第07章孤子和光孤子概述

合集下载

光通信及光孤子

光通信及光孤子

——非线性效应:自相位调制
(SPM:Self-phase Modulation)
群速色散
光纤的群速色散使得不同频率的光波以不同 的速度传播,这样,同时出发的光脉冲,由于 频率不同,传输速度就不同,到达终点的时间 也就不同,便形成脉冲展宽,使信号畸变失真。
Hale Waihona Puke 自相位调制克尔效应(OKE)使得当光的强度变化时使 频率发生变化,从而使传播速度变化。在光纤 中这种变化使光脉冲后沿的频率变高、传播速 度变快;而前沿的频率变低、传播速度变慢。 这就造成脉冲后沿比前沿运动快,从而使脉冲 受到压缩变窄。
——物理上,孤子是物质非线性效应的一种特殊产物
——数学上,它是某些非线性偏微分方程的一类稳定的、能量有限的不 弥散解
——孤子在互相碰撞后,仍能保持各自的形状和速度不变
光孤子的形成机理
光孤子稳定存在的条件
——线性效应:光纤的群速色散 (GVD:Group Velocity Dispersion)
——特点: 开关速度快(10-2s量级)、开光转换率 高(达100%)、开光过程中光孤子形状
不发生改变,选择性能好
光孤子源技术
——光孤子稳定传输条件: 光脉冲为严格的双曲正割形 振幅满足一定的条件 ——现有的光孤子源 拉曼孤子激光器、参量孤子激光器、掺饵光纤孤 子激光器、增益开环半导体孤子激光器、锁模半 导体孤子激光器
全光孤子放大器
——特点:可对光信号直接放大,避免了光电、电 光模式
光孤子开关技术
光孤子通信系统
孤子与光孤子
孤子(Soliton)又称孤立波,是一种特殊形式的超短脉冲,或者说是一 种在传播过程中形状、幅度和速度都维持不变的脉冲状行波。
孤子的提出 ——1834年美国科学家罗素在流体力学中首先提出 ——在一条窄河道中,迅速拉一条船前进,在船突然停下时,在船头 形成的一个孤立的水波迅速离开船头 孤子的特点

光孤子的形成及光通信中应用

光孤子的形成及光通信中应用

摘要孤子现象存在于众多领域中,自孤子波在十九世纪被发现以来,孤子理论始终是数学、物理学和通信等领域中重要的研究方向。

光孤子的形成是光脉冲线性的时间域色散被非线性的自位相调制过程平衡。

光孤子不仅仅是一个重要的科学研究方向,它同时具有重要的应用前景,可能成为新一代的光通信传输模式和高速全光开关。

本文详细介绍了光孤子的基本理论及处理方法,光孤子通信的基本原理及其发展现状。

基于光孤子通信系统中孤子脉冲的传输所满足的变系数非线性薛定愕方程,研究了孤子脉冲的传输系统的关键技术。

主要的技术有:光孤子源:分析了三阶色散和五阶饱和吸收等高阶非线性效应对被动锁模光纤环形孤子激光器的稳定性的影响, 通过路径平均非线性薛定谔方程的求解,获得了被动锁模光纤环形孤子激光器稳定运行的条件。

用绝热近似法以及通过主动锁模光纤环形孤子激光器稳态锁模方程的求解,获得了这种激光器输出孤子脉宽的近似表达式和精确表达式,并对它们的适用范围进行了比较。

分析了一种新型的主被动锁模光纤环形孤子激光器.通过路径平均非线性薛定得方程的求解.获得了激光器稳定运行的条件,并作了数值模拟。

脉冲在色散缓变光纤中的传输特性和规律:光纤损耗引起孤子幅值指数下降,指数缓变色散起到放大作用,正好能够补偿光纤损耗引起的幅值下降;光纤色散变化参量引起孤子中心位置随传输距离作非线性漂移。

光孤子放大器:用常规掺铒光纤放大器放大超短光孤子存在一个重大困难,就是在放大过程中光纤非线性效应会引起孤子波形及频谱畸变,使得输出脉冲不再具有孤子特性,从而影响系统性能。

