超临界锅炉氧化皮生成与脱落的防控

合集下载

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是一种新一代的高效节能锅炉,其高温受热面处于极端的工作条件下,容易发生氧化皮脱落问题。

本文将探讨超超临界锅炉高温受热面氧化皮脱落的原因,并提出相应的治理措施。

1. 高温氧化作用:高温下,锅炉受热面的金属材料容易与氧气反应,形成氧化物。

这些氧化物会沉积在受热面上形成氧化皮,进而脱落。

2. 烟气侵蚀:锅炉燃料燃烧产生的烟气中含有大量的气体和颗粒物,其中包括酸性物质,如二氧化硫和二氧化氮等。

这些酸性物质会侵蚀受热面,导致氧化皮脱落。

3. 热应力作用:超超临界锅炉高温受热面由于长期承受高温烟气的冲击,会引起受热面的热胀冷缩。

这种热应力会使氧化皮与基材之间的结合变弱,从而加速氧化皮的脱落。

1. 材料选用:使用耐热、抗氧化性能好的材料作为受热面,以提高锅炉的耐温性和抗氧化性能。

常用的材料有铬钼钢和镍基高温合金等。

2. 涂层处理:在受热面表面涂覆一层抗氧化的涂层,以提高受热面的抗氧化性能和耐蚀性。

常用的涂层材料有铁铝高温涂层和陶瓷涂层等。

3. 清洗除锈:定期对受热面进行清洗除锈工作,以去除氧化皮和其他污垢,减少氧化皮的形成和脱落。

4. 热应力控制:通过优化锅炉的运行参数和调整受热面的结构设计,减少受热面的热应力,延缓氧化皮的脱落。

5. 烟气净化:增加烟气净化的设备,如脱硫装置和脱硝装置等,减少烟气中的酸性物质含量,减少受热面的侵蚀和氧化皮的脱落。

超超临界锅炉高温受热面氧化皮脱落是一个复杂的问题,需要综合考虑材料性能、涂层处理、清洗除锈、热应力控制和烟气净化等因素。

通过采取综合治理措施,可以有效延缓氧化皮的形成和脱落,提高锅炉的运行效率和安全性。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是目前较为常见和主要的电力发电设备之一,其运行过程中经常会出现氧化皮脱落的问题。

氧化皮的脱落会影响锅炉的正常运行,导致能效下降,甚至对设备的安全性产生严重威胁。

分析和防治超临界机组电站锅炉氧化皮脱落问题具有重要的理论和实践意义。

一、氧化皮脱落的原因1.1 温度梯度超临界机组锅炉工作过程中,受到高温高压蒸汽的冲击,锅炉管壁表面将产生较大的温度梯度。

不同部位的锅炉管壁温差过大,会导致金属材料产生不均匀的热应力,进而引发氧化皮层的脱落。

1.2 流体腐蚀蒸汽中的氧气和水分子会与金属表面发生反应,生成金属氧化物,形成氧化皮层。

当锅炉中腐蚀性物质较多时,会导致氧化皮层增厚和脱落,影响锅炉的热传导效果和安全性。

1.3 机械压力锅炉在运行过程中,受到蒸汽冲击和机械震动等力的作用,会产生机械压力。

当机械压力过大时,会使氧化皮层松动或脱落,需要及时修补和保养。

2.1 表面分析对锅炉管壁的氧化皮层进行表面分析,可以通过扫描电子显微镜等工具观察锅炉管壁表面的氧化皮脱落情况。

通过分析氧化皮的结构和形貌,可以判断其脱落的原因和程度,为防治提供依据。

2.2 金属温度分析对锅炉管壁的温度进行实时监测和记录,可以判断锅炉管壁温度梯度是否过大,从而引发氧化皮层的脱落。

合理调整锅炉的运行参数,降低温度梯度,可以有效减少氧化皮脱落的发生。

通过对锅炉内部金属材料和蒸汽的化学成分进行分析,可以判断蒸汽中是否存在腐蚀性物质。

并采取相应措施,如装置除氧器、水处理设备等,减少金属材料的氧化腐蚀,降低氧化皮层的脱落。

合理控制和调整超临界机组锅炉的运行参数,使锅炉管壁的温度梯度保持在一个合理的范围内。

可以通过增加锅炉管壁的保护层厚度、调整蒸汽流量等方式,减少锅炉管壁的温度应力和热应力,从而减少氧化皮层的脱落。

安装和使用除氧器、水处理设备等设施,减少锅炉腐蚀性物质的含量。

定期对锅炉内部进行清洗和维护,清除锅炉管壁表面的氧化皮层,及时修补和保养锅炉设备。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉氧化皮脱落是指在锅炉运行的过程中,锅炉管道、设备壁面等部位的氧化皮发生剥落。

这种情况不仅会影响锅炉的正常运行,还可能导致设备的损坏。

分析和防治超临界机组电站锅炉氧化皮脱落问题是非常重要的。

需要对超临界机组电站锅炉氧化皮脱落问题进行分析。

在锅炉运行过程中,高温和高压条件下,水中的氧化性物质和金属表面会发生反应,产生氧化皮。

而超临界机组电站锅炉运行温度和压力更高,氧化皮脱落的风险也更大。

氧化皮脱落可能出现在锅炉的各个部位,如锅炉管道、过热器、再热器等。

氧化皮脱落不仅阻塞了水循环系统,还会影响设备的散热效果,增加了设备的热负荷,导致设备的过热和腐蚀,甚至发生温度过高的事故。

针对超临界机组电站锅炉氧化皮脱落问题,我们可以采取以下措施进行防治:1. 加强水处理:通过对进水和循环水进行净化和处理,去除水中的杂质和氧化性物质,减少氧化皮的产生。

2. 优化化学控制:合理控制水化学条件,减少水中的溶解氧含量,调整水的pH值,控制水中的硅酸盐、氯离子等含量,降低锅炉水和金属表面之间的化学反应,减少氧化皮的形成。

3. 清洗和除锈:定期对设备进行清洗和除锈,去除已形成的氧化皮,恢复金属表面的平整度和光洁度。

4. 薄膜保护:在金属表面形成薄膜,减少与水中氧化性物质的接触,从而防止氧化皮的产生。

可以使用缓蚀剂、缓蚀剂、阻垢剂等加入水循环系统中,形成保护膜。

5. 定期维护和检查:定期对设备进行维护和检查,发现问题及时修复,防止问题扩大。

在实际操作中,除了以上几点防治措施,还可以根据具体情况制定更有针对性的措施,如增加设备的冷却和散热功能,改善水的流动状态等。

超临界机组电站锅炉氧化皮脱落问题需要进行全面的分析和防治。

通过加强水处理、优化化学控制、清洗和除锈、薄膜保护以及定期维护和检查等措施,可以有效减少氧化皮的产生,延长设备的使用寿命,提高电站锅炉的运行效率和安全性。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是现代化的汽轮机发电装置,其关键部件之一即是锅炉。

