第五章习题及解答

合集下载

第五章习题答案

第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。

设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。

已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。

解:作梁的弯矩图如图所示。

梁的最大弯矩发生在固定端截面上。

22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。

若[]160MPa σ=,试求许可载荷F 。

解:(1)求支座反力。

选整个梁为研究对象,受力分析如图所示。

列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。

由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。

5.8 压板的尺寸和载荷情况如图所示。

材料为45钢,380s MPa σ=,取安全因数1.5n =。

试校核压板的强度。

解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。

第5章习题答案

第5章习题答案

第5章5-1传输线长度为1m ,当信号频率分别为975MHz 和6MHz 时,传输线分别是长线还是短线?答:1) 频率为975MHz 时,信号的波长为0.3077m<1m ,传输线是长线;2) 频率为6MHz 时,信号的波长为50m>1m ,传输线是短线;5-2已知同轴电缆的特性阻抗为75Ω,其终端接负载阻抗Z L =25+j50Ω,计算终端反射系数2Γ。

答:217550257550250L 0L 2+-=++-+=+-=Γj j j j Z Z Z Z5-3 一无耗传输线特性阻抗为Z 0=100Ω,负载阻抗Z L =75-j68Ω,试求距离终端为λ/8和λ/4处的输入阻抗。

答:1006850687568257568250L 0L 2+-=++-+=+-=Γj j j j Z Z Z Z100685068)(100685068100685068822'228/++=-+-=+-=Γ=Γ--j j j j j e j j e j z j λλπβλ 100686850)1(100685068100685068422'224/+-=-+-=+-=Γ=Γ--j jj j e j j ej z j λλπβλL 02L 075681002568756810017568Z Z j jZ Z j j-----Γ===+-+-222'8/82256825682568()175681756817568j j z j j j ee j j j j πλβλλ-------Γ=Γ==-=---0256811(8)1756825682000013617568(/8)10010025681(8)175682568150117568in j j j j j Z Z j j j j λλλ-++Γ-+---====--Γ--+-- 222'4/42256825682568(1)175681756817568j j z j j j ee j j jπλβλλ------+Γ=Γ==-=---0256811(4)1756825682000017568(/4)10010025681(4)175682568150136117568in j j j j Z Z j j j j j λλλ+++Γ-++-====+-Γ------5-4设无耗线终端接负载阻抗L L j X Z Z +=0,其实部0Z 为传输线特性阻抗,试证明:负载的归一化电抗L ~X 与驻波系数ρ的关系为ρρ1~L -=X 。

第5章_经营决策分析习题

第5章_经营决策分析习题

第5章_经营决策分析习题第五章课后练习题整理(附答案)⼀、单选题1、在有关产品是否进⾏深加⼯决策中,深加⼯前的半产品成本属于()A.估算成本B.重置成本C.机会成本D.沉没成本2、在进⾏半产品是否进⼀步深加⼯决策时,应对半成品在加⼯后增加的收⼊和()进⾏分析研究。

A.进⼀步加⼯前的变动成本B.进⼀步加⼯追加的成本C.进⼀步加⼯前的全部成本D.加⼯前后的全部成本3、设⼀⽣产电⼦器件的企业为满⾜客户追加订货的需要,增加了⼀些成本开⽀,其中()是专属固定成本。

A.为及时完成该批产品的⽣产,⽽要购⼊⼀台新设备B.为及时完成该批追加订货,需要⽀付职⼯加班费C.⽣产该批产品机器设备增加的耗电量D.该⼚为⽣产该批产品以及以后的⽣产建造了⼀间新的⼚房4、某⼚需要零件甲,其外购单价为10元,若⾃⾏⽣产,单位变动成本为6元,且需要为此每年追加10000元的固定成本,通过计算可知,当该零件的年需要量为()时,外购、⾃制两种⽅案等效。

A.2500 B.3000 C.2000 D.18005、某公司⽣产⼀种化⼯产品甲,进⼀步加⼯可以⽣产⾼级化⼯产品⼄,甲、⼄两种产品在市场上的售价为50元每千克、120元每千克,但⼄产品的⽣产每年需要追加固定成本20000元,单位变动成本为10元,若每千克甲可加⼯0.6千克⼄,则以下选择中,该公司应( )。

A.进⼀步加⼯⽣产产品⼄B.当产品甲的年销售量超过1250千克,将甲加⼯为⼄C.将甲出售,不加⼯D.两种⽅案均可6、在固定成本不变的情况下,下列()应该采取采购的策略。