提出一种利用掺铒光纤环镜放大超短光孤子的新方法。

AbstractSoliton phenomena exist in many fields, from the soliton wave was found in the nineteenth century, since the soliton theory has always been mathematics, physics and important areas of communication research. The formation of soliton pulse dispersion is linear time-domain nonlinear process of self phase modulation balance. Soliton is not only an important research direction, it also has important applications, may become a new generation of optical communication transmission mode and high-speed all-optical switch. This paper describes the basic theory of optical solitons and treatment, the basic principle of optical soliton communication and its development status. Optical soliton communication systems based on soliton pulse which is satisfied by the transmission of variable coefficient nonlinear Schrödinger equation stunned to study the soliton transmission system of key technologies. The main technologies are:Soliton Source: analysis of five third-order dispersion and higher-order nonlinear effects such as saturable absorber for passive mode-locked fiber ring soliton laser stability, the average through the path of solving the nonlinear Schrödinger equation to obtain the passive lock mode fiber ring soliton laser stable operation conditions. Adiabatic approximation and by using active mode-locked fiber ring soliton laser mode-locked steady-state equation to obtain the laser output soliton pulse width of this approximate expression and precise expression, and their scope of application were compared. A new analysis of passive mode-locked fiber ring soliton laser. Through the path set at the average nonlinear Schrodinger equation. Obtain the conditions for stable operation of the laser and the numerical simulation. Pulse in dispersion-decreasing fiber in the transmission and law: the fiber loss caused by soliton amplitude fell, the index slowly varying dispersive amplification play, just to compensate for fiber loss due to decline in amplitude; fiber dispersion parameters caused changes in the center of soliton with the transmission distance for linear drift.Soliton amplifiers: the conventional erbium-doped fiber amplifier there is an ultrashort optical soliton major difficulties is that in the amplification process may cause nonlinear effects in optical fiber soliton waveform and spectrum distortion, making the output pulse is no longer with the solitons, thus affecting the system Performance. A proposed use of erbium-doped fiber loop mirror to enlarge A new method of ultrashort optical solitons.目录第一章概述 (1)1.1光孤子的基本概念 (1)1.2光孤子的特点 (2)1.3 光孤子的研发历程 (2)第二章光孤子传输基础及其系统关键技术 (5)2.1光孤子传输基础 (5)2.1.1光孤子形成的机理 (5)2.2 光孤子传输原理 (5)2.2.1光纤中光孤子传输遵循的非线性薛定愕方程 (8)2.2.2光孤子传输的基本性质 (10)2.2.3影响光纤孤子传输特性和传输容量的主要因素 (11)2.3 光孤子传输系统及其关键技术 (14)2.3.1 光孤子传输系统 (14)2.3.2 系统的关键技术 (15)2.4 光孤子传输系统实验研究现状及展望 (17)第三章光孤子源 (18)3.1光孤子源实验研究 (18)3.1.1. 增益开关半导体激光器 (18)3.1.2 F-P滤波器 (21)3.1.3 掺饵光纤放大器 (22)3.2 被动锁模光纤环形孤子激光器 (22)3.2.1被动锁模光纤环形孤子激光器的结构和工作原理 (23)3.2.2激光器稳定性的分析 (24)3.3 主动锁模光纤环形孤子激光器 (27)3.3.1主动锁模光纤孤子激光器的结构 (27)3.3.2主动锁模孤子激光器输出的孤子脉冲宽度与其结构参数的关系 (28)3.4 主被动锁模光纤环形孤子激光器的结构 (33)3.4.1 数学模型 (34)3.4.2 数值模拟 (35)3.4.3 激光器稳定性的分析 (36)第四章光孤子放大器 (40)4.1 掺饵光纤放大器(EDFA) (40)4.2掺饵光纤放大器的一般特性 (41)4.3 超短光孤子在掺铒光纤放大器中的放大 (42)4.4 超短光孤子在放大环镜中的放大 (44)总结 (49)致谢 (50)参考文献 (51)第一章概述1.1光孤子的基本概念"孤子"是英文soliton的译名,最早是英国海军工程师于1834年偶然发现的船舶在河流中航行时形成的一种特殊的形状不变的水波,称为孤子波(solitorywave)。

光孤子通信介绍

光孤子通信介绍

光孤子的形成机理
1973 年, Hasegawa 和 Tappert 首次提出“光孤子”的 概念,并从理论上推断, 无损光纤中能形成光孤子。他 们认为, 当光脉冲在光纤中传播时, 光纤的色散使得光 脉冲中不同波长的光传播速度不一致,结果导致光脉冲展 宽,限制了传输容量和传输距离。但当光纤的入纤功率足 够大时, 光纤中会产生非线性现象, 它使传输中的光脉 冲前沿群速度变大, 后沿群速度变小, 其结果是使脉冲 缩窄。当光脉冲的展宽和压缩的作用相平衡时,就会产生 一种新的光脉冲, 形成信号脉冲无畸变传输, 这时的光 脉冲是孤立的, 不受外界条件影响, 因此称为光孤子
图2是二阶孤子的传输。它是以二 阶色散距离为周期, 周期性的发生 吸引和排斥, 也就周期性的出现一 个峰值。
图3是三阶孤子的传输, 在传输 过程中很快分裂, 除两侧两个大 的孤子外,中间激起第三个孤子。
( 4 )光孤子碰撞分离后的稳定性为设计波分复用 提供了方便;
( 5 )导频滤波器有效地减小了超长距离内噪声引 起的孤子时间抖动; ( 6 )本征值通信的新概念使孤子通信从只利用基 本孤子拓宽到利用高阶孤子,从而可增加每个脉冲 所载的信息量。光孤子通信的这一系列进展使孤子 通信系统实验已达到传输速率 10~20Gbit/s ,传输 距离13000~20000公里的水平。
研究方向
1.掺杂光子晶体光纤产生光孤子所需泵浦功率的研 究
2. 非 线 性 效应、光纤、光纤放大器等对光孤子在光 纤中的传输特性的影响 3.光孤子改变了光网络中数据的编码方式,并可延 长再生距离,从而可以大幅度削减传输成本。
光子晶体光纤的总色散 D(λ) 可表示为D(λ) ≈ D ω (λ) + D m (λ), (1)式中, D ω (λ) 为波导色散, 与光子晶体光纤的结构密切相关;D m (λ)为材料色散, 与材料折射率有关。D( λ) = 0 处 的 波 长 为 零 色 散 波 长 ,D(λ) <0 的 区域为光纤的正常色散区, 反之为光纤的反常色散 区色散效应导致光脉冲不同频率分量运动速度不同 , 使得脉冲在传输过程中展宽