锅炉的主要功能是将燃料的化学能转化为蒸汽能,并将蒸汽压力转化为机械能或电能。

在锅炉的运行过程中,由于锅炉进口水的含氧量、水质、水温等因素的影响,会产生氧化皮,影响锅炉的正常运行。

本文对氧化皮的形成原因、脱落的危害以及相应的防治措施进行分析。

一、氧化皮的形成原因在超临界机组电站锅炉运行中,锅炉的内壁与水接触,水中的氧气会与金属反应,产生一层氧化膜即氧化皮。

氧化皮生长速度受水中氧气浓度、水温、金属材料、水质等因素影响。

尤其是在高温高压条件下,氧化皮更容易产生和生长。

此外,由于水中掺杂有各种离子,如钙、镁、铁、铜等金属及其离子、硫酸盐、碳酸盐等化合物,在高温高压条件下,它们会沉积在锅炉内壁上,形成污垢和沉淀物,这也会引起氧化皮的生长。

二、氧化皮的危害1. 减小了热传递效率氧化皮的存在减小了锅炉的热传递效率。

经过氧化皮的内壁,热量需要穿过氧化层才能传递到水中,传热效率受到限制。

2. 降低了金属材料的强度氧化皮的形成不仅仅是一层膜,它还会继续生长,加速金属材料的老化、腐蚀和疲劳。

氧化皮层会加速金属材料的脆化、裂纹产生,降低材料强度,从而破坏锅炉的安全性能。

3. 影响水质氧化皮的流失和脱落会使得锅炉进口水中含氧量、金属杂质离子等因素发生变化,从而影响锅炉的水质的稳定性。

水质的不稳定对锅炉正常运行产生了负面影响,增加了锅炉的故障率和维护成本。

三、氧化皮的防治措施为了防止氧化皮的产生,需要对锅炉水质进行严格管理,排除水中氧气、二氧化碳等成分,同时要控制锅炉温度和压力,以减缓氧化皮的生成速度。

对于已经形成的氧化皮,需要定期进行清除和维护。

一般直接清除氧化皮是不可行的,需要了解氧化皮的性质和生长情况,采取适当的去氧化皮措施。

1. 喷水清洗法在锅炉运行时,通过器具喷洒水,实现对氧化皮的清洗。

但是,由于清洗时锅炉需要停机,影响发电量;此外,喷洒水会使得钢材的运动钝化层被冲掉,从而加速钢材的腐蚀速度。

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是目前国内外最先进、效率最高的一类锅炉,其高温受热面是其重要组成部分,但在运行中存在着氧化皮脱落的问题。

本文将围绕超超临界锅炉高温受热面氧化皮脱落与治理展开探讨。

1.1 高温、高压条件下金属氧化皮的生成超超临界锅炉所采用的高温、高压条件将使得管壁表面产生一层难以消除的氧化皮,这层氧化皮不仅影响了传热效果,还降低了管道的使用寿命。

1.2 循环腐蚀在超超临界锅炉内部,受到循环腐蚀的影响,导致高温受热面的金属腐蚀加速,连接处的氧化皮更容易脱落。

1.3 操作不当在锅炉操作中,如水质不达标、操作参数设置不恰当等问题,也会导致高温受热面氧化皮脱落的现象。

2.1 降低传热效率高温受热面氧化皮的脱落,将直接导致传热效果的减弱,降低了锅炉的工作效率。

2.2 引发事故高温受热面氧化皮脱落会加剧锅炉的损坏,甚至引发爆炸事故,对设备和人员造成危害。

2.3 增加维护成本高温受热面氧化皮脱落不仅影响了设备的寿命,同时还增加了维护成本,对锅炉的正常运行造成了不利影响。

3.1 提高水质提高水质是预防高温受热面氧化皮脱落的有效途径。

采用优质纯水,配套水处理剂等方式,可以有效降低循环腐蚀的程度,减少氧化皮的生成。

定期检查和维护超超临界锅炉的高温受热面,及时发现和处理氧化皮脱落的问题,保证设备的正常运行。

3.3 选用高质量耐高温材料在超超临界锅炉的设计和制造过程中,应该选择优质的耐高温材料,提高高温受热面的抗氧化能力,延长设备的使用寿命。

3.4 控制操作参数在锅炉操作过程中,要合理控制操作参数,确保操作的稳定性和安全性,避免因为操作不当而引起高温受热面氧化皮脱落的问题。

3.5 加强监测与管理加强对超超临界锅炉的监测与管理,在运行过程中及时发现问题,采取有效措施进行处理,确保设备的正常运行。

四、结语超超临界锅炉高温受热面氧化皮脱落的问题是目前工业生产中比较普遍的问题,对设备运行和安全造成了不小的影响。

如何防止超临界锅炉受热面内氧化皮生成及剥落

如何防止超临界锅炉受热面内氧化皮生成及剥落

如何防止超临界锅炉受热面内氧化皮生成及剥落1.原则要求1.1 末级过热器和末级再热器原则上不进行水压试验。

1.2 锅炉启动点火前,对热力系统进行冷态冲洗并严格按照水质要求进行。

1.3 锅炉启动点火后,对热力系统进行热态冲洗并严格按照水质要求进行。

1.4 任何情况下禁止汽温骤升和骤降。

1.5 金属壁温测点装置完好,显示准确。

1.6 在冷热态冲洗及正常运行中,严格监督给水、凝结水中的铁、二氧化硅及其pH值。

1.7 启动过程中尽量不使用减温水控制汽温。

机组负荷低于150MW严禁使用一二级及事故减温水,其它工况下再热减温水量不得大于再热蒸汽流量的10%。

当使用减温水时操作要平稳,温度控制要超前,避免突开突关减温水门使管壁急速降温和升温,导致氧化皮集中脱落。

2.冷态冲洗2.1 在冷态冲洗过程中,当凝汽器与除氧器间建立循环后,应投入凝结水泵出口加氨处理设备,控制冲洗水pH值为9.0~9.5,以形成钝化体系,减少冲洗腐蚀。

当凝结水及除氧器出口水含铁量大于500g/L时,应采取排放冲洗方式;当冲洗至凝结水及除氧器出口水含铁量小于500g/L时,可采取循环冲洗方式,投入凝结水处理装置运行(增加精处理运行方式),使水在凝汽器与除氧器间循环。

当除氧器出口水含铁量降至小于100g/L后,凝结水系统、低压给水系统冲洗结束。

2.2 当凝汽器与启动分离器建立循环后,应投入给水泵入口加氨处理设备。

调节冲洗水的pH值为9.0~9.3。

当启动分离器出口水含铁量大于500g/L时,应采取排放冲洗;小于500g/L时,将水返回凝汽器循环冲洗,投入凝结水处理装置除去水中铁。

当启动分离器出口水含铁量降至小于100g/L时,省煤器入口含铁量小于50g/L,冷态水冲洗结束。

3.热态冲洗在热态水冲洗过程中,当启动分离器出口水含铁量大于500g/L时,应由启动分离器将水排掉;当含铁量小于500g/L时,将水回收至凝汽器,并通过凝结水处理装置作净化处理,直至启动分离器出口水含铁量和二氧化硅含量均小于100g/L时,省煤器入口含铁量小于50g/L,热态水冲洗结束。

