时间变化的规律和趋势。
时间序列分析可以用于预测未来的趋势,检测周期性变化,以及分析时间序列数据中的特殊事件和异常情况。
5. 聚类分析。
聚类分析是一种无监督学习的方法,它可以将数据集中的对象分成若干个类别,使得同一类别内的对象相似度较高,不同类别之间的相似度较低。
聚类分析可以帮助我们发现数据中的内在结构和规律,对数据进行分类和整理。
6. 因子分析。
因子分析是一种多变量分析方法,它可以帮助我们发现多个变量之间的潜在关联性,找出共同的因子或者维度。
因子分析可以帮助我们简化数据,减少变量的数量,从而更好地理解数据背后的信息。
7. 决策树分析。
决策树分析是一种用来进行分类和预测的方法,它通过构建决策树模型来对数据进行分类和预测。
决策树分析可以帮助我们理解不同变量之间的关系,进行决策规则的推断,从而为决策提供支持。
8. 关联规则分析。
关联规则分析是一种用来发现数据中的频繁模式和关联规则的方法,它可以帮助我们发现数据中的潜在关联关系,从而为市场营销、商品推荐等方面提供支持。
以上就是常用的8种数据分析方法,每种方法都有其独特的特点和适用范围,希望这些方法能够对大家在数据分析工作中有所帮助。
数据的统计和分析

数据的统计和分析数据在现代社会中扮演着举足轻重的角色。
它们不仅反映了现实世界的情况,还为决策和策划提供了有力的依据。
在这篇文章中,我们将探讨数据的统计和分析方法,以及如何利用这些方法获取有关特定问题的见解。
一、数据采集与整理数据的统计和分析首先需要获得相关的数据。
数据采集可以通过不同途径进行,例如实地调研、问卷调查、实验观测等。
采集到的数据可能是定量数据(如身高、体重等可以用数值表示的数据)或定性数据(如喜好、态度等难以用数值表示的数据)。
完成数据采集后,我们需要对数据进行整理和清洗,确保数据的准确性和一致性。
二、描述性统计描述性统计是对数据进行基本的整理和分析,以了解数据的基本性质。
它通常涉及到以下几个方面:1.中心趋势的度量:通过计算众数、中位数和平均数等指标,可以了解数据的集中程度和典型值。
例如,在收集到一组学生成绩后,可以计算平均成绩,以了解整体的学业水平。
2.离散程度的度量:通过计算极差、方差和标准差等指标,可以衡量数据的分散程度。
离散程度越大,代表数据的分布越分散。
例如,在分析销售额的数据时,可以计算标准差来评估销售额的波动性。
3.数据分布的图形展示:利用直方图、箱线图等图形工具,可以直观地展示数据的分布情况。
图形展示有助于我们更好地理解数据的模式和特征。
三、推断统计推断统计是在对样本数据进行分析的基础上,对总体特征作出估计和推断。
它可以通过统计假设检验和置信区间等方法来帮助我们得出结论。
1.统计假设检验:通过对样本数据进行分析,然后与一个特定的假设相比较,来判断该假设是否成立。
这个假设可以是“两组样本的平均值是否相等”或“观察到的数据模型是否符合某种理论模型”等问题。
统计假设检验能够帮助我们进行科学的推断和判断。
2.置信区间估计:在样本数据的基础上,利用统计方法计算出一个置信区间,以表明对总体特征的估计范围。
例如,在抽样调查中,我们可以利用置信区间估计来推断某个总体特征的范围。
四、因果关系的建立数据的统计和分析也可以帮助我们建立因果关系的模型。
数据的统计与分析

数据的统计与分析数据的统计与分析是研究数据收集、整理、描述和解释的一种方法。
它包括数据的收集、数据的整理、数据的描述和数据的分析四个步骤。
一、数据的收集数据的收集是研究的第一步,可以通过调查、观察、实验等方式进行。
收集数据时要注意数据的真实性、准确性和可靠性。
二、数据的整理数据的整理是将收集到的数据进行归类、排序和处理的过程。
常用的整理方法有表格法、图形法和统计量表示法。
三、数据的描述数据的描述是通过图表、统计量等手段对数据的分布、趋势、规律等进行展示。
常用的描述方法有条形图、折线图、饼图、散点图等。
四、数据的分析数据的分析是对数据进行解释和推理的过程,目的是发现数据背后的规律和趋势。
常用的分析方法有频数分析、百分比分析、平均数、中位数、众数等统计量的计算和比较等。
五、概率与统计概率是研究事件发生可能性的一种数学方法。
常用的概率计算方法有古典概型、几何概型和条件概率等。
统计是研究数据收集、整理、描述和解释的一种方法,它包括数据的收集、数据的整理、数据的描述和数据的分析四个步骤。
六、统计图表统计图表是数据整理和描述的重要工具。
常用的统计图表有条形图、折线图、饼图、散点图等。
七、数据的处理数据的处理是对数据进行加工、转换和分析的过程。
常用的处理方法有数据的清洗、数据的转换、数据的插补等。
八、统计推断统计推断是通过样本数据对总体数据进行推断和预测的一种方法。
常用的统计推断方法有假设检验、置信区间等。
九、回归分析回归分析是研究变量之间相互关系的一种统计方法。
常用的回归分析方法有线性回归、多元回归等。