光孤子

光孤子

然而,若这一磁场变得再强一些、再大一些,则磁场中会存在一点,在此处将产生孤子式磁涡旋,它能渗透或开隧进入超导体。实际上,这是一个孤子穿过另一个孤子。
光子着稳定的形状的某种波形。所谓空间光孤子,就是光束宽度或者说光束截面不会发生变化的光束。举个例子吧,比如手电发出的光照到墙 上时会出现一个远比手电截面大的多的光截面,而如果它发出的光照到墙上时出现一个和自身一样大的光截面,那就叫空间光孤子了。
3 Ferrando, M. Zacarés, P. Fernandez de Cordoba, D. Binosi and J. Monsoriu, Spatial soliton formation in photonic crystal fibers, Opt. Express 2003(11): 452-459
由于孤子具有这种特殊性质,因而它在等离子物理学、高能电磁学、流体力学和非线性光学中得到广泛的应用。
1973年,孤立波的观点开始引入到光纤传输中。在频移时,由于折射率的非线性变化与群色散效应相平衡,光脉冲会形成一种基本孤子,在反常色散区稳定传输。由此,逐渐产生了新的电磁理论——光孤子理论,从而把通信引向非线性光纤孤子传输系统这一新领域。光孤子(soliton)就是这种能在光纤中传播的长时间保持形态、幅度和速度不变的光脉冲。利用光孤子特性可以实现超长距离、超大容量的光通信。
而光子晶 体,其本质是周期性的光结构。周期性结构光学介质系统由于其独特的关于光传输的控制等一些特性近几年引起了人们的强烈关注,兴起了人们对周期性光结构中的 非线性光传输,即对非线性效应和周期性效应相互作用的研究,包括耦合波导阵列中的分立孤子,光子晶体光纤中的空间孤子,以及光晶格中的空间孤子等。一方 面,这类系统将是发展全光开关器件的理想元件。光孤子对于高速率远距离大容量的全光通信技术的研究和孤子通信技术的商用化具有无可替代的重要性。另一方 面,光孤子与周期光结构相互作用的研究同时也将促进其他领域孤子研究的发展,比如像生物分子链,固体物理中电子波所遇到的晶格结构,以及玻色-爱因斯坦凝 聚中的周期光学势阱。所有形式的孤子具有共同的物理本质和行为特征,借助于周期型光结构中的光孤子,将帮助理解和探索其他孤子的研究和物理机制。因此,这 方面的研究已成为光孤子研究领域新兴的方向。

《光纤通信基础》习题及答案

《光纤通信基础》习题及答案

光栅技术
第二章部分
2.1、光纤的结构由哪几部分组成?各有什么作用? 答:光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的 折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射 面和光隔离,并起一定的机械保护作用。 2.2、简述光纤的类型包括哪几种以及各自特点? 解:实用光纤主要有三种基本类型: 1)、突变型多模光纤(Step Index Fiber, SIF), 纤芯折射率为 n1 保持不变,到包层突然 变为 n2。这种光纤一般纤芯直径 2a=50~80 μm,光线以折线形状沿纤芯中心轴线方向传播, 特点是信号畸变大。 2)、渐变型多模光纤(Graded Index Fiber, GIF), 在纤芯中心折射率最大为 n1,沿径向 r 向外围逐渐变小,直到包层变为 n2。这种光纤一般纤芯直径 2a 为 50μm,光线以正弦形 状沿纤芯中心轴线方向传播,特点是信号畸变小。 3)、单模光纤(Single Mode Fiber, SMF),折射率分布和突变型光 纤相似,纤芯直径只有 8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。因为这种光 纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。 2.3、色散的产生以及危害? 答:由于光纤中所传信号的不同频率成分, 或信号能量的各种模式成分,在传输过程中, 因群速度不同互相散开,引起传输信号波形失真,脉冲展宽的物理现象称为色散;光纤色散 的存在使传输的信号脉冲畸变,从而限制了光纤的传输容量和传输带宽。 2.4、光缆的结构分类? 答:(1) 层绞式结构:层绞式光缆的结构类似于传统的电缆结构方式,故又称为古典式光缆。 (2) 骨架式结构:架式光缆中的光纤置放于塑料骨架的槽中,槽的横截面可以是 V 形、U 形 或其他合理的形状,槽的纵向呈螺旋形或正弦形,一个空槽可放置 5~10 根一次涂覆光纤。 (3) 束管式结构:束管式结构的光缆近年来得到了较快的发展。它相当于把松套管扩大为整 个纤芯,成为一个管腔,将光纤集中松放在其中。 (4) 带状式结构:带状式结构的光缆首先将一次涂覆的光纤放入塑料带内做成光纤带,然后 将几层光纤带叠放在一起构成光缆芯。 2.5、光缆的种类? 答:根据光缆的传输性能、距离和用途,光缆可以分为市话光缆、长途光缆、海底光缆和用

光孤子通信

光孤子通信

光孤子通信的优点及应用前景
光孤子通信优点
• 1.容量大 • 2.误码率低、抗干扰能力强
• 3.可以不用中继站
• 4.可以工作于高温状态 • 5.可以进行波分复用,提高码速
光孤子通信的发展
• 光孤子通信目前仍处于探索和实验研究阶段 • 光孤子通信在超长距离、高速、大容量的全光 通信中,特别是在海底光通信系统中。有着极 大的发展前景
课外延展
克尔效应:指与电场二次方成正比的电感应双折射现象
放在电场中的物质,由于其分子受到电力的作用而发生 取向(偏转),呈现各向异性,结果产生双折射,即沿两个 不同方向物质对光的折射能力有所不同。 这一现象是 1875年J.克尔发现的。后人称它为克尔效应。
光孤子通信
光孤子通信的定义
• 光孤子通信——是利用光孤子作为载体 的通信方式。
THANK
YOU !
—光孤子组
光孤子定义
• 孤子(Soliton)——又称孤立波(Solitary wave),
是一种特殊形式的超短脉冲,或者说是一种在传播过 程中形状、幅度和速度都维持不变的脉冲状行波。有 人把孤子定义为:孤子与其他同类孤立波相遇后,能 维持其幅度、形状和速度不变。
• 光孤子——是经光纤长距离传输之后,其幅度和波
光孤子通信系统的构成框图
光纤传输系统 EDFA 孤子源 调制探测
隔离器
脉冲源 EDFA EDFA EDFA
光孤子通信系统工作原理
光孤子源产生一系列脉冲宽度很窄的光脉冲(即光 孤子流),作为信息载体进入光调制器,使信息对光 孤子进行调制。被调制的光孤子流经掺铒光纤放大器 和光隔离器后,进入光纤中传输。为克服光纤损耗带 来的光孤子减弱,在光纤线路上周期性地插入EDFA, 向光孤子注入能量,以补偿光纤传输而引起的能量损 耗,确保光孤子稳定传输。在接收端,通过光检测器 和解调装置,恢复光孤子所承载的信息。