超超临界锅炉氧化皮的产生和防治

超超临界锅炉氧化皮的产生和防治

超超临界锅炉氧化皮的产生和防治随着机组容量越来越大,蒸汽参数越来越高,金属在高温环境下不断产生氧化皮。

并伴随氧化皮剥落堆积,造成管壁超温并最终导致锅炉四管爆漏事故。

因此氧化皮的产生和剥落是影响机组安全稳定运行因素之一。

一、氧化皮生成的原因由于高温高压蒸汽具有氧化性,从400℃以上开始具有较强氧化性,500℃-700℃具有最强氧化性,600℃以上氧化速度加快。

500℃以上,奥氏体钢就与水蒸汽发生反应生产氧化层,570℃以上,氧化层中增加了FeO相,材料氧化速度加快。

在600℃-620℃之间,金属氧化速度存在突变点,氧化层迅速增厚,氧化层达到一定厚度,运行条件变化时,容易导致氧化层脱落,成为氧化皮。

氧化皮是高汽温参数带来的副产物。

氧化皮基本是双层结构,内外层厚度相当,外层主要是疏松结构的Fe3O4,内层为致密结构的(FeCr)3O4,其中Cr含量随金属不同而不同。

奥氏体钢只脱落外层氧化皮,内层不易脱落。

铁素体钢内外两层都易脱落,管壁内部运行一段时间容易形成新的氧化皮,造成反复的形成和反复的脱落。

在机组实际运行过程中,锅炉高温过热器、高温再热器长期处于高温状态下,管壁出现短时超温是比较常见现象。

在长时超温和短时超温情况下,管材抗氧化能力大大降低。

加快氧化皮的生产和发展。

二、氧化皮的危害氧化皮的产生和剥落对机组运行的危害:(1)氧化皮剥落阻碍管内蒸汽流动,使壁温大幅升高,金属蠕变胀粗,造成锅炉受热面管壁超温爆管。

(2)氧化皮的绝热作用引起受热面管金属壁温上升,影响管材寿命。

(3)氧化皮对汽轮机产生固体颗粒侵蚀,造成调门、喷嘴和叶片侵蚀损坏。

(4)氧化皮产生容易造成主汽门卡涩,机组停运造成主汽门关闭不严,威胁机组安全运行。

(5)氧化皮剥落容易堵塞疏水管,威胁机组安全运行。

(6)氧化皮剥落造成汽水污染,严重影响汽水品质。

三、氧化皮剥离的原因、条件及机理(1)原因:由于氧化皮的膨胀系数与碳钢和低合金钢接近,但是奥氏体钢的膨胀系数要比氧化皮大很多,大幅度的温度变化将导致金属内应力增大而使氧化皮剥离。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是电力发电厂常用的热能装置,其工作环境复杂,长期运行后,内壁容易形成氧化皮。

氧化皮脱落的主要原因包括锅炉内壁温度变化、烟气腐蚀和锅炉水质状况等。

为了保证锅炉的安全运行,必须对氧化皮脱落进行分析与防治。

一、氧化皮脱落的分析1. 温度变化引起的氧化皮脱落:超临界机组电站锅炉内壁温度变化较大,会导致内壁产生热应力,进而引起氧化皮脱落。

炉膛壁由于受到烟气温度变化的影响,壁温会发生剧烈的变化,导致内壁产生变形和应力变化,最终导致氧化皮脱落。

2. 烟气腐蚀引起的氧化皮脱落:由于煤燃烧产生的烟气中含有很多酸性成分(如SO2、HCl等),在高温下容易引起锅炉内壁的腐蚀,导致氧化皮脱落。

特别是在负荷变化时,锅炉内燃烧产生的烟气组分会发生变化,从而导致腐蚀程度的变化,进一步加剧氧化皮脱落。

3. 锅炉水质状况引起的氧化皮脱落:超临界机组电站锅炉在长期运行过程中,由于水质处理不当或循环水水质不佳,很容易导致内壁结垢和沉积物的产生。

结垢和沉积物会加剧烟气对锅炉内壁的腐蚀,进一步导致氧化皮脱落。

1. 温度变化引起的氧化皮脱落:为了减少炉膛和屏渣区域壁温的剧烈变化,可以采取增加炉膛出口温度的方法,提高出口温度的稳定性,并且进行壁面冷却的操作,减缓内壁的温度变化。

2. 烟气腐蚀引起的氧化皮脱落:对煤燃烧的控制,尽量降低煤中含硫量,减少烟气中SO2的含量,从而减少烟气对锅炉内壁的腐蚀程度。

加强对锅炉内壁的防腐蚀涂料的保护,可以有效延缓氧化皮脱落的速度。

3. 锅炉水质状况引起的氧化皮脱落:采取适当的水质处理措施,保证循环水的水质稳定,避免水中含有酸性物质、颗粒物等物质的沉积,减少结垢和沉积物的产生。

定期对锅炉进行清洗,清除内壁上的结垢和沉积物,可以有效预防氧化皮脱落。

超临界机组电站锅炉氧化皮脱落问题是影响锅炉安全运行的一个重要因素。

采取适当的分析和防治措施,可以减少氧化皮脱落的发生,保证锅炉的正常运行。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治随着我国经济的飞速发展,电力行业也迅速发展壮大,超临界机组电站成为电力行业的主力军。

超临界机组电站锅炉是电站的核心设备,其安全运行直接关系到电力供应的稳定性和可靠性。

在锅炉运行中,氧化皮脱落问题一直是困扰着电站运行的一个重要隐患。

本文将对超临界机组电站锅炉氧化皮脱落的原因进行分析,并提出相应的防治措施,以确保电站锅炉的安全运行。

1. 材料质量不佳超临界机组电站使用的锅炉材料需要具有耐高温、耐压和耐腐蚀的特性,而一些廉价的锅炉材料可能质量不佳,其表面会存在一定的氧化皮,容易脱落。

2. 高温高压作用超临界机组电站锅炉在工作过程中会受到高温高压的作用,如果材料质量不佳,容易导致氧化皮在高温高压下脱落。

3. 操作不当锅炉运行过程中,如温度、压力控制不当,会导致运行条件不稳定,从而引起氧化皮的脱落。

4. 气体侵蚀燃烧产生的气体中可能含有酸性物质,当这些气体与锅炉材料接触时,会对材料产生侵蚀作用,使氧化皮脱落。

1. 提高材料质量采购时需选择质量可靠的锅炉材料,确保其有良好的抗氧化性能,减少氧化皮脱落的可能性。

2. 强化锅炉维护加强对锅炉的维护保养工作,定期对锅炉进行检测,及时发现问题并进行修复,避免由于设备老化等原因导致氧化皮脱落。

3. 合理操作严格遵守锅炉操作规程,确保锅炉运行时温度、压力等参数的稳定性,避免由于操作不当导致氧化皮脱落。

4. 防腐蚀措施采取有效的措施,如喷涂保护涂层、定期清洗等,防止氧化皮脱落。

5. 定期清洗定期对锅炉进行清洗,保持锅炉内部的清洁,避免氧化皮的积聚和脱落。

6. 加强监测加强对锅炉运行情况的监测,定期进行检测分析,及时发现问题并进行处理,防止氧化皮脱落对锅炉和电站的安全造成影响。

通过以上分析和防治措施,可以有效降低超临界机组电站锅炉氧化皮脱落的发生率,确保锅炉的安全稳定运行。

电站运营管理者和工作人员应加强自身的安全意识和技能培训,提高对锅炉运行和维护的掌握,加强对锅炉安全问题的认识和风险防范,为电站的安全生产提供有力保障。

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是一种高效、节能的发电设备,其受热面为高温区域,容易产生氧化皮脱落问题。