A.⾃制单位变动成本⼩于外购价格B.⾃制单位变动成本=外购价格C.⾃制单位变动成本⼤于外购成本D.⾃制单位产品成本⼤于外购成本7、在产销平衡的情况下,⼀个企业同时⽣产多种产品,其中⼀种单位边际贡献为正的产品最终变为亏损产品,其根本原因是()A.该产品存在严重积压B.该产品总成本太⾼C.该产品上分担的固定成本相对较⾼D.该产品的销量太⼩8、下列哪种成本为相关成本()A.可避免成本B.共同成本C.联合成本D.沉没成本9、下列哪种成本为⽆关成本()A.沉没成本B.专属成本C.可避免成本D.增量成本10、如果把不同产量作为不同⽅案来理解的话,边际成本实际上就是不同⽅案形成的()A.相关成本B.沉没成本C.差量成本D.付现成本11、设某企业⽣产某种半成品2000件,完成⼀定加⼯⼯序后,可以⽴即出售,也可以进⼀步深加⼯之后再出售,如果⽴即出售,每件售价15元,若深加⼯后出售,售价为24元,但要多付深加⼯成本9500元,则继续进⾏深加⼯的机会成本为()A.48000 B.30000 C.9500 D.1800012、如上题条件,⽴即出售的机会成本为()A.48000 B.30000 C.38500 D.1800013、有⼀批可修复废品,存在两种处置⽅案,⼀个是降价后直接出售,⼀个是修复后按正常价格出售,修复成本为3000元,降价后出售收⼊为7000元,修复后出售收⼊为11000元,那么差量损益为()A.3000 B.4000 C.8000 D.100014、在短期经营决策中,企业不接受特殊价格追加订货的原因是买⽅出价低于()A.正常价格B.单位产品成本C.单位变动成本D.单位固定成本⼆、多选题1、下列各项中,属于决策分析过程的特征的有()A.本质的主观能动性B.依据的客观性C.⽅案的可选择性D.时间上的未来性2、按照决策条件的肯定程度,可将决策划分为以下类型()A.战略决策B.确定型决策C.风险型决策D.不确定型决策3、下列各项中,属于⽣产经营决策中相关成本的是()A.增量成本B.机会成本C.专属成本D.沉没成本E.不可避免成本4、下列各项中,备选⽅案中不涉及相关收⼊的是()A.差别损益分析法B。

理论力学(周衍柏)习题答案,第五章

理论力学(周衍柏)习题答案,第五章

第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。

杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。

得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。

去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。

因此自由度数为1。

选为广义坐。

由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。

由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。

因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。

第五章定积分习题参考解答

第五章定积分习题参考解答

习题5-1 定积分的概念1、利用定积分的几何意义,求下列积分: (1)dx x ⎰-21(2)dx x ⎰--3329解2、估计下列各积分的值:(1)()⎰+ππ4542sin 1dx x (2)⎰-022dx exx3、根据定积分的性质及教材中习题5-1第12题的结论,说明下列各对积分哪一个的值较大: (1)⎰21ln xdx 还是()⎰212ln dx x ?解(1)在区间{1,2}上,由于0ln 1x ≤≤,得()2ln ln x x ≥,因此21ln xdx ⎰比()221ln x dx ⎰大.(2)⎰1dx e x 还是()⎰+11dx x ?解 由于当0x >时()ln 1x x +<,故此时有1xx e +<,因此10x e dx ⎰比()11+x dx ⎰大。

习题5-2 微积分基本公式1、求由参数表达式⎰=t udu x 0sin ,⎰=tudu y 0cos 所确定的函数对x 的导数dxdy.2、求由+⎰y t dt e 00cos 0=⎰x tdt 所确定的隐函数对x 的导数dxdy.3、计算下列各导数:(1) ⎰+2021x dt t dx d ; (2) ()⎰x x dt t dxd cos sin 2cos π. 解 (1)原式=2; (2)原式=()()()()cos sin 222200cos cos sin cos cos cos cos sin x x d t dt t dt x x x x dx ππππ⎡⎤-=--⎢⎥⎣⎦⎰⎰ ()()()()222sin cos sin cos cos sin sin cos cos sin x x x x x x x ππππ=---=-4、 计算下列定积分: (1)⎰-1024x dx; (2)⎰-+++012241133dx x x x ; 解 (1)110arcsin 26x π⎡⎤==⎢⎥⎣⎦⎰(2)42000232211133113arctan 1114x x dx x dx x x x x π---++⎛⎫⎡⎤=+=+=+ ⎪⎣⎦++⎝⎭⎰⎰ (3)⎰42tan πθθd ; (4)⎰π20sin dx x ;解 (3) ()[]2244400tan sec 1tan 14d d ππππθθθθθθ=-=-=-⎰⎰(4)()[][]22200sin sin sin cos cos 4x dx xdx x dx x x πππππππ=+-=-+=⎰⎰⎰(5)⎰20)(dx x f ,其中⎪⎩⎪⎨⎧>≤+=.1,21,1,1)(2x x x x x f 解()11232122010018()12263x x f x dx x dx x dx x ⎡⎤⎛⎫=++=++= ⎪⎢⎥⎣⎦⎝⎭⎰⎰⎰5、求下列极限: ⎰⎰⎪⎭⎫ ⎝⎛→xt xt x dt te dt e 0220022lim .解()222222220020020222limlimlimlim21x x xt x t t x xxx x x x t e dtee dte dtexxe te dt→→→→====⎰⎰⎰⎰6、设⎩⎨⎧∈∈=].2,1[,),1,0[,)(2x x x x x f 求=Φ)(x ⎰x dt t f 0)(在]2,0[上的表达式,并讨论)(x Φ在)2,0(内的连续性.习题5-3 定积分的换元法和分部积分法 1、计算下列各定积分:(1)⎰262ππdu u ; (2))0(0222>-⎰a dx x a x a; 解 (1)()2222666111cos 1cos2sin 222268udu u du u u πππππππ⎡⎤=+=+=-⎢⎥⎣⎦⎰⎰(2)()()4sin 2422220sin cos sin 228x a ua a xa u udu u d u ππ===⎰⎰⎰44422242001sin sin 8442216t ua a a tdt tdt a ππππ====⋅⋅=⎰⎰ 另解()sin 422422220sin cos sin 1sin x a ua xa u udu au u du ===-⎰⎰⎰ππ441312242216a a ⎛⎫=⋅-⋅⋅= ⎪⎝⎭πππ。