最新光孤子PPT

最新光孤子PPT
• 由武汉邮电科学研究院研制的EDFA,具有增益高、噪声低、增益特性 与光偏振状态无关。达到世界先进水平。在光端机的发送端加后置式 掺饵光纤放大器,在接收端加低噪声前置掺饵光纤放大器,则可以使 2.488Gbit/s系统具有跨越100~250km无中继距离的能力。可大大降低
中继成本。
光孤子
发展前景
接叫KdV方程)。关于实自变量x 和t的函数φ所满足的KdV方程形式如 下:
• KdV方程的解为簇集的孤立子(又称孤子,孤波)。
光孤子
研发历程
• 1)1973~1980年为第一阶段:首先将光孤子应用于光通信的设想 是由美国贝尔实验室的A.Hasegawa于1973年提出的,他经过严格的数 学推导,大胆地预言了在光纤地负色散区可以观察到光孤子的存在,
光孤子
形成机理
• 一束光脉冲包含许多不同的频率成分,频率不同,在介质中的传播速 度也不同,因此,光脉冲在光纤中将发生色散,使得脉宽变宽。但当 具有高强度的极窄单色光脉冲入射到光纤中时,将产生克尔效应,即 介质的折射率随光强度而变化,由此导致在光脉冲中产生自相位调制, 使脉冲前沿产生的相位变化引起频率降低,脉冲后沿产生的相位变化 引起频率升高,于是脉冲前沿比其后沿传播得慢,从而使脉宽变窄。 当脉冲具有适当的幅度时,以上两种作用可以恰好抵消,则脉冲可以 保持波形稳定不变地在光纤中传输,即形成了光孤子,也称为基阶光 孤子。若脉冲幅度继续增大时,变窄效应将超过变宽效应,则形成高 阶光孤子,它在光纤中传输的脉冲形状将发生连续变化,首先压缩变 窄,然后分裂,在特定距离处脉冲周期性地复原。
光孤子
Thank you
光孤子
• (3)可以不用中继站:只要对光纤损耗进行增益补偿,即可将光信 号无畸变地传输极远距离,从而免去了光电转换、重新整形放大、检 查误码、电光转换、再重新发送等复杂过程。

光纤通信第7章光放大器讲解学习

光纤通信第7章光放大器讲解学习

SOA也是一种 重要的光放大 器,其结构类 似于普通的半 导体激光器。
I
R1
R2
半导体光放大器示意图
•半导体光放大器的放大特性主要决定于激光腔的反射特性与 有源层的介质特性。
•根据光放大器端面反射率和工作偏置条件,将半导体光放大 器分为:----法布里-珀罗放大器(FP-SOA)
EDFA + 均衡器 → 合成增益
增益平坦/均衡技术(2)
2. 新型宽谱带掺杂光纤: 如掺铒氟化物玻璃光纤(30nm平坦带宽)、
铒/铝共掺杂光纤(20nm)等, 静态增益谱的 平坦,掺杂工艺复杂。
3. 声光滤波调节: 根据各信道功率,反馈控制放大器输出端的
多通道声光带阻滤波器,调节各信道输出功率使 之均衡,动态均衡需要解复用、光电转换、结构 复杂,实用性受限
增益钳制技术(1)
电控:监测EDFA的输入光功率,根据其大小调整 泵浦功率,从而实现增益钳制,是目前最为成熟的
方法。
In
Out
EDFA
LD Pump
泵浦控制均衡放大器(电控)
增益钳制技术(2)
在系统中附加一波长信道,根据其它信道的功率, 改变附加波长的功率,而实现增益钳制。
注入激光
四、EDFA的大功率化(1)
=1.3%
=0.7%
用于制作大功率EDFA 的双包层光纤结构图
芯层:5m 内包层: 50m 芯层(掺铒),传播信号层(SM) 内包层,传播泵浦光(MM)
7.1 光放大器
7.1.1 光放大器概述 7.1.2 掺铒光纤放大器EDFA 7.1.3 半导体光放大器SOA 7.1.4 光纤拉曼放大器FRA
7.1.3 半导体光放大器SOA
输出信号光功率 输入信号光功率

光孤子

光孤子

2014 年春季学期研究生课程考核(读书报告、研究报告)考核科目:光波耦合理论学生所在院(系):理学院物理系学生所在学科:光学姓名:王磊学号:13S011062学生类别:统招光折变空间孤子的基本理论1 引言“孤子”是非线性科学中一个很重要的研究对象。

最早发现并给予科学记载的孤子现象可追溯到1834年,英国科学家Scott Russell在一条浅且狭窄的河道中的观察到一个轮廓分明的圆形水峰向前行进,在行进的过程中水峰的形状和速度都不变,水峰两侧的河水依然保持平静如初。

Russell认为他所观察到的这个水峰是流体运动的一个稳定解,并称之为“孤立波”。

六十多年后,荷兰著名数学家Korteweg和de Vires建立了描述浅水波运动的KdV方程,证明了孤子波的存在。

1995年,美科学院院士Kruskal和物理学家Zabusky提出,孤立波在等离子体中发生碰撞后保持各自的波形不变,且能量和动量守恒。

根据孤立波的这一特点,他们将其命名为“孤立子”,简称“孤子”。

20世纪90年代初,人们在光折变介质中发现了一种新型的空间孤子——光折变空间孤。

所谓空间孤子指的是光束的线性衍射效应和非线性的自聚焦效应达到平衡时的光束波形保持不变(图1)。

光折变空间孤子则是指存在于具有光折变效应的电光材料中空间光孤子,这种空间孤子对入射光强没有明显的阈值要求,其成因为光照情况下,光折变介质内部可以激发出自由电荷,这些自由电荷或因浓度梯度扩散,或在电场作用下漂移,或由光伏效应而产生迁移运动,造成正负电荷的分离,从而产生空间电荷场,在线性电光效应作用下空间电荷场会使晶体中形成折射率透镜或是波导,就会对光束产生一定的空间约束会聚作用,从而抵消由于衍射导致的波形展宽,使得光束能够保持空间波形不变的在晶体中传播。