本文将探讨超超临界锅炉高温受热面氧化皮脱落的原因以及治理方法。

超超临界锅炉受热面氧化皮脱落的主要原因有两个方面:材料的选择和操作过程中的问题。

材料的选择是影响氧化皮脱落的主要因素之一。

超超临界锅炉使用的高温受热面材料需要具备耐高温、抗氧化等特点。

由于材料的局限性,可能存在一定的脆性和不稳定性,随着时间的推移,会出现氧化皮的产生和脱落。

在操作过程中,超超临界锅炉的高温受热面通常处于高温高压环境下,蒸汽中含有一定的氧气和水蒸气,这些因素都会加速氧化皮形成和脱落。

针对超超临界锅炉受热面氧化皮脱落的问题,可以采取以下治理措施:材料的选择十分重要。

在超超临界锅炉的设计阶段,需要选择耐高温、抗氧化的受热面材料。

合理的材料选型可以降低氧化皮的产生和脱落的风险。

在操作过程中要加强对超超临界锅炉高温受热面的维护和保养。

定期进行清洗和检查,及时发现和处理氧化皮问题。

清洗操作应当谨慎,避免使用过于剧烈的清洗剂,以免损坏受热面材料。

控制锅炉运行参数也是一个重要的治理方法。

调整锅炉的运行参数可以改变高温受热面的工况条件,减少氧化皮的产生。

降低蒸汽中的氧气和水蒸气的含量,可以减少氧化皮的形成和脱落。

超超临界锅炉高温受热面氧化皮脱落是一个影响锅炉运行稳定性和性能的问题。

合理选择材料、定期清洗检查以及控制运行参数等治理方法可以有效解决这一问题,保障锅炉的安全稳定运行。

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是一种高效、节能的燃煤锅炉,其受热面温度高达700摄氏度以上,因此受热面氧化皮脱落是其常见问题之一。

这种问题不仅影响了锅炉的正常工作,还可能对环境造成污染,因此需要有效的治理措施。

超超临界锅炉高温受热面氧化皮脱落的原因主要包括以下几点:一、受热面温度高,焚烧介质中含有一定的硫、氧等元素,在高温条件下易发生氧化反应,导致氧化皮的脱落。

二、锅炉内部高温高压环境容易造成材料疲劳和腐蚀,进而导致受热面氧化皮的产生和脱落。

三、煤种的选择和燃烧稳定性等因素也会影响受热面氧化皮的生成和脱落。

受热面氧化皮脱落的问题一旦发生,将直接影响超超临界锅炉的运行效率和安全性。

对于受热面氧化皮的治理十分重要。

下面将从预防和治理两方面进行详细介绍。

预防措施:1、选择合适的材料。

在设计和选材的过程中,需要考虑锅炉的工作温度、压力等因素,选择耐高温、耐腐蚀的材料,以减少氧化皮的生成和脱落。

2、燃料的选择和燃烧的稳定性。

选择低硫、低灰分的煤种,并保持良好的燃烧条件,避免煤灰中的硫等元素过量进入受热面,减少氧化皮的产生。

3、加强设备维护和保养,及时清理受热面。

定期对受热面进行清洗和检查,及时发现和处理氧化皮的问题,避免其脱落导致其他问题的发生。

治理措施:1、采取有效的防脱固化措施。

使用化学品对受热面进行浸渍或涂覆处理,形成一层坚固的覆盖层,防止氧化皮脱落。

2、采取表面处理技术。

利用喷涂、镀覆等技术对受热面进行表面处理,提高其抗氧化性和耐磨性,延长受热面的使用寿命。

3、优化燃烧控制。

通过优化燃烧系统和控制设备,减少煤灰中的有害元素进入受热面,降低氧化皮的产生。

超超临界锅炉高温受热面氧化皮脱落是一个需要重视和解决的问题。

预防和治理措施需要多方面合力,包括材料选用、燃料选择、设备维护、化学处理等方面,才能有效地延长受热面的使用寿命,保证锅炉的安全稳定运行。

希望借助技术的不断发展和进步,能够找到更加有效的预防和治理方法,为超超临界锅炉的运行提供更多的保障。

350MW超临界机组防止氧化皮生成及脱落技术措施

350MW超临界机组防止氧化皮生成及脱落技术措施

350MW超临界机组防止氧化皮生成及脱落技术措施在高温高压下,过、再热器管壁内表面容易产生氧化皮,在锅炉启停和快速变工况过程中往往会导致氧化皮脱落,造成部分受热面管壁通流部分变小甚至堵塞,从而导致受热面冷却不足而局部超温,进而导致锅炉爆管、蠕胀事故的发生。

为防止锅炉氧化皮脱落导致锅炉爆管、蠕胀等异常事故的发生,保证锅炉安全稳定运行,特制定措施如下:一、机组启动过程控制措施1.水质要求:1)锅炉上水水质标准:Fe<50μg/L,硬度≈0μmol/L,SiO2<30μg/L,PH值9.2~9.6。

2)冷态冲洗结束时锅炉点火水质标准:贮水箱排水中铁量<100μg/l,硬度≈0μmol/L,SiO2≤10μg/L,PH值9.2~9.6。

3)汽水分离器压力0.5MPa以上,分离器出口蒸汽温度190℃左右时,进行锅炉热态冲洗。

热态冲洗结束标准:贮水箱排水中含铁量<50μg/l。

2.锅炉上水温度及速度要求:1)在具备条件时,应提前投入除氧器加热,尽可能保持较高给水温度。

2)冷态上水温度控制在20~70℃,且高于水冷壁外壁温20~40℃。

3)冬季上水时间不小于4小时,夏季不小于2小时,上水速度控制在30-55t/h。

3.升温升压要求:4.锅炉点火至过、再热器建立蒸汽流量前,严格控制炉膛出口烟温<538℃。

5.高、低压旁路的控制:1)锅炉点火后,高压旁路控制不小于30%开度,低旁控制在不小于50%开度;主汽压力升至1MPa时,高压旁路随着主汽压力逐渐开至不小于60%,低旁开至80-100%。

2)汽机冲转前可通过尽可能开大高低旁开度(保证低旁减温器后温度≤60℃)对锅炉受热面系统进行大流量低压冲洗,以将沉积的氧化皮冲走。

6.减温水控制:1)当主、再热汽温大于360℃,投入过、再热器减温水控制汽温平缓。

投入减温水后,要注意喷水后汽温的变化,禁止减温水出现突增突减现象。

2)过热器减温水控制要以一级减温为主,二级减温为辅。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是一种高效、能耗低、环保的发电设备。