第5章-习题参考答案

第5章-习题参考答案

第五章习题参考答案一、填空题1、MCS-51有5个中断源,2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择。

2、外中断请求标志位是 IE0 和 IE1 。

3、 RETI 指令以及任何访问 IE 和 IP 寄存器的指令执行过后,CPU不能马上响应中断。

4、8051单片机响应中断后,产生长调用指令LCALL,执行该指令的过程包括:首先把 PC的内容压入堆栈,以进行断点保护,然后把长调用指令的16位地址送 PC ,使程序执行转向程序存储器中的中断地址区。

二、选择题:1、在中断服务程序中,至少应有一条( D )。

A、传送指令B、转移指令C、加法指令D、中断返回指令2、要使MCS-51能够响应定时器T1中断,串行接口中断,它的中断允许寄存器IE的内容应是( A )。

A、 98HB、 84HC、 42HD、 22H3、MCS-51响应中断时,下列哪种操作不会发生( A )A、保护现场B、保护PCC、找到中断入口D、保护PC转入中断入口4、MCS-51中断源有( A )A、 5个B、 2个C、 3个D、6个5、计算机在使用中断方式与外界交换信息时,保护现场的工作应该是( C )A、由CPU自动完成B、在中断响应中完成C、应由中断服务程序完成D、在主程序中完成6、MCS-51的中断允许触发器内容为83H,CPU将响应的中断请求是( D )。

A、 INT0,INT1B、 T0,T1C、 T1,串行接口D、 INT0,T07、若MCS-51中断源都编程为同级,当它们同时申请中断时,CPU首先响应( B )。

A、 INT1B、 INT0C、 T1D、T08、当CPU响应串行接口中断时,程序应转到( C )。

A、 0003HB、 0013HC、 0023HD、 0033H9、执行MOV IE,#03H后,MCS-51将响应的中断是( D )。

A、 1个B、 2个C、 3个D、0个10、外部中断1固定对应的中断入口地址为( C )。

第五章 课后习题及答案

第五章 课后习题及答案

第五章中学生的情绪管理一、理论测试题(一)单项选择题1.()是人各种感觉、思想和行为的一种综合的心理和生理状态,是对外界刺激所产生的心理反应,以及附带的生理反应,如喜、怒、哀、乐等。

A.情绪B.情感C.心情D.态度2.()是指人或动物面对现实的或想象中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态。

A.快乐B.愤怒C.恐惧D.悲哀3.小华即将上考场,感觉心跳加速,有点微微出汗,这属于情绪的()。

A.外部表现B.主观体验C.生理唤醒D.认知活动4.下列不属于基本情绪的是()。

A.快乐B.焦虑C.恐惧D.悲哀5.王悦接到高考录取通知书已经十多天了,仍心情愉悦,往常觉得平淡的事也能让她很高兴,这种情绪状态属于()。

A.激情B.心境C.应激6.“情急生智”所描述的一种情绪状态是()。

A.心境B.理智C.应激D.激情7.“忧者见之则忧,喜者见之则喜”,这是受一个人的()影响所致。

A.激情B.心境C.应激D.热情8.()是一种猛烈、迅疾和短暂的情绪,类似于平时说的激动。

A.快乐B.应激C.心境D.激情9.狂喜、恐惧的情绪状态属于()。

A.激情B.热情C.应激D.心境10.学生临考的怯场属于()。

A.应激B.心境C.激情D.热情11.车祸、地震、水灾等突如其来的灾难引起的情绪体验是()。

A.心境B.激情C.应激12.晓东在解决了困扰他许久的数学难题后出现的喜悦感属于()。

A.道德感B.理智感C.美感D.效能感13.求知欲属于()。

A.道德感B.理智感C.美感D.应激14.“先天下之忧而忧,后天下之乐而乐”是()。

A.道德感B.理智感C.美感D.热情15.当同学们获悉本班取得学校合唱比赛第一名的成绩时欣喜若狂。

他们的情绪状态属于()。

A.心境B.激情C.应激D.热情16.当人们遇到突然出现的事件或意外发生危险时,为了应付这类瞬息万变的紧急情境,就得果断地采取决定。

这种情况属于()。

A.激情B.应激C.快乐D.心境17.()用因素分析的方法,提出人类具有8~11种基本情绪,它们是兴趣、惊奇、痛苦、厌恶、愉快、愤怒、恐惧、悲伤、害羞、轻蔑、自罪感。