图1 空间光孤子形成示意图。

实线为光束强度空间包络,虚线为光束波前。

(a)光束发生自聚焦; (b)光束发生衍射展宽; (c)孤子传播2 光折变空间光孤子分类根据折射率的变化情况,可以将稳态光折变空间光孤子分为两大类:一是非中心对称光折变空间光孤子,其折射率的变化遵从线性电光效应(普克尔效应);二是中心对称光折变空间光孤子,其折射率的变化遵从二次电光效应(克尔效应) 。

光孤子

光孤子

光孤子的相互作用
时间孤子相互作用: 与初始间距,初始相位差和孤子振幅有关
空间孤子的相互作用
空间孤子的相互作用
Science 286, 1518 (1999).
Thank you !
m n
w
群延时差
多模色散
光纤材料色散
光纤波导结构色散引起
m n w
克尔效 克尔效 应 应
n n0 n2 I
n0 n2
线性折射率
克尔系数
设光脉冲在光纤中传播长度为 l ,则由克尔效应引起的相位移动为 2 n2 Il
0
自相位调制 附加相位引起的频移
dk 1 k d 0 vg
0
d 2k k d 2
0
d 1 ( ) d vg
0
1 dvg 2 vg d
0
d 2k k d 2
0
1 dvg 2 vg d
0
d 2k k d 2
光孤子的分类及形成机理
光孤子:时间孤子和空间孤子
时间光孤子形成机理:
群速度色散
克尔效应 强光
脉冲展宽 自相位调制 脉冲压缩 前沿传播慢, 后沿传播快
反常色散区:频率前沿 红移、后沿蓝移
脉冲展宽与脉冲压展宽
k n

c
1 k k0 k ( 0 ) k ( 0 ) 2 L 2
2 I n2l t 0 t
附加相位引起的频移 2 I n2l t 0 t I 0 0 脉冲前沿 t 脉冲后沿 反常色散
I 0 t
dvg 0
0
d 脉冲前沿速度变小,脉冲后沿速度变大

光孤子通信的基本原理

光孤子通信的基本原理

光孤子通信的基本原理
光孤子通信是一种基于光孤子现象的通信技术。

光孤子是一种特殊的光脉冲,它在传输过程中保持形状不变,即使在遇到光纤的弯曲、断裂等故障时也能保持稳定传播。

光孤子通信的基本原理可以分为以下几个步骤:
1. 信号产生:首先,发送端将需要传输的数据转换为电信号,然后通过电光转换将电信号转换为光信号。

2. 信号传输:然后,光信号在光纤中传输。

在这个过程中,光信号可能会遇到各种故障,如光纤的弯曲、断裂等,但这些故障不会改变光信号的形状,因此光信号能够稳定传播。

3. 信号检测:接着,接收端接收到光信号,然后通过光电转换将光信号转换为电信号。

4. 数据恢复:最后,接收端通过解调等技术将电信号转换为原始的数据。

光孤子通信的优点是抗干扰能力强,传输质量高,适合长距离、大规模的数据传输。

但是,它也需要先进的光电转换和解调技术,而且传输速度受到光纤特性和设备性能的限制。

光孤子传输原理及应用于光通信系统

光孤子传输原理及应用于光通信系统

光孤子传输原理及应用于光通信系统光通信作为一种高速、大容量、低损耗的通信方式,已成为当今通信领域的重要研究和应用方向。

为了进一步提高光通信系统的传输速率和容量,光孤子传输技术应运而生。

本文将介绍光孤子传输的原理及其在光通信系统中的应用。

一、光孤子传输原理光孤子是指一种具有自包络和自调制特性的光信号,其形态稳定且能够长距离传输而不发生形状变化。

光孤子传输是利用非线性效应和色散的互相抵消来实现的。

具体来说,光孤子传输通过与光纤中的色散和非线性效应相互作用来保持波形,从而抵消色散造成的信号失真。

在光孤子传输中,非线性效应主要包括自相位调制和光纤中的拉曼散射。

自相位调制是指光波在光纤中传输时,由于非线性光学效应而引起的相位调制。

而拉曼散射是指光波在光纤中发生的一种非线性散射现象,它可以在光纤中引入非线性光学效应,从而影响光信号的传输。

光孤子传输的关键是通过调整非线性效应和色散效应之间的相互作用,使其互相抵消,从而实现信号的长距离传输。

通过合理设计光纤结构和光子器件,可以减小信号的失真和衰减,提高传输距离和传输容量。

二、光孤子传输在光通信系统中的应用光孤子传输技术具有许多优点,使其成为光通信系统中的热门技术之一。

以下是光孤子传输在光通信系统中的几个重要应用。

1. 高速光传输:光孤子传输技术可以实现高速率的光信号传输。

由于光孤子的波形稳定性和自修正能力,可以使光信号在长距离传输时几乎不发生衰减和失真,从而实现高速率的数据传输。

这使得光孤子传输技术在宽带通信和数据中心互联中具有广阔的应用前景。

2. 光纤通道改善:光孤子传输技术可以在光纤通道中实现信号的长距离传输。

由于光孤子波形的自维持特性,可以抵消色散效应对信号的影响,从而显著改善光纤通道的传输性能。

这对于光通信系统中长距离传输和网络扩容具有重要意义。

3. 高容量光传输:光孤子传输技术具有较大的光信号容量。

通过合理设计传输系统结构和使用适当的光纤材料,可以实现光孤子传输信号的高容量传输。

光孤子原理与技术

光孤子原理与技术

光孤子原理与技术徐 登学号:050769摘要:光纤通信问世以来,一直向着两个目标不断发展。

一是延长中继距离,二是提高传输速率。

光纤的吸收和散射导致光信号衰减,光纤的色散使光脉冲发生畸变,导致误码率增高,限制通信距离。

低损耗光纤的研制、掺铒光纤放大器(EDFA )的应用似乎已经解决了中继距离的问题。

那么如何解决光纤传输问题呢?密集波分复用(DWDM )技术已成功地应用于光通信系统,极大地增加了光纤中可传输信息的容量。

随着波分复用信道数的增加,光纤中功率密度也大幅增加。

单通道速率的提高,光纤的非线性效应成为限制系统性能的主要因素。

这时,非线性效应的限制的解决成为关键问题。

光孤子的传输能解决上述问题。

本文主要论述了光孤子形成的基本理论,光孤子现象就是利用随光强而变化的自相位调制特性来补偿光纤中的群速度色散,从而使光脉冲波形在传输过程中维持不变,这样的脉冲就成为光孤子。