因其具有反应速度快、效率高等优点,对火电站的发电效率和环保指标有着极高的要求。

然而,锅炉在使用过程中容易发生氧化皮脱落现象,严重影响锅炉使用效率,甚至对环境造成污染。

因此,及时发现氧化皮脱落现象并采取相应措施进行防治十分重要。

一、氧化皮脱落的原因超临界机组电站锅炉氧化皮脱落的原因主要有两个方面:一是炉内高温氧化反应引起管子的氧化皮层剥落,二是炉内的化学成分沉积在管子表面形成氧化皮层,然后因管子受高温加热而脱落。

氧化皮脱落是一种自然现象,但是其对锅炉的影响却十分严重。

在高温高压下,氧化皮脱落会进入锅炉内部,造成如下问题:1. 浪费能源。

氧化皮脱落会降低锅炉的传热效率,使得发电效率降低。

2. 加速设备的磨损。

氧化皮脱落沉积在设备内部,会增加设备部件的摩擦,进一步加剧设备的磨损。

3. 污染环境。

氧化皮脱落后的残留物质可以堵塞排放口,导致烟气排放不畅,从而造成环境污染。

二、氧化皮脱落的检查和分析方法如何及时发现锅炉内的氧化皮脱落现象是防治氧化皮脱落的关键。

下面介绍一些基本的检查和分析方法:1. 外观检查通过外观检查可以初步了解锅炉的整体情况。

对于氧化皮脱落现象,可以通过裸眼观察锅炉的内外表面是否存在锈蚀、变形、裂纹等异常情况来初步判断锅炉是否存在氧化皮脱落现象。

2. 金属变色法利用金属变色法可以检测锅炉内部的炉膛、水侧等处是否有氧化皮脱落现象。

具体方法是在锅炉内部喷洒变色剂,通过观察变色情况来判断锅炉内部是否有氧化皮脱落。

3. 声学检测法通过声学检测可以探测锅炉内部存在的氧化皮脱落现象。

通过震动信号采集设备对锅炉内部进行扫描,可以通过对信号的反应判断锅炉内部存在的氧化皮脱落情况。

1. 定期清洗定期清洗锅炉内部是防止氧化皮脱落的重要措施。

通过清洗可以去除锅炉内部残留的颗粒物和化学物质,有效遏制氧化皮脱落的发生。

2. 防腐蚀防止锅炉内部产生复杂的化学反应也是防止氧化皮脱落的重要手段。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是现代火力发电厂的核心设备之一,其稳定运行对于保障电网安全运行起着至关重要的作用。

随着锅炉运行时间的不断延长,锅炉氧化皮脱落成为一个普遍存在的问题,给电站运行和安全带来了不小的隐患。

对超临界机组电站锅炉氧化皮脱落进行分析和防治显得尤为重要。

一、氧化皮脱落的原因分析1.1 锅炉燃料的选择燃料中含硫量过高会使得锅内硫酸盐析出并在锅炉管道内形成硫酸膜,加剧锅炉金属内部腐蚀和脱皮现象。

1.2 水质问题锅炉水中的水垢是锅炉金属的主要腐蚀介质,水质不良,水垢的形成和堆积会使得锅炉金属损耗加剧,从而导致氧化皮脱落。

1.3 设计和制造缺陷一些锅炉在设计和制造过程中可能存在材料选用不当、结构设计不合理等问题,导致锅炉在运行过程中容易产生氧化皮脱落现象。

1.4 运行参数变动锅炉运行参数的频繁变动,比如锅炉水位、汽温、汽压等参数的快速波动会给锅炉金属材料带来巨大的应力,导致氧化皮脱落。

2.1 影响锅炉热效率氧化皮脱落导致锅炉的金属材料暴露在高温高压的介质中,不仅容易破坏原有的热传导结构,还会影响燃烧过程中吸热、传热和蒸汽生成,降低锅炉的热效率。

氧化皮脱落使得锅炉的金属材料暴露在高温高压介质下,容易造成金属的腐蚀和损耗,从而影响锅炉的安全运行。

2.3 影响电站经济效益氧化皮脱落会降低锅炉的热效率,增加电站的运行成本,严重影响电站的经济效益。

加强对氧化皮脱落的分析,采取有效的防治措施对电站的运行和安全具有重要的意义。

三、氧化皮脱落的防治措施3.1 优化锅炉水质电站应加强对锅炉水质的检测和管理,充分理解和掌握水垢和腐蚀产生的原因,优化水处理过程,防止水垢和腐蚀产生。

3.2 严格控制锅炉运行参数3.3 定期清洗设备定期对锅炉设备进行清洗和维护,清除锅炉内的水垢和杂质,减少金属材料的腐蚀和损耗。

3.4 加强对锅炉的监测和检测建立完善的监测体系,对锅炉的运行状态进行实时监测和检测,及时发现氧化皮脱落的迹象,采取有效的预防措施。

600MW超临界直流锅炉氧化皮脱落原因分析及预防

600MW超临界直流锅炉氧化皮脱落原因分析及预防

600MW超临界直流锅炉氧化皮脱落原因分析及预防2021年以来,随着国产600MW等级超临界、超超临界机组相继投产发电,国内许多电厂均出现了锅炉高温过热器、高温再热器氧化皮脱落导致爆管停炉事故,某些电厂同一台锅炉在不到一个月时间内就因炉管氧化皮脱落造成爆管停炉3~4次,给电厂的安全、可靠、经济运行蒙上了一层阴影。

其实,超临界锅炉高温受热面氧化皮的生成、脱落是一个必然的过程,是一个从量变到质变的过程,如果认识不够,没有超前防范措施,将会对设备造成严重后果,如锅炉传热恶化、汽轮机通流部分效率下降、锅炉高温受热面超温爆管、汽轮机固体颗粒物浸蚀、主汽门卡涩、叶片损坏等。

目前,许多电厂专门成立技术攻关小组把防治锅炉氧化皮脱落作为重点课题来研究,通过广大技术人员的不断探讨和潜心研究,众多电厂在预防和控制锅炉氧化皮脱落方面取得了许多成功的经验。

一、锅炉简介1.概述中国水电崇信发电公司(以下简称“崇信电厂”)一期工程为2×660MW 超临界燃煤空冷机组,锅炉为哈尔滨锅炉厂生产的超临界、一次中间再热、变压运行的直流锅炉,最大连续出力2145t/h(B-MCR)。

锅炉采用等离子点火、前后墙对冲燃烧方式,采用带启动循环泵的内置式分离器系统。

锅炉配置6台*****中速磨煤机,锅炉最低稳燃负荷为35%B-MCR,启动时30%B-MCR以上进入直流运行,75%B-MCR以上进入超临界运行。

2.锅炉整体布置锅炉采用π型布置,单炉膛,尾部双烟道,全钢架,悬吊结构。

锅炉炉顶大板梁标高83.3米,锅炉宽50.0米,深52.7米,炉膛断面尺寸为23.6m宽、17.0m深。

锅炉的汽水流程以内置式分离器为界设计成双流程,从冷灰斗进口一直到标高50.4m的中间混合集箱之间为螺旋管圈水冷壁,再连接至炉膛上部的水冷壁垂直管屏和后水冷壁吊挂管,然后经下降管引入折焰角、水平烟道底包墙和水平烟道侧墙,再引入汽水分离器。