第5章 习题及答案

第5章 习题及答案

第五章 汇编语言程序设计1、画图说明下列语句所分配的存储器空间及初始化的数据值。

难度:2(1) BYTE_VAR DB ‘BYTE’,12,-12H ,3 DUP(0,2 DUP(1,2),7) (2) WORD_VAR DW 3 DUP(0,1,2),7,-5,’BY’,’TE’,256H 答:(1) (2)07H BYTE_V AR 42H WORD_V AR 00H 00H 59H 00H FBH 54H 01H FFH 45H 00H 59H 0CH 02H 42H EEH 00H 45H 00H 00H 54H 01H 00H 56H 02H 01H 02H 01H 00H 02H 02H 07H 00H 00H 00H 01H 00H 02H 01H 01H 00H 02H 02H 07H 00H 00H 00H 01H 00H 02H 01H 01H 00H 02H 02H07H00H2、假设程序中的数据定义如下: PARTNO DW ?PNAME DB 16 DUP(?) COUNT DD ? PLENTH EQU $- PARTNO 问:PLENTH 的值为多少?他表示什么意义? 答:PLENTH 的值为22,它表示当前已分配单元空间。

《微型计算机原理》第5章习题与解答3、有符号定义语句如下:难度:2BUF DB 1,2,3,’123’EBUF DB 0L EQU EBUF-BUF问:L的值是多少?答:L的值为6;4、假设成序中的数据定义如下:难度:2LNAME DB 30 DUP(?)ADDRESS DB 30 DUP(?)CITY DB 15 DUP(?)CODE_LIST DB 1,7,8,3,2(1)用一条MOV指令将LNAME的偏移地址存入BX。

(2)用一条指令将CODE_LIST的头两个字节的内容放入SI。

(3)写一条伪指令定义符使CODE_LENGTH的值等于 CODE_LIST域的实际长度。

大学物理基础教程答案第05章习题分析与解答

大学物理基础教程答案第05章习题分析与解答

5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。

(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。

(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。

又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。

(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。

(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。

分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。

而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。

第五章 习题解答

第五章 习题解答
5.若热流体走管内,冷流体走管外,两流体通过间壁的传热包括那几个过程?
答:包括以下三个过程:
1热流体以对流传热方式将热量传给管内壁
2热量由内壁面以热传导方式传给外壁面
3热量由外壁面以对流传热的方式传给冷流体
6.简述何谓强化传热?有哪三个主要途径?
答:强化传热是指提高冷热流体间的传热速率。
1增大总传热系数K,这是强化传热的重点。
5.对流传热速率方程的表达式为,其中温度差代表。
流体与壁面(或反之)间温度差的平均值
6.在间壁式换热器中,间壁两边流体都变温时,两流体的流动方向有、、和四种。
并流逆流错流折流
7.对流传热系数的主要影响因素有(1)(2)(3)(4)(5)。
1、流体的种类和相变化的情况2、流体的性质3、流体流动的状态
4、流体流动的原因5、穿热面的形状、分布和大小
已知 ,故
(2)当导热系数小的材料包在里层时,热损失 为:
(3)当导热系数大的材料包在里层时,热损失 为:
(4)可求出: ,说明在圆筒壁当采用两种以上材料保温时,为减少热损失,应将 小的材料包在里层为好。
5.求绝压为140 ,流量为1000 的饱和水蒸汽冷凝后并降温到60℃时所放出的热量。用两种方法计算并比较结果。已知140 水蒸汽的饱和温度为109.2℃,冷凝热为2234.4 ,焓为2692.1 ;60℃的水的焓为251.21 。
解:(1)第一种方法
(2分)
(2)第二种方法
①冷凝水的平均温度为 (1分)
查出84.6℃下的水的比热容为: (1分)
②水蒸气冷凝并降温放出的热量为:
计算表明两种方法结果一样,但是第一种方法较简单。(1分)
6.将0.417 、80℃的有机苯,通过一换热器冷却到40℃;冷却水初温为30℃,出口温度不超过35℃。假设热损失可略,已查出在平均温度下,硝基苯和水的比热容分别为1.6 。求:(1)冷却水用量 ?

第5章课后习题参考答案

第5章课后习题参考答案
}
printf("一行字符中字母#和a出现的次数分别是%d,%d\n ",num1,num2);
}
6、从键盘输入一个正整数,统计该数的位数,如输入1234,输出4,输入0,输出1
#include<stdio.h>
void main()
{
int n,m,num=0;
printf("请输入一个正整数n:");
}
ave=sum/num2;
printf("负数个数num1=%d,正数的平均值ave=%.2f\n",num1,ave);
}
2、sum=2+5+8+11+14+…,输入正整数n,求sum的前n项和。
#include<stdio.h>
void main()
{
int i,n,sum=0;
#include<stdio.h>
void main()
{
char ch;
int num1=0,num2=0;
printf("请输入一行字符:\n");
while((ch=getchar())!='\n')
{
if(ch=='#') num1++;
if(ch=='a') num2++;
#include<stdio.h>
void main()
{
int x,y,z,num=0;
for(x=1;x<=9;x++)