关键词:光孤子;GVD ;SPM ;1 光孤子形成原理1.1 非线性薛定谔方程NLSE光在非线性介质中的传播是用非线性薛定谔方程描述的,其推导出发点是麦克斯维波动方程:22020E D t μ∂∇-=∂ 1-1 光纤纤芯的折射率可写为: 202()()n n i n E ωχω=++ 1-2其中电场可表示为00(,)(,)(,)exp[()]E r t A z t F x y i t z ωβ=-- 1-3F (x ,y )为光电场在截面上的分布函数,并满足下式:222()0t k F β∇+-= 1-4A(z ,t)能直接描述光波沿光轴方向的传播特性,故其成为主要研究对象。

将1-2~1-4带入1-1中,然后经过代换简化,可得非线性薛定谔方程(NLSE ):22221122A A i i A A A z Tαβγ∂∂=-+-∂∂ 1-5 其中,α表示衰减系数,β2代表群速度色散,20effn cA ωγ=为非线性系数,等式中的Aeff 指纤芯的有效面积。

梁瑞生《现代光纤通信技术及应用》课后习题及参考答案

梁瑞生《现代光纤通信技术及应用》课后习题及参考答案

第1章概述1-1、什么是光纤通信?参考答案:光纤通信(Fiber-optic communication)是以光作为信息载体,以光纤作为传输媒介的通信方式,其先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。

光经过调变后便能携带资讯。

光纤通信利用了全反射原理,即当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。

1-2、光纤通信技术有哪些特点?参考答案:(1)无串音干扰,保密性好。

(2)频带极宽,通信容量大。

(3)抗电磁干扰能力强。

(4)损耗低,中继距离长。

(5)光纤径细、重量轻、柔软、易于铺设。

除以上特点之外,还有光纤的原材料资源丰富,成本低;温度稳定性好、寿命长等特点。

1-3、光纤通信系统由哪几部分组成?简述各部分作用。

参考答案:光纤通信系统最基本由光发送机、光接收机、光纤线路、中继器以及无源器件组成。

其中光发送机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光接收机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

(1)光发送机:由光源、驱动器和调制器组成,实现电/光转换的光端机。

其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。

(2)光接收机:由光检测器和光放大器组成,实现光/电转换的光端机。

其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。

(3)光纤线路:其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器:由光检测器、光源和判决再生电路组成。

它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。

(5)无源器件:包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。

光纤通信系统中光孤子传播模型的高效数值计算

光纤通信系统中光孤子传播模型的高效数值计算

光纤通信系统中光孤子传播模型的高效数值计算一、概述光纤通信系统作为当今通信领域中一种主流的传输方式,其高效、稳定和大容量的特点受到了广泛的关注。

而在光纤通信系统中,光孤子传播模型的研究则是一项重要的课题。

光孤子是一种特殊的光波形,其在光纤中的传播是非常稳定和高效的,因此对光孤子传播模型的高效数值计算具有重要的理论意义和实际应用价值。

二、光孤子的传播特性1. 光孤子的概念光孤子是非线性光学中的一种特殊光波形,其具有一定的幅度和相位结构,并且在传播过程中能够保持波形的稳定性。

光孤子的形成和传播是由非线性效应和色散效应共同作用的结果,因此在光纤通信系统中具有很好的传输特性。

2. 光孤子的传播方程光孤子的传播可以通过非线性薛定谔方程描述,该方程考虑了非线性效应和色散效应对光孤子传播的影响。

在光纤通信系统中,我们需要考虑光纤的非线性系数、色散系数以及其他参数对光孤子的传播影响,因此需要对光孤子传播模型进行有效的数值计算。

三、光孤子传播模型的数值计算方法1. 有限差分方法有限差分方法是一种常用的数值计算方法,可以有效地模拟光孤子在光纤中的传播过程。

该方法将传播距离离散化,并利用差分格式将薛定谔方程转化为差分方程,然后通过迭代计算得到光孤子在不同位置和时间的波形。

2. 快速傅里叶变换法快速傅里叶变换法是一种高效的数值计算方法,特别适用于对光波形进行频域分析。

在光孤子传播模型中,可以利用快速傅里叶变换法对光孤子的频谱进行计算,从而得到光孤子在不同频率下的传播特性。

3. 蒙特卡洛方法蒙特卡洛方法是一种随机数统计方法,可以用于模拟光子在光纤中的传播过程。

通过随机生成光子的位置和相位,并考虑非线性效应和色散效应的影响,可以得到光孤子在光纤中的传播特性。

四、高效数值计算的关键技术1. 并行计算技术在光孤子传播模型的数值计算中,需要对大规模的数据进行处理和计算。

并行计算技术可以有效地提高计算效率,加速光孤子传播模型的数值计算过程。

光孤子的简述

光孤子的简述

光孤子的简述人们对孤子现象的研究最早应该追溯到1834年8月,当时苏格兰科学家Russell偶然在狭窄的河道中观察到水的“孤立波”现象。

1895年,荷兰数学家Korteweg和他的学生对浅水波的运动进行研究,建立了著名的KdV方程,并给出了方程的孤立解,从而证明了孤立波的存在。

对于孤子领域的探索与研究可以使我们扩展对基本物理现象和原理的理解,世界上不少物理学家和数学家对之很感兴趣,直到20世纪70年代,由于光纤通讯的发展,光孤子的研究与探索才引起了人们的普遍关注,其理论及其应用均取得了很大的进展,在光通信、光子信息处理、全光网络等方面有着不可估量的广泛的应用前景。