从汽水分离器出来的蒸汽引至顶棚和包墙系统,再进入低温过热器中,然后再流经屏式过热器和高温过热器。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是燃煤发电厂中常见的一种发电设备,它具有高效、节能、环保等特点。

随着锅炉运行时间的逐渐增加,锅炉内壁会产生氧化皮,导致锅炉性能下降,甚至出现严重的安全隐患。

对于超临界机组电站锅炉氧化皮脱落的分析与防治显得十分重要。

1.高温腐蚀。

在高温高压环境下,煤燃烧引发的高温烟气中含有大量酸性物质,这些酸性物质会对锅炉内壁材料进行腐蚀,导致氧化皮的产生。

2.焚烧煤灰成分。

煤燃烧所产生的煤灰中含有硫、氯等元素,这些元素会与高温下的水蒸汽和氧气发生化学反应,产生腐蚀性气体,加剧了氧化皮的形成。

3.操作和管理不当。

锅炉的操作和管理不当会导致煤燃烧不充分,烟气温度不稳定等问题,从而加速了氧化皮的产生。

以上原因导致锅炉内壁的氧化皮逐渐增多,一旦氧化皮脱落,将会造成锅炉运行不稳定、热效率下降、甚至引发爆炸等严重后果。

1.优化燃烧控制。

做好燃煤燃烧时的控制,保证燃烧充分,减少燃煤产生的有害气体和煤灰,降低氧化皮的产生。

2.改善烟气排放系统。

合理设计和优化烟气排放系统,加强烟气的洁净处理,减少对锅炉内壁的腐蚀,延长锅炉寿命。

3.定期清洗维护。

定期对锅炉进行清洗维护,及时清除氧化皮,保持锅炉内壁的清洁,减少氧化皮脱落的风险。

4.采用防腐涂层。

在锅炉内壁采用防腐涂层,有效隔离锅炉内壁和腐蚀性气体的直接接触,减缓氧化皮的产生。

5.加强运行监测。

建立健全的锅炉运行监测系统,对锅炉的运行情况进行实时监测和分析,及时发现问题并采取相应的措施。

通过以上一系列的防治措施,可以有效降低超临界机组电站锅炉氧化皮脱落的风险,保证锅炉的安全稳定运行,提高锅炉的经济效益和环保水平。

三、结语超临界机组电站锅炉氧化皮脱落问题是影响锅炉运行的重要因素之一,必须引起足够的重视。

只有通过对氧化皮脱落的原因进行深入分析,并采取相应的防治措施,才能保证锅炉的安全稳定运行。

锅炉制造商、运营商和监管部门也应积极合作,共同推进锅炉氧化皮脱落问题的解决,为我国燃煤发电行业的可持续发展贡献力量。

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理

超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是目前燃煤发电设备中最先进的一种锅炉,其工作效率高、能源利用率高、污染排放低等优点使得其在发电行业得到了广泛应用。

随着设备运行时间的增长,超超临界锅炉高温受热面氧化皮脱落问题逐渐凸显出来,这严重影响了设备的安全性和经济性。

本文将探讨超超临界锅炉高温受热面氧化皮脱落的原因及治理措施。

一、问题分析1. 高温受热面氧化皮脱落的原因超超临界锅炉高温受热面主要由炉墙、炉顶和炉膛组成。

这些受热面在长时间高温、高压、高湿环境下容易产生氧化皮,且由于受热面受到高温烟气的冲击和流速变化,氧化皮容易脱落。

氧化皮脱落不仅会导致受热面温度升高,还会造成受热面的腐蚀和损坏,严重影响设备的使用寿命和安全性。

2. 影响氧化皮脱落会导致受热面的温度升高,增加炉膛内部的温度和烟气侧的温度,降低了锅炉的热效率,增加了设备的能耗成本。

氧化皮脱落会导致受热面的腐蚀和损坏,进一步危害设备的安全性和经济性。

二、治理措施1. 预防措施(1)优化燃烧系统采用先进的燃煤技术和燃烧控制系统,可以降低燃煤的氮氧化物含量和硫氧化物排放,减少受热面的腐蚀和氧化皮的生成。

(2)控制烟气流速通过优化锅炉设计和降低烟气流速,可以减缓烟气对受热面的冲击和损伤,减少氧化皮的产生和脱落。

(3)加强受热面保护采用先进的受热面材料和涂层技术,提高受热面的抗氧化和抗腐蚀性能,延长受热面的使用寿命。

2. 治理措施(1)清理氧化皮定期对受热面进行清洗和除锈,清除氧化皮和积灰,恢复受热面的热传导和散热性能,提高锅炉的热效率。

(3)监控系统建立完善的锅炉运行监控系统,及时分析监测受热面的温度、压力和氧化皮的脱落情况,预警和处理可能的问题,保证锅炉的安全和稳定运行。

三、结语超超临界锅炉高温受热面氧化皮脱落是一个严重影响设备安全性和经济性的问题,需要采取一系列预防措施和治理措施来解决。

通过优化燃烧系统、控制烟气流速、加强受热面保护和完善监控系统等措施,可以有效降低氧化皮脱落的风险,延长受热面的使用寿命,提高设备的安全性和经济性。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉氧化皮脱落是电站运行过程中常见的问题之一,它会对设备的安全稳定运行产生不良影响。

在电站运行过程中,锅炉内壁的烟气侵蚀和高温腐蚀作用使得锅炉管道表面出现氧化皮,如果氧化皮未得到及时清除,会导致氧化皮脱落。

本文将对超临界机组电站锅炉氧化皮脱落进行分析,并提出相应的防治措施。

氧化皮脱落的原因主要有以下几点:1. 烟气侵蚀:锅炉燃烧产生的烟气中含有一定的酸性成分,这些酸性物质容易与锅炉管道表面的金属氧化物发生反应,形成氧化皮。

长期以来,烟气侵蚀是氧化皮的主要原因。

2. 高温腐蚀:超临界机组电站锅炉的工作温度较高,容易引起金属材料的高温腐蚀。

高温高压下,金属表面的氧化膜会加速腐蚀,从而使氧化皮脱落。

3. 金属疲劳:锅炉内部的金属材料会由于高温高压和膨胀收缩等因素产生应力,长期的应力作用容易导致金属疲劳,进而造成氧化皮脱落。

为了防止氧化皮脱落,可以采取以下措施:1. 脱硫:对烟气进行脱硫处理,减少烟气中的酸性物质含量,从而减缓烟气对锅炉管道的侵蚀作用。

2. 清除氧化皮:定期清除锅炉管道内的氧化皮,可以采用机械清洗、化学清洗等方法。

机械清洗可以通过刷洗和冲洗的方式将氧化皮清除,化学清洗可以使用化学试剂溶解氧化皮,并通过冲洗将氧化皮带走。

3. 金属保护:对锅炉管道进行防腐处理,可以使用耐蚀涂层、耐高温涂层等方式,增强金属的抗腐蚀能力,防止氧化皮的生成。

4. 加强运行监测:定期对锅炉管道进行检查,了解管道的腐蚀情况。

及时发现问题,并采取相应的修复措施,可以有效避免氧化皮的脱落。

超临界机组电站锅炉氧化皮脱落是一个具有一定危害性的问题。

需要从源头上减少烟气中的酸性物质,定期清除氧化皮,加强金属保护和运行监测,从而保障锅炉的稳定运行。

通过采取综合措施,可以有效预防和控制氧化皮脱落现象的发生。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是一种高效节能的发电设备,其锅炉部分承担着转化化石能源为电能的重要任务。