第5章习题及解答

第5章习题及解答

习题5.1 请根据图P5.1所示的状态表画出相应的状态图,其中X 为外部输入信号,Z 为外部输出信号,A 、B 、C 、D 是时序电路的四种状态。

A B C DD/1D/1D/1B/1Q n+1/Z Q nXB/0C/0A/0C/001 A B C DD/0C/0B/0B/1Q n+1/Z Q nXB/0B/0C/0C/001图P5.1 图P5.2题5.1 解:图 题解5.15.3 在图5.4所示RS 锁存器中,已知S 和R 端的波形如图P5.3所示,试画出Q 和Q 对应的输出波形。

R S图P5.3题5.3 解:5.5 在图5.10所示的门控D 锁存器中,已知C 和D 端的波形如图P5.5所示,试画出Q 和Q 对应的输出波形。

图P5.5题5.5 解:图 题解5.55.7 已知主从RS 触发器的逻辑符号和CLK 、S 、R 端的波形如图P5.7所示,试画出Q 端对应的波形(设触发器的初始状态为0)。

(a)CLK S R(b)图P5.7题5.7 解:CLK S R Q5.9 图P5.9为由两个门控RS 锁存器构成的某种主从结构触发器,试分析该触发器逻辑功能,要求:(1)列出特性表; (2)写出特性方程; (3)画出状态转换图; (4)画出状态转换图。

图 题解5.9题5.9 解:(1)特性表为:(2) 特性方程为:1n nnQXQ YQ +=+(3) 状态转换图为:X=1X=0Y=X=Y=1X=×Y=0图 题解5.9(3)(4)该电路是一个下降边沿有效的主从JK 触发器。

5.11 在图P5.11(a )中,FF 1和FF 2均为负边沿型触发器,试根据P5.11(b )所示CLK 和X 信号波形,画出Q 1、Q 2的波形(设FF 1、FF 2的初始状态均为0)。

(a)X(b)CLK图P5.11题5.11 解:CLK X Q 1Q 2图 题解5.115.13 试画出图P5.13所示电路在连续三个CLK 信号作用下Q 1及Q 2端的输出波形(设各触发器的初始状态均为0)。

第5章-习题解答

第5章-习题解答

第5章-习题解答第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 [ ](A) 其振幅为3 m (B) 其周期为s 31 (C) 其波速为10 m/s (D) 波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10-2cos(πt -3π/2)( SI ) . [答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1ux y (10· · · · · · · 0 5 1122- PSS题5-2图题5-3图的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ] [答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ]题5-4图-(A) A 点振动速度大于零 (B)B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为0=φωS A O ′ωSA ωωSAO ′(A)(B)(C)(D)S题5-5图题5-6图(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ(D) 3点的初相为π-=213φ[答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,题5-7图其能量逐渐减小. [答案:D]5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

第五章习题解答与问题

第五章习题解答与问题

9.设
f (x)
=
1 1+ x2
,在-5≤x≤5 上取
n = 10,按等距结点求分段线性插值函数Ih(x),
计算各结点间中点处的Ih(x)和f(x) 的值,并估计误差。 解:因为 f(xk) = 1/(1+ k2),(k = -5,…,-1,0,1,…,5)分段线性插值函数为
∑ I h
( x)
=
5
lk
y2 y2
− −
y) y1 )
u1
+
(x (x2
− −
x1 )( y2 x1 )( y2
− −
y) y1 )
u2
+
(x (x2
− −
x1 )( y − y1 ) x1 )( y2 − y1 )
u3
+
( x2 − x)( ( x2 − x1 )(
y2 y2
− −
y) y1 )
u4
二、例题
1. 在代数插值问题中,x0,x1,……,xn是(n+1)个互异的插值结点,由这(n+1)个结点构
F (t) = f (t) − H (t) − C ( x)(t − xk )2 (t − xk+1 )2
显然,F(t)有三个零点xk, x, xk+1,由Roll定理知,存在F’(t)的两个零点t0,t1 满足xk<t0<t1<xk+1,
而xk和xk+1 也是F’(x)的零点,故F’(x)至少有四个相异零点. 反复应用Roll定理,得F(4)(t)至少
∑ P( x) = n Aj
ω(x) j=0 x − x j
5. 设x0,x1,……,xn是(n+1)个互异的插值结点,ω(x) = (x – x0) (x – x1)……(x – xn), 试证明n阶差商的函数值表达式

第五章习题

第五章习题

三、填空题
9. n个结点的各棵树中,其深度最小的那棵树的深度 是 2 。它共有 n-1 个叶子结点和 1 个非叶子结点, 其中,深度最大的那棵树的深度是 n ,它共有 1 个 叶子结点和 n-1 个非叶子结点。
10.先根遍历树林正好等同于 先序 遍历对应的二叉树,后 根遍历树林正好等同于按 中序 遍历对应的二叉树。 11.若一个二叉树的叶子结点是某子树的中序遍历序列中的 前序 最后一个结点,则它必是该子树的______序列中的最后一个 结点。
C,E,F,G,
二、判断题
× 1.二叉树是度为2的有序树。
× 2. 完全二叉树一定存在度为1的结点。 √