十、统计软件统计软件是进行数据统计和分析的重要工具。
常用的统计软件有SPSS、SAS、R等。
以上就是数据的统计与分析的相关知识点,希望对你有所帮助。
习题及方法:某学校进行了一次数学测试,共有100名学生参加。
以下是部分学生的成绩:80, 85, 90, 88, 87, 92, 84, 86, 91, 83求这组数据的众数、中位数和平均数。
统计学中的数据分析方法

统计学中的数据分析方法数据分析是统计学的重要组成部分,通过对数据的收集、整理和解释,可以得出有关数据特征、关联性和趋势等信息。
在统计学中,有多种数据分析方法,本文将介绍其中一些常见的方法。
一、描述性统计分析描述性统计分析是对数据进行整理和总结的方法。
它通过计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差),来揭示数据的基本特征。
此外,描述性统计分析还包括制作频数分布表、绘制直方图和绘制箱线图等方法,以便更好地展示数据的分布情况和异常值。
二、推断统计分析推断统计分析是通过样本数据来推断整个总体数据的方法。
在这种分析方法中,我们利用样本统计量(如样本均值和样本比例)来估计总体参数,并通过假设检验和置信区间来对总体参数进行推断。
假设检验可以判断总体参数的差异是否显著,而置信区间则给出了总体参数的一个估计范围。
三、相关性分析相关性分析用于探索两个或多个变量之间的关系。
通过计算相关系数(如皮尔逊相关系数和斯皮尔曼相关系数),可以评估变量之间的线性相关程度。
相关性分析不仅可以帮助我们了解变量之间的关联性,还可以用于预测和建立模型。
四、回归分析回归分析是一种用于研究变量之间关系的方法。
它通过建立回归方程来描述自变量对因变量的影响程度,并进行参数估计和模型评估。
回归分析可以分为线性回归、多项式回归和逻辑回归等,根据数据类型和分析目的选择合适的回归方法。
五、方差分析方差分析(ANOVA)是用于比较两个或多个样本均值是否存在显著差异的方法。
方差分析将总体数据的变异性分解为组内变异和组间变异,并利用F检验来检验组间差异是否显著。
方差分析广泛应用于实验设计和质量控制等领域。
六、聚类分析聚类分析是一种将相似样本归类到同一类别的方法。
它通过计算样本之间的距离或相似性,将样本分成不同的群组。
聚类分析可以帮助我们发现数据的内在结构和规律,对于市场细分和用户分类等问题具有重要意义。
七、时间序列分析时间序列分析是对时间相关数据进行分析和预测的方法。
数据统计及分析方法

数据统计及分析方法数据在现代社会中扮演着越来越重要的角色,如何对数据进行统计及分析显得尤为重要。
在本文中,将会阐述一些常见的数据统计及分析方法,包括描述性统计、推论统计、回归分析和数据可视化等。
一、描述性统计描述性统计是对数据进行汇总和概括的一种方法,主要通过测量中心趋势和离散程度来描述数据集合的特征。
1.测量中心趋势常见的测量中心趋势有平均数、中位数和众数。
平均数是所有数据的总和除以数据的个数,适用于单峰分布的数据。
中位数是将数据按大小排列后位于中间的数,适用于偏态分布的数据。
众数是出现次数最多的数,适用于多峰分布的数据。
2.离散程度常见的离散程度有标准差、方差和极差。
标准差是对平均数周围数据分布的度量,方差是标准差的平方。
极差是最大值与最小值之间的差。
二、推论统计推论统计主要通过对样本进行分析来推断总体的特征。
其主要方法包括假设检验、置信区间和抽样分布。
1.假设检验假设检验是根据样本的情况推断总体的特征。
一般来说,假设检验包含原假设和备择假设。
原假设是指总体参数的某一个值等于某个固定值,而备择假设是指总体参数的某一个值不等于某个固定值。
通过对样本数据进行分析,可以拒绝或接受原假设。
2.置信区间置信区间是根据样本数据计算出总体参数值的可能范围。
置信区间的大小受到置信水平和样本大小的影响。
通常来说,置信水平越高,置信区间的大小越大,而样本大小越大置信区间的大小越小。
3.抽样分布抽样分布是指多次从总体中随机抽取一个样本后计算出来的样本统计量的分布。
抽样分布通常是以正态分布来近似描述的。
在推论统计中,抽样分布的重要作用是用来计算假设检验的概率值。
三、回归分析回归分析是根据样本数据建立总体参数之间的关系模型。
回归分析适用于因变量与自变量之间存在线性关系的情况。
在回归分析中,线性回归模型是一个最常用的模型,它可以通过最小二乘法来确定模型的参数。
四、数据可视化数据可视化是通过图像和图表将数据以视觉形式传达给用户的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设 X1,X2,…,Xn 是来自正态总体 N (m,s 2 ) 的样本,欲检验假设:
H0
:s
2
s
2 0
; H1
:s
2
s
2 0
(或
s2
s
2 0
或
s
2
s
2 0
)
这叫 2 检验.