二、孤子的简介光孤子就其形成机制,可分为时间光孤子和空间光孤子,时间光孤子是因为光的群速度色散与非线性自相位调制相互平衡而形成的,由于其特有的一些性质,一直是通讯领域的研究热点;而空间光孤子是因为光束的衍射效应与非线性效应相互平衡而形成的,由于其在全关开关,光路由,光子信息处理,光逻辑门等方面的潜在应用,自上世纪中后期已经成为了研究的热门领域。

空间光孤子的种类繁多,内容非常丰富,按其直观特性可以分为亮孤子、暗孤子、灰孤子三类。

根据材料对光场响应的不同非线性机理,可将空间光孤子分为克尔孤子,类克尔孤子,二次孤子,光折变孤子等,还可以根据其表现方式进行分类,这样的分类方法不直接与具体的材料发生联系,根据这种分类方法,可以将空间光孤子分为相干孤子,非相干孤子,离散孤子,非局域空间光孤子,时空孤子等。

非局域空间光孤子是存在于空间非局域非线性介质中的空间光孤子,所谓空间非局域非线性介质,指的是介质中一点对光场的非线性响应,不仅仅与该点的光场有关,而且与空间中其他点的光场有关,材料的空间非局域性起源于物质内对光场响应的单元的空间相关性,若材料的这种相关性为零,则为局域性材料。

因此,根据光束束宽与介质非线性响应函数相关长度的相对尺度,通常可将非局域程度分为四大类:局域類、弱非局域类、一般性非局域类、强非局域类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FPU 通常把能量放到对应的线性问题的几个最低模中。在线性问题中第一个模的能量永远保持不变, 没有新的模被激发。在非线性问题中,能量从低模传到较高模,FPU 希望这个过程继续下去,直到能量在 所有被安排到他们的计算方案中的模上变得均匀分布为止。他们在 x 空间中取了 64 个点,即有 64 个不同 的模。他们希望看到能量在这 64 个棋上的分布.那么,所观察到的演变过程就能够作为一种更复杂的物 理系统的热化模型。 现在,碰到了很令人惊奇的事情——至少,这似乎使得参加这个问题研究的,或听到过它的每一个人 都感到惊奇,能量并不热化! 事实上,初始时刻能量在所有最低模中,经过在几个低阶模之间来回传递 之后, 重新聚集在最低模, 准确度为 1~2%, 随后过程近似重复。 他们知道, 这种现象并不是庞加莱(Poincare) 回归性的例子。在 63 个独立运动的质量系统中,回归所需的时间是很长的。说得确切一点,系统似乎像 一组线性耦合的谐振子那样在环面上作准周期运动(如果两个基本频率是: 1 , 2 ,且 1 / 2 m1 / m2 ,
158
(McLaughlin)发表综述文章, 在电子、 光学界普及了孤子知识。 同年, 长谷川 (Ahasegawa) 和托皮特 (Tappert) 预言光纤孤子的存在。1975 年,克鲁汉森 (Krumhansl) 和施切弗 (Schieffer) 开始研究了孤波的统计力学。 第三阶段 (1973~),把孤子的概论广泛应用于物理学、生物学、天文学等各个领域。同时,开展高维 孤子的研究,1980 年非线性效应专刊 Physica D 问世,与此同时,光纤中的孤子已在实验中产生出来。此 后的发展更是突飞猛进,文献数不胜数,各种专著及述评琳琅满目,有关专为 h 的 N 个非线性弹簧一个连一个,两端的连着固定边界。当这些弹簧被压缩或伸长 时,他们产 生一个力:
f k ( a2 )
其中, k 是线性弹性系数, a 取正值,它是非线性强弱的度量,支配这晶格运动的动力学方程是:
myitt k ( yi1 2 yi yi1 )[1 a( yi1 yi1 )] , i 1,2,, N 1, y0 y N 0 yi 是第 i 个质量从它的平衡位置算起的位移, yitt 是 yi 对时间的二次导数。
图 7.1.1
孤立波
他以物理学家的敏锐,注意到这个现象绝非一般水波,因为在一般情况下,人们所观察到的水波总是 由一串具有周期特点的波列组成的。如果把石子投入水面的一个短暂的冲击所激发的圆形圈,不是一个而 是一串,数学上,这可以由一个波动方程来描述, 其解是周期性的波列。 Russell 以不同寻常的敏锐注意到, 他所观察到的那个波,绝对不可能是波动方程的解。随后 Russell 进一步提出,他所碰到的孤立的对象实 际上是流体力学的一个稳定解,他那时已命名为“孤立波” (solitory wave),可以说孤波现象的发现是“观察 机遇+敏锐思想”的结果。它与冲击波 (其波前有奇异性) 不同,“孤立波”到处正则,没有奇异性,而且它 不扩散,因此同普通的波包不同,后者是要弥散的。10 年之后 (1844) 年,Russell 在浅水槽中做了一些实 验,用多种方法激发,看到了相同的现象。此后,他把毕生大部分精力用确定这种著名波的性质及其实验 上。但是,起初 Russell 的学说并未能成功地使当时的物理学家信服,而是面临着自来当时科学界权威的 反对和怀疑。斯托克斯 (Stokes) 和爱里 (Airy) 都对不改变行波是否能够完全处在水面之上这一点提出疑 问,并且把波幅减小认为是这种波本来就不是永形波的一种标志。罗素正确地认为,这种波幅衰减是由于 摩擦造成的。事实上,斯托克期斯在他的 1849 年的论文中利用正弦波的小振幅展开,证明了唯一的永形 波大体上是正弦状的, 由于非线性项, 对波形 (二次和高次谐波) 和速度 (它变为弱依赖于波幅) 要进行修 正。当然运动方程的一般解是椭圆余弦波 (conoidal wave),斯托克斯所发现的是这个解的另一种极限情况 (椭圆函数的模趋近于 0,而不是 1) 。后来,斯托克斯打算承认他的错误。当水深和波长的比近似地为 1
第七章
孤子和光孤子概述
7.1