3.深度为K的二叉树中结点总数≤2k-1。 4. 一个树的叶结点,在前序遍历和后序遍历 下,皆以相同的相对位置出现。 但是,如果我们还知道该树的根结点是哪一个, 则可以确定这棵二叉树。 一个栈。
C A
10.深度为h的满m叉树的第k层有( )个结 点。(1=<k=<h) A.mk-1 B.mk-1 C.mh-1 D.mh-1
一、选择题
11.高度为 K的二叉树最大的结点数为( A.2k B.2k-1 C.2k -1 D.2k-1-1 12. 一棵树高为K的完全二叉树至少有( A.2k –1 B. 2k-1 –1 C. 2k-1 D. 2k )。
第五章 树和二叉树
习题讨论
、选择题
1.已知一算术表达式的中缀形式为 A+B*C-D/E,后缀形式 为ABC*+DE/-,其前缀形式为( ) A.-A+B*C/DE B. -A+B*CD/E C.-+*ABC/DE D. -+A*BC/DE
D
C
2. 设有一表示算术表达式的二叉树(见下图),它所表示的算 术表达式是( ) A. A*B+C/(D*E)+(F-G) / B. (A*B+C)/(D*E)+(F-G) + + C * C. (A*B+C)/(D*E+(F-G)) * D E F G D. A*B+C/D*E+F-G A B

运筹学习题答案第五章

运筹学习题答案第五章

第五章习题解答
5.11 某城市可划分为11个防火区,已设有4个消 防站,见下图所示。
page 16 2 January 2024
School of Management
运筹学教程
第五章习题解答
上图中,虚线表示该消防站可以在消防允许时间
内到达该地区进行有效的消防灭火。问能否关闭若干 消防站,但仍不影响任何一个防火区的消防救灾工作。 (提示:对每—个消防站建立一个表示是否将关闭的01变量。)
x1, x2 0,且为整数
解:x1 1, x2 3, Z 4
min Z 5x1 x2
3x1 x2 9
(2)
st
x1 x1
x2 5 8x2 8
.
x1, x2 0,且为整数
解:x1 4, x2 1, Z 5
page 8 2 January 2024
School of Management
School of Management
运筹学教程
第五章习题解答
5.12 现有P个约束条件
n
aij xij bi
j 1
i 1,2,, p
需要从中选择q个约束条件,试借助0-1变量列出 表达式。
解:设yi是0 1变量,i 1,2,, p
n
yi ( aij xij bi ) 0 j 1
i 1,2,, p
运筹学教程
第五章习题解答
5.1 某地准备投资D元建民用住宅。可以建住宅
的造分地价别点为建有d几j;n幢处,,:最才A多能1,可使A造建2,a造j幢…的。,住问A宅n应。总当在数在A最i哪处多几每,处幢试建住建住宅立宅的问, 题的数学模型。
解:设xi表示在Ai处所建住宅的数量, i 1,2,, n。

《土力学》第五章练习题及答案

《土力学》第五章练习题及答案

《土力学》第五章练习题及答案第5章土的压缩性一、填空题1.压缩系数a1-2数值越大,土的压缩性越,a1-2≥的土为高压缩性土。

2.考虑土层的应力历史,填方路段的地基土的超固结比比1 ,挖方路段的地基土超固结比比1 。

3.压缩系数越小,土的压缩性越,压缩模量越小,土的压缩性越。

4.土的压缩模量是土在条件下应力与应变的比值,土的变形模量是土在条件下应力与应变的比值。

二、名词解释1. 土的压缩性2.先期固结压力3.超固结比4.欠固结土三、单项选择题1.在下列压缩性指标中,数值越大,压缩性越小的指标是:(A)压缩系数(B)压缩指数(C)压缩模量(D)孔隙比您的选项()2.两个性质相同的土样,现场载荷试验得到变形模量E0和室内压缩试验得到压缩模量E S之间存在的相对关系是:(A)E0=E S(B)E0>E S(C)E0≥E S(D)E0<E S您的选项()3.土体压缩变形的实质是:(A)土中水的压缩(B)土中气的压缩(C)土粒的压缩(D)孔隙体积的减小您的选项()4.对于某一种特定的土来说,压缩系数a1-2大小:(A)是常数(B)随竖向压力p增大而曲线增大(C)随竖向压力p增大而曲线减小(D)随竖向压力p增大而线性减小您的选项()5.当土为超固结状态时,其先期固结压力pC与目前土的上覆压力p1=γh的关系为:(A)pC>p1(B)pC<p1(C)pC=p1(D)pC=0您的选项()6.根据超固结比OCR,可将沉积土层分类,当OCR <1时,土层属于:(A)超固结土(B)欠固结土(C)老固结土(D)正常固结土您的选项()7.对某土体进行室内压缩试验,当法向应力p1=100kPa时,测得孔隙比e1=0.62,当法向应力p2=200kPa时,测得孔隙比e2=0.58,该土样的压缩系数a1-2、压缩模量E S1-2分别为:(A) 0.4MPa-1、4.05MPa(B)-0.4MPa-1、4.05MPa(C) 0.4MPa-1、3.95MPa(D)-0.4MPa-1、3.95MPa您的选项()8.三个同一种类的土样,如果重度 相同,含水量w不同,w甲>w乙>w丙,则三个土样的压缩性大小满足的关系为:(A)甲>乙>丙(B)甲=乙=丙(C)甲<乙<丙(D)甲<丙<乙您的选项()第5章土的压缩性一、填空题1.高、0.5MPa-12.小、大3.低、高4.有侧限、无侧限二、名词解释1.土的压缩性:土体在压力作用下,体积减小的特性。