均值 m 已知
均值 m 未知
统计量
统计量
H0
H1
2
1
s
2 0
n
(
X
2 i
m)2
i 1
2
1
s
2 0
偏度: g1
1 s3
n
(Xi
i 1
X )3
峰度: g2
1 s4
n
(Xi
i 1
X)4
偏度反映分布的对称性,g1 >0 称为右偏态,此时数据位于均值 右边的比位于左边的多;g1 <0 称为左偏态,情况相反;而 g1 接近 0 则可认为分布是对称的.
峰度是分布形状的另一种度量,正态分布的峰度为 3,若 g2 比 3 大很多,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数
一、点估计的求法
(一)矩估计法
假设总体分布中共含有 k 个参数,他们往往是一些原 点矩或一些原点矩的函数,例如,数学期望是一阶原点矩, 方差是二阶原点矩与一阶原点矩平方之差等.因此,要想估计
总体的某些参数 i (i=1,2,…,k),由于 k 个参数一定可以
表为不超过 k 阶原点矩的函数,很自然就会想到用样本的 r 阶原点矩去估计总体的 r 阶原点矩,用样本的一些原点 矩的函数去估计总体的相应的一些原点矩的函数,再将 k 个 参数反解出来,从而求出各个参数的估计值.这就是矩估计法, 它是最简单的一种参数估计法.
Xn),使得
P(ˆ1 ˆ2 ) 1 则称随机区间(ˆ1,ˆ2 ) 为参数 的置信水平为1 的置信区间,ˆ1 称为 置1.已知DX,求EX的置信区间
设样本(X1,X2,…,Xn)来自正态母体 X,已知方差 DX s 2 ,
n
p(x1,1, ,k ) p( x2 ,1, ,k ) p( xn ,1, ,k ) p( xi ,1, ,k ) i 1
使 L(1,, k ) 达到最大,从而得到参数 i 的估计值ˆi .此估计值称为极大似然估计值.函数
L(1,, k ) 称为似然函数.
一、参数检验
(一)单个正态总体均值的检验
设取出一容量为 n 的样本,得到均值 X 和标准差 s,现要
对总体均值 m 是否等于某给定值 m0 进行检验.记 H0 : m m0 ; H1 : m m0
称 H0 为原假设,H1 为备择假设,两者择其一:接受 H0;拒绝 H0, 即接受 H1.
1.总体方差s 2 已知
数学建模与数学实验
数据的统计描述和分析
实验目的
1.直观了解统计基本内容. 2.掌握用数学软件包求解统计问题.
实验内容
1.统计的基本理论. 2.用数学软件包求解统计问题. 3.实验作业.
数
据 的
统计的基本概念
统
计
参数估计
描
述
和
假设检验
分
析
一、统计量
1. 表示位置的统计量—平均值和中位数.
平均值(或均值,数学期望): X
EX 在置信水平 1- 下的置信区间为[ X u 1 2
s
n
,X
u 1 2
s ].
n
2. 未知方差DX,求EX的置信区间
EX 在置信水平 1- 下的置信区间为[ X t 1 2
s n
,X
t 1 2
s ]. n
(二)方差的区间估计
DX
在置信水平
1-
下的置信区间为[(n 1)s 2
据,因而峰度可用作衡量偏离正态分布的尺度之一.