其中,锅炉的安全、稳定运行是保障发电厂运行的重要前提之一。

然而,在锅炉长期使用过程中,锅炉内部容易出现的一个问题就是氧化皮的脱落,这会引起一系列的连锁反应,对电站运行安全造成严重影响。

本文主要探讨超临界机组电站锅炉氧化皮脱落的原因、特征,以及如何有效的预防和治理这种现象。

一、氧化皮形成的原因锅炉的材质多是铁合金等金属材料,长期高温高压下,锅炉表面易出现氧化皮,这主要由以下原因导致:1、锅炉内部能量受限,产生较大热负荷,造成表面局部过热,从而发生氧化皮。

2、装置中存在一些缺陷,如气孔,层状缺陷,交界区缺陷等,加之局部应力集中,会使孔隙处易于产生氧化皮。

3、大气环境因素也是造成锅炉氧化皮的重要原因之一,腐蚀、污染等环境因素会大大加剧锅炉氧化皮的产生过程。

二、氧化皮脱落的特征锅炉内部存在有氧化皮,它会影响锅炉的安全性和运行效率,主要表现在以下几个方面:1、导致锅炉内部烟道堵塞,严重影响烟气排出和气流过程。

2、产生铁锈,使水质变劣。

3、降低了锅炉表面的光泽。

4、在烟囱周围形成污染物,使附近居民的生活和健康受到影响。

三、预防与治理措施为了预防和治理锅炉氧化皮脱落现象,超临界机组电站锅炉需要采取以下措施:1、加强锅炉表面的清洗和维护,防止氧化皮过度脱落。

2、有效避免锅炉起火的过程中产生过度的热负荷,一定程度上减少氧化皮的产生。

3、及时排放排污,保障锅炉内部水质的良好。

4、加强管理,设立专门的锅炉维护检测团队,对锅炉的状态进行全面的分析和检测,及时发现问题并解决。

综上,超临界机组电站锅炉氧化皮脱落问题需要有效防范和控制。

必须加强锅炉内部的管理和维护工作,严格按照标准要求,加强对氧化皮的清洗和护理。

同时也要加强锅炉的检测,及时解决锅炉内部存在的问题,确保超临界机组电站锅炉的运行安全、高效。

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治

超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是目前发电行业中使用最为广泛的一种锅炉。

这种锅炉有着高效、节能、环保等优点,同时也有一些缺点,比如对水质要求高、管子受热容易脱落等问题。

其中,在使用过程中,锅炉内部可能产生氧化皮,这对锅炉的安全和稳定运行都会造成严重危害。

氧化皮的产生和脱落氧化皮是指金属表面由于氧化反应而产生的一层薄膜。

超临界锅炉中,锅炉管道在高压、高温下运行,内壁受热膨胀、冷缩,表面产生张应力和压应力,此时管道表面的氧化皮会随着这种应力变化而形成和分裂。

当应力超过氧化皮的强度时,氧化皮就会脱落。

这种脱落现象可能产生划伤、切割管道或喷射高速氧化皮的碎片,造成管路遭受撞击打击或者再次被烧损等情况。

氧化皮的危害和防治氧化皮的产生和脱落会给锅炉带来一系列的安全隐患和稳定性问题。

首先,氧化皮具有硬度较高、易剥脱、斑块较大等特点,这些特性尤其在制造过程中加工不当时易于形成,极易造成管道损伤和泄露事故。

同时,氧化皮脱落的碎片会携带一定能量、速度和射程,如果撞击到周边的管道或设备上,极易造成这些设备的故障和损坏。

有效措施为了有效防治超临界锅炉内氧化皮的产生和脱落,需要采取以下措施:1.严格控制水质:氧化皮的产生和脱落与水质、雾化水分造成的挥发物和含氧及其它因素有很大关系,所以加强水质控制,减少管道受损,对于防治氧化皮的产生和脱落具有重要意义。

2.加强检修:定期对锅炉进行检修,及时发现氧化皮及时清除,更换不良的管路元件,修复损坏的部位。

3.提高制造质量:超临界锅炉的制造过程中,需要加强质量管理,在金属成形、焊接、热处理、清洗等关键环节环节上加强控制品质,确保零件不出现明显质量问题。

4.改善运行条件:为了使锅炉在高效、节能、环保的同时避免氧化皮脱落问题的发生,还需要改善运行条件,优化锅炉的操作过程,保证锅炉的运行在一个稳定的状态下。

总之,超临界锅炉在使用过程中出现氧化皮的现象,必须给予高度重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界锅炉氧化皮生成与脱落的防控
发表时间:2018-05-14T15:45:00.637Z 来源:《电力设备》2017年第35期作者:郭志江[导读] 摘要:在当前进行超临界锅炉运行操作时锅炉钢结构易发生氧化作用生成铁氧化物在锅炉钢结构外边形成氧化皮,这些氧化皮积累后慧聪金属本体上剥脱,一旦流入受热面管道就可能堵塞管道引起爆管等等问题,本文就超临界锅炉氧化皮产生与脱落的原因进行了探讨,并提出了锅炉氧化皮生成与脱落的防控措施。

(内蒙古京能康巴什热电有限公司内蒙古鄂尔多斯市 017000)摘要:在当前进行超临界锅炉运行操作时锅炉钢结构易发生氧化作用生成铁氧化物在锅炉钢结构外边形成氧化皮,这些氧化皮积累后慧聪金属本体上剥脱,一旦流入受热面管道就可能堵塞管道引起爆管等等问题,本文就超临界锅炉氧化皮产生与脱落的原因进行了探讨,并提出了锅炉氧化皮生成与脱落的防控措施。

关键词:超临界;锅炉;氧化皮;生成与脱落;防控引言
超临界锅炉是指运行中锅炉内工质的压力超过临界值的锅炉,通常锅炉所用钢材在高温状态下较于发生氧化,氧化作用所形成的氧化皮对锅炉运行状态会产生影响,我们针对超临界锅炉进行氧化皮生成与脱落机制的了解后发现,锅炉结构温度差与启停操作不规范会造成锅炉氧化皮生成与脱落速度增快。

1锅炉氧化皮形成原因根据奥氏体不锈钢在超临界以上参数锅炉中的使用特性,其抗氧化性较弱,温度越高,高温氧化的速度就会越快,氧化高峰期到来得越早,在实际运行中越容易造成受热面氧化皮的大面积脱落堵塞爆管的事故。

有的厂由于受热面运行超温,以及锅炉启停时温度升降过大,锅炉保养不好,不足10000小时就会发生氧化物大面积快速脱落并堵塞爆管的事故(国内机组高峰期最早的在2700小时左右)。