第5章部分习题参考解答

第5章部分习题参考解答

μ 0ε 0
其实,观察题目给定的电场表达式,可知它表征一个沿 + x 方向传播的均匀平面 ω 109 波,其相速为 vp = = = 2 ×108 m/s k 5 1 1 1 1 1 而 vp = = = = × 3 × 108
με
μ 0ε r ε 0
εr
μ 0ε 0
εr
3 故 ε r = ( ) 2 = 2.25 2
G G 5.1 在自由空间中,已知电场 E ( z , t ) = ey 103 sin(ωt − β z ) V/m ,试求磁场强度 G H ( z, t ) 。 解:以余弦为基准,重新写出已知的电场表示式 G π G E ( z , t ) = ey 103 cos(ωt − β z − ) V/m 2 这是一个沿 + z 方向传播的均匀平面波的电场,其初相角为 −90D 。与之相伴的磁 场为 G 1 G G 1 G G π H ( z , t ) = ez × E ( z , t ) = ez × ey 103 cos(ωt − β z − ) η0 η0 2
无损耗媒质中的波阻抗为
9 4
G E E 50 η= G = m = = 500 Ω H H m 0.1
又由于
η=

μ r μ0 μr = η0 ε rε 0 εr
(2)
μr η 500 2 ) = ( )2 = ( ε r η0 377
联立式(1)和式(2),得
μr = 1.99 , ε r = 1.13 5.8 在自由空间中,一均匀平面波的相位常数为 β 0 = 0.524 rad/m ,当该波进入到 理想介质后,其相位常数变为 β = 1.81 rad/m 。设该理想介质的 μr = 1 ,试求该理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q3 Q 2 Q 1
011 000 010 001 101 100 111 110
图 题解 5.18( 4)
5.19 请分析图 P5.19 所示的电路,要求: (1)写出各触发器的驱动方程; (2)写出各触发器的状态方程; (3)列出状态表; (4)画出状态转换图(要求画成 Q3 Q2 Q1 →)。
0/0 11 0/0 1/1 1/0 10 1/1
图 题解 5. 驱动方程为:
n ; D1 Q3n Q2
n D2 Q2 Q1n
n D3 Q1n Q3n Q2
(2) 各触发器的状态方程分别为:
n ; Q1n1 D1 Q3n Q2
n 1 n Q2 Q2 Q1n ;
(3) 状态表为: X 0 0 0 0 1 1 1 1 Q2 0 0 1 1 0 0 1 1
n
Q1 0 1 0 1 0 1 0 1
n
Q2
n+1
Q1 0 0 0 0 1 1 0 0
n+1
Z 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0
5.21 下图是某时序电路的状态图, 该电路是由两个 D 触发器 FF1 和 FF0 组成的, 试求出这两 个触发器的输入信号 D1 和 D0 的表达式。图中 A 为输入变量。
J 2 X Q1n
J1 X
X 1 CP
&
1J C1 1K Q Q
Z
& Q1
1J C1 1K
Q
Q2
Q
5.23 试用 JK 触发器和少量门设计一个模 6 可逆同步计数器。计数器受 X 输入信号控制, 当 X=0 时,计数器做加法计数;当 X=1 时,计数器做减法计数。 题 5.23 解: 由题意可得如下的状态图和状态表:
(3) 状态表为: X 0 0 0 0 1 1 1 1 (4)状态转换图为: Q1 n 0 0 1 1 0 0 1 1 Q0 n 0 1 0 1 0 1 0 1 Q1 n+1 0 0 0 0 0 1 1 1 Q0 n+1 0 0 0 0 1 0 0 0 Z 0 0 0 0 0 0 1 1
X/Z Q1Q0 1/0 0/0 00 01 0/0
Q3 Q 2 Q 1
111 000 001 110 010 011 100 101
图 题解 5.19( 4)
题 5.20 解: (1) 驱动方程,输出方程为:
n ; D1 X Q2 n Z X Q2 Q1n n D2 Q2 Q1n