4.
k 阶原点矩:Vk
1 n
n i 1
X
k i
k 阶中心矩:U k
1 n
n
(Xi
i 1
X )k
二、分布函数的近似求法
1.整理资料: 把样本值 x1,x2,…,xn 进行分组,先将它们依大小次序排列,
得
x1*
x2*
x
* n
.在包含
(二)极大似然估计法
极大似然法的想法是: 若抽样的结果得到样本观测值 x1,x2,…,xn, 则我们应当选取参数 i 的
值,使这组样本观测值出现的可能性最大.即构造似然函数:
L(1, 2 ,, k ) P( X1 x1, X 2 x2 ,, X n xn ) P( X1 x1 )P( X 2 x2 )P( X n xn )
(或
s
2 1
s
2 2
,或
s
2 1
s
2 2
现的次数 ni ,它就是这区间或这组的频数.计算频率
fi
ni n
.
3.作频率直方图:在直角坐标系的横轴上,标出
x1'
,
x2'
,
,
x
' n
各点,分别以
(
xi'
,
x' i 1
]
为底边,作高为
fi
x
' i
的矩形, xi'
xi'1 xi' , i 1,2,, n 1,即得
频率直方图.
2.非参数检验:如果所检验的假设并非是对某个参数作出明 确的判断,因而必须要求构造出的检验统计量的分布函数 不依赖于观测值的分布函数类型,这种检验叫非参数检验. 如:要求判断总体分布类型的检验就是非参数检验.
假设检验的一般步骤
1.根据实际问题提出原假设 H0 与备择假设 H1,即说明需要检验 的假设的具体内容;
j(x)
1
x2
e2
2p
分布函数
F(x)
1
x
y2
e 2 dy
2p
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
-4
-2
0
2
4
6
2. 2 分布 2 (n)
若随机变量 X1,X2,…,Xn 相互独立,都 服从标准正态分布 N(0,1),则随机变量
Y=
X
2 1
0
0.5
1
1.5
2
2.5
3
返回
无论总体 X 的分布函数 F(x;1, 2 ,, k )的类型已知或未知,我
们总是需要去估计某些未知参数或数字特征,这就是参数估计问题.即参
数估计就是从样本(X1,X2,…,Xn)出发,构造一些统计量ˆi ( X1,X2,…,
Xn)(i=1,2,…,k)去估计总体 X 中的某些参数(或数字特征) i(i=1,
X
F n1 Y
n2
服从自由度为(n1,n2)的 F 分布,记作 F~ F(n1,n2).
由 F 分布的定义可以得到 F 分布的 一个重要性质:
若 F~ F(n1,n2),则
1 F
~
F (n2 , n1 )
F(10,50)分布的密度函数曲线
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
1 n
n i 1
Xi
中位数:将数据由小到大排序后位于中间位置的那个数值.
2. 表示变异程度的统计量—标准差、方差和极差.
标准差: s
[ 1 n 1
n i1
(Xi
1
X )2 ]2
它是各个数据与均值偏离程度的度量.
方差:标准差的平方.
极差:样本中最大值与最小值之差.
3. 表示分布形状的统计量—偏度和峰度
2.选择适当的统计量,并在原假设 H0 成立的条件下确定该统计量 的分布;
3.按问题的具体要求,选取适当的显著性水平 ,并根据统计量
的分布查表,确定对应于 的临界值.一般 取 0.05,0.01 或 0.10;
4.根据样本观测值计算统计量的观测值,并与临界值进行比较,从
而在检验水平 下对拒绝或接受原假设 H0 作出判断.
Ⅲ m1 m2 m1 m2
z u1
t t1 (n1 n2 2)
(四)两个正态总体方差的检验
设样本 X1,X2,…,Xn
与 Y1,Y2,…,Yn
分别来自正态总体
N
(m1
,s
2 1
)
与
1
2
N
(m
2
,
s
2 2
)
,检验假设:
H0
:
s
2 1
s
2 2
;
H1
:
s
2 1
s
2 2
求极大似然估计值的问题,就是求似然函数 L(1,, k ) 的最大值问题,则
L 0 i 1,2,, k i
即
lnL 0 i 1,2,, k
i
二、区间估计的求法
设总体 X 的分布中含有未知参数 ,若对于给定的概率1 ( 0 1),存在两个统计量ˆ1 ( X1,X2,…,Xn)和ˆ2( X1,X2,…,
三、几个在统计中常用的概率分布
1.正态分布N (m,s 2 )