超临界锅炉高温受热面采用马氏体钢、铁素体钢和奥氏体钢材料后,管道内壁在高温高压水蒸汽作用下生成氧化皮是不可避免的。

氧化皮的主要成分是大量Fe3O4和少量Fe2O3。

而铁氧化物Fe3O4与奥氏体不锈钢母材晶格形式、热膨胀系数之间有较大差异。

运行中,管内壁产生氧化皮生长到一定厚度时,在机组启停过程中,在管道温度变化较大时,由于氧化皮与受热面热膨胀系数相差较大,氧化皮就很容易从金属本体剥落。

当剥落物堆积到管排下部弯头部位时,将导致受热面管路堵塞而引发超温爆管;当剥落物随主蒸汽进入主汽阀会造成主汽阀卡涩;当剥落物进入汽轮机通流部分将发生固体颗粒冲蚀。

防止氧化皮脱落对亚/超(超)临界机组安全、稳定、经济运行具有十分重要的意义。

氧化皮产生的主要原因是高温氧化。

其他原因为:锅炉长时间运行、汽水品质、运行操作习惯、锅炉构造及其他因素。

2氧化皮的脱落
2.1停炉时
因为不锈钢的线膨胀系数为2.1×10-5,氧化物的线膨胀系数为0.9×10-6,膨胀系数不同,氧化物脱落无法避免。

由于不锈钢在运行时内壁已有大量的氧化物存在,不锈钢和氧化物的膨胀系数又相差较大,而在冷却时不锈钢收缩快,氧化物收缩慢,因此造成氧化物-挤碎-脱落-沉积。

2.2启炉时
由于不锈钢在运行时内壁已经有了大量的氧化物存在,在停炉时已经破碎,不锈钢和氧化物的膨胀系数相差较大,但不锈钢的膨胀速度快,氧化物的膨胀速度慢,氧化物破碎量小,一般不会造成氧化物的大面积脱落。

氧化物脱落量小,一般不会造成堵塞爆管。

3防止氧化皮生成与剥落的具体措施 3.1控制受热面超温减缓氧化皮的生成
由于运行温度越高氧化皮的生长速度越快,并且运行温度超过某一临界值,氧化皮的生长呈现加速现象,因此通过控制受热面超温运行可有效减缓氧化皮的生成。

通常锅炉厂提供的高温受热面金属报警温度是根据相应压力按照管材强度的计算值,而考虑管材高温氧化的问题较少,因此需要更保守的设置受热面金属报警温度来限制受热面出口的蒸汽温度。

3.1.1通过燃烧调整控制管壁超温
运行人员加强受热面金属管壁温度的监视。

由于测量值为大包内壁温,炉内的实际壁温要在此基础上加30℃~50℃,若出现金属管壁温度报警,及时调整锅炉配风并降低主、再热蒸汽温度运行;若温度降至550℃后,金属管壁温度还是超限,则应申请调度降低机组负荷,直至金属管壁温度恢复正常,汇报设备管理员进行分析调整。

3.1.2减少炉膛出口烟温偏差
运行中可增加SOFA反切风门开度、利用两侧CCOFA风门开度偏置,进一步减小炉膛出口烟温偏差,防止分隔屏出口蒸汽温度偏差过大,必要时尽量降低火焰中心高度,减小高温受热面的“温压”(降低烟气和蒸汽温度差,保证相同蒸汽温度的条件下降低受热面的金属温度)。

3.1.3重点抓好管壁超温管理
适当降低壁温和蒸汽温度限定值。

后屏出口壁温可控制在535℃,末级过热器和末级再热器壁温可控制在600℃。

建议末级过热器和末级再热器出口蒸汽温度超过设计值5℃开始进行考核,至于后屏,考虑到设计计算与实际运行存在差异性,蒸汽温度考核限定值可适当放宽,建议超过设计值10℃开始进行考核。

3.2规范锅炉启动和停运操作
由于氧化皮的剥落影响因素复杂,既与氧化皮的厚度有关,也与受热面的温变速率有关,不同的材料和运行环境生成的氧化皮形态和结构也存在比较大的差异。

在锅炉启动过程中尽量平稳的控制锅炉的温升,停炉后尽可能降低锅炉的降温速率,可有效缓解氧化皮在危险阶段的剥落。

3.2.1加强锅炉启动过程中的大流量冲洗
(1)机组达到冲车参数后稳定锅炉热负荷,利用机组高、低压旁路系统进行大流量冲洗。

(2)解除旁路系统自动,将低压旁路全开,高压旁路迅速全开至100%,冲洗5~10 min后再逐渐关闭高压旁路调节门至主汽压力8 MPa。

重复操作5~10次。

3.2.2控制好锅炉启动过程中的温升速率
启动过程中严格按照锅炉启动曲线进行升温升压,启动过程中加强受热面金属管壁温度监视,控制金属壁温均匀上升;发现管壁温度异常升高时,稳定燃烧工况运行,停止升温、升压。

3.2.3严格控制停炉过程中的冷却速度
(1)机组采用正常方式停机时,将机组负荷降至200 MW后,锅炉稳定负荷,机组通过开启高、低压旁路降负荷至100 Mw以下后,即请示调度同意,手动MFT打闸停机;吹扫5 min后,停止送引风机运行,关闭风、烟系统挡板进行保温、保压。

(2)如非工作必须,尽可能避免采用滑参数(温度)方式停机;必须采用滑参数方式停机时,整个停机过程中严格控制主蒸汽和再热蒸汽的降温速率小于1.2℃/min。

(3)待主蒸汽压力降至1.8MPa时,锅炉迅速开启疏水门进行热炉放水,待分离器压力降至0.2MPa时开启锅炉排空气门,开启水冷壁入口联箱疏水至无压放水。

待锅炉主汽压力降至O MPa、水冷壁入口联箱疏水至无压放水手动门无水后,关闭排空气门、疏水门。

4结束语
总之,在运行锅炉时要严格按照规范进行操作,以降低操作中出现升降温速度过快的情况,同时在锅炉停炉后要强化检查,贯彻逢停必查的检查原则,针对金属本体与管道进行氧化皮状态检查与清理,降低锅炉运行中由于氧化皮存在造成的事故概率。

参考文献
[1]高清林,陈敦炳.600MW超临界锅炉高温受热面蒸汽氧化初探[J].锅炉技术,2016,47(02):76-80.
[2]高清林,陈敦炳,黄庆专,张仁金. 超临界锅炉高温管屏蒸汽氧化探析[J].电力安全技术,2015,17(02):12-16.
[3]张俊伟.锅炉高温受热面管氧化皮检测分析[J].内蒙古电力技术,2015,33(01):39-43.
[4]李一飞.超临界锅炉末级过热器升级改造前后性能评估及氧化皮控制措施[J]. 科技创新与应用,2015(16):1-5.
[5]李俊忠.超临界高水分褐煤直流锅炉氧化皮防治措施[J].能源研究与管理,2015(03):97-99+109.
[6]肖芝林,陈辉.1030MW超超临界锅炉高温受热面氧化皮大量生成及脱落的原因分析[J].锅炉制造,2014(02):37-39+50.
[7]李勇军,朱霖.超临界锅炉特种管材氧化皮结构特征及剥落规律[J].中国特种设备安全,2013,29(10):40-42.。

相关文档
最新文档