(2) 各触发器的状态方程分别为:
Q1n1 D1 X Q2n ;
1
FF1
1J C1 1K Q Q
&
FF2
1J C1 1K Q Q
&
1J
FF3
Q
C1 1K Q
CLK
图 P5.19
题 5.19 解: (1) 驱动方程为:
J 1 K1 1 ; J 2 Q3n Q1n
n J 3 Q2 Q1n
K 2 Q1n ; K 3 Q1n ;
(2) 各触发器的状态方程分别为:
FF1
X
1J Q C1 1K Q
Q1
FF2 1D Q
Q2
C1 Q (a)
CLK
CLK
X (b)
图 P5.11
题 5.11 解:
CLK X Q1 Q2
图 题解 5.11
题 5.12 解: CLK X Q1 Q2
5.13
试画出图 P5.13 所示电路在连续三个 CLK 信号作用下 Q1 及 Q2 端的输出波形 (设各触 发器的初始状态均为 0) 。
1J 1K
Q Q
1
CLK
图 P5.17
题 5.17 解: (1) 驱动方程为:
J 0 X Q1n
n J1 XQ0
K0 1 ;
K1 X ;
输出方程为: Z XQ1n (2) 各触发器的状态方程分别为:
n 1 n ; Q0 X Q1n Q0 n n Q1n X Q 0 Q 1 n XQ 1
自启动判断:
当 A=0 时, 01 当 A=1 时, 01
11 11
& & A
1D C1 Q Q
≥1&
1D C1
Q
Q1
A
Q0
Q
CP
题 5.22 解: (1)用 D 触发器实现: X
n n Q2 Q1
X 0 1
n n Q2 Q1
X 0 1
n n Q2 Q1
0
1
0 0 0 1 1 1 1 0
n 1 Q2 n 1 D2 Q2 X Q1n
Q1n1 Q1n ; n 1 n Q2 Q3n Q2n Q1n Q2 Q1n ;
n 1 n n Q3 Q3n Q2 Q1n Q3 Q1n ;
(3) 状态表为: Q3 n 0 0 0 0 1 1 1 1 (4)状态转换图为: Q2 n 0 0 1 1 0 0 1 1 Q1n 0 1 0 1 0 1 0 1 Q3 n+1 0 0 0 1 1 0 1 0 Q2 n+1 0 1 1 0 0 0 1 0 Q1n+1 1 0 1 0 1 0 1 0
图 题解 5.9
题 5.9 解: (1)特性表为: CLK × X × 0 0 0 0 1 1 1 1 Y × 0 0 1 1 0 0 1 1
Qn × 0 1 0 1 0 1 0 1
Qn+1 n Q 0 1 0 0 1 1 1 0
(2) 特性方程为:
Qn1 XQ n YQn
(3) 状态转换图为:
0 0 0 X
0 1 1 X
0 0 0 1 1 1 1 0
0 0 0 X
1 1 1 X
0 0 0 1 1 1 1 0
0 0 0 X
0 1 0 X
Q1n 1
自启动判断:
Z
D1 Q1n1 X
n Z X Q2 Q1n
当 X=0 时, 10 当 X=1 时, 10
&
00 01
Z
能自启动
C
5.3 在图5.4所示RS锁存器中,已知S和R端的波形如图P5.3所示,试画出Q和 Q 对应的输出 波形。
R S
图 P5.3
题 5.3 解:
图 题解 5.3
题 5.4 解: S R Q (a) C S R Q
(b)
5.5 在图5.10所示的门控D锁存器中,已知C和D端的波形如图P5.5所示,试画出Q和 Q 对应 的输出波形。
习题
5.1 请根据图 P5.1 所示的状态表画出相应的状态图,其中 X 为外部输入信号,Z 为外部输 出信号,A、 B、 C、D 是时序电路的四种状态。
Q n+1 /Z Q
n
X
0 D/1 D/1 D/1 B/1
图 P5.1
1 B/0 C/0 A/0 C/0
Q n+1 /Z Q
n
X
0 D/0 C/0 B/0 B/1
图 P5.2
1 B/0 B/0 C/0 C/0
A B C D
A B C D
题 5.1 解: X/Z
Q
A
0/1 0/1
1/0 1/0 0/1 1/0 0/1
图 题解 5.1
B
1/0
D
C
题 5.2 解:
现态 新态 输入 X 输出 Z
A D 0 0
D C 1 0
C B 0 0
B B 1 0
B C 0 0
C C 1 0
X
1D C1
Q
& Q1
1D C1
Q
Q2
Q
Q
CP
(2)用 JK 触发器实现: X
n n Q2 Q1
X 0 1
n n Q2 Q1
X 0 1
n n Q2 Q1
0
1
0 0 0 1 1 1 1 0
n 1 Q2
0 0 0 X
0 1 1 X
0 0 0 1 1 1 1 0
0 0 0 X
1 1 1 X
0 0 0 1 1 1 1 0
n 2 n 0 n 1
n n
n 0
XQ Q
n 0
n 1
n 1 n Q0 Q0
n 所以, J 2 X Q1 Q 0 X Q1n Q0 n n J 1 X Q 2 Q0 XQ2 Q0 n n
n n K 2 X Q0 XQ0n X Q0 n n K1 X Q0 XQ0n X Q0
n n 1
=1
1D Q C1 Q
T Q
CP
题 5.16 解: CLK Q1 Q2 Q3
5.17 请分析图 P5.17 所示的电路,要求: (1)写出各触发器的驱动方程和输出方程; (2)写出各触发器的状态方程; (3)列出状态表; (4)画出状态转换图。
&
Z
FF0
X
&
FF1
Q Q
1 &
1J 1K
图 P5.21
题 5.21 解:
Q1Q0 A 00 01 11 10 0 1 × 1 1 1 1 × 1 0 D1
Q1Q0 A 00 01 11 10 0 0 × 1 0 1 1 × 0 0 D0
图 题解 5.21
所以,这两个触发器的输入信号 D1 和 D0 的表达式分别为:
n n D1 A Q1n Q0 A Q1n Q0 n n D0 A Q0 A Q1n A Q1n A Q0
(a)
相关文档
最新文档