孤子是能量的一种传播方式,它们以特定的形状和速度传播,在彼此碰撞后仍能保持各自的形状与速 度。孤子的研究最初是从对一些非线性色散的波动方程开始的,比较著名的有:KdV 方程、非线性薛定谔 (NLS) 方程和正弦-高登 (sine-Gordon) 方程等。这些方程得自于等离体中的离子声学波、光脉冲的自陡效 应 (self-steepening) 以及超短脉中在共振介质中的传播等问题。尽管这些问题以及得出的方程极不相同, 但是却有着共同的特点,它们给出的孤子解都可以像粒子那样相互碰撞,它们可以分裂为较小的“碎片”等 等。 在光学中,至少有五种情况可以支持孤立波现象: 1) 自感应透明现象所支持的 sine-Gordon 孤子; 2) 二级非线性效应引起的三波相互作用过程所支持的 Sine-Gordon 孤子; 3) 由三阶非线性效应即克尔 (Kerr) 效应支持的自聚焦空间孤子通道; 4) 非线性波导中,由三阶非线性性效应支持的传输孤子; 5) 周期性结构与腔中的孤子。 在本章里,将对孤子的概念给以介绍,并对上面所提到的三种方程与它们的解给以讨论与解释。并对 简并介质的自感透明理论给以推导,并着重讨论光纤中的孤子。
155
罗素在 1844 年《论波动》中,记叙了他在爱丁堡一戈拉斯高运河上的一次经历:那时我正在观看 一只用两匹马拉着的船沿狭窄的河道快速前进,当这只船突然停下来的时候,河道中曾为船只推动的水体 并不停下来,而是聚集在船头周围猛烈地激荡着。忽然,一个孤立的巨大的隆起离船而去,滚滚向前疾驶。 这是滚圆而光滑的一团水,持续地沿河道行进,看不出有明显的减速。我在马背上跟随着它,赶上它每小 时八、九英里的速度,它一直保持着约 30 英尺长,一到一英尺半高的原始形状(图 7.1.1)。最后,它的高 度渐减,我在追逐它一到二英里之后,它在河道的弯曲处消失了.这就是我在 1834 年 8 月间看到那个奇 持而美丽现象的一次机遇……
156
的时候 (对于孤波而言,这个比值是小量),他发现的波 (Stokes 波) 本身是不稳定的,这一点是有某种讽 刺意味。在深水中,他所考虑那类几乎是单色的波列要分裂成一系列的波群。 直到 19 世经 70 年代,罗素的工作才最终被证明是正确的,并且由同行中的佼佼者对它在科学上的重 要性进行评价。直到,鲍辛斯基 (Boussinesq, 1872) 和瑞利 (Lord Rayleigh, 1876) 年发表的论文,发现了 自由表面的双曲正割函数的平方解,才告一段落。事实上,Boussinesq 1972 的论文做的要更多一些,引进 了现代分析所用的许多思想。尤其是,他找到第三守恒定律的守恒密度,一个他称之为不稳定的矩量。他 导出了冠以他的名字的水波近似方程的解。在这个近似中,运动依然是双向的,但是色散和非线性平衡的 基本思想出来了。1895 这个问题留给了考特威格 (Korteweg) 和德伏瑞斯 (de Vries), 即 60 年之后,考特 威格 (Korteweg) 和德伏瑞斯 (de Vries)导出了著名的 KdV 方程,这是以他们名字的单向传播的方程,他 们显然不知道鲍辛斯基 (Boussinesq) 和瑞利 (Raileigh) 的工作,并仍然企图回答了爱里 (Airy) 和斯托克 斯的异议,解释了 Russell 的浅水波。 与此同时,在 1876~1882 年发现了贝克隆 (Backlund) 变换,成为后来发展孤子理论的重要基础。 第二阶段大致可划为 1955-1975。 1955 年的 FPU 数值模拟实验,这是另一个在表面上看起来毫不相关,但在后来的发展中证明与孤波 现象有着紧密联系的实验。是本世经 50 年代由费米 (Fermie), 帕斯卡 (Pasta) 和乌拉姆 Ulam (FPU)。1955 年所进行的计算机模拟实验。Fermie, Pasta, Ulam 用计算机计算了一维非线性晶格在各个振动模之间的转 换,发现在时间足够长时能量又回到了开始的分布,这与经典理论是背道而驰的,即:只要有非线性效应 存在,能量就会均会,各态经历的现象就会出现。或者说,任何微弱的非线性作用,可导致系统由非平衡 态向平衡态过渡。由于 FPU 问题是在频域考察的,因此未能发出孤波解。后来,托戴 (Toda) 研究了这种 模的非线性振动,得到了孤波解,使 FPU 问题得到正解的解答,从而激发起人们对孤立波的研究兴趣。 感兴趣的问题是:为什么固体有有限的热传导率?固体采用一维晶格模型,即一组由弹簧连接在一起 的质量,1914 年,德拜 (Debye) 认为晶格的热传导其有限性是由于弹簧中的非线性力的非谐性引起的。 有效热传导率是无穷大; 如果这个力是线性的 (胡克定律) , 能量由独立的基本 (或简正) 模无阻碍地传输, 不需要温度梯度去推动热量从晶格的一端传到晶格的另一端,不能得出扩散方程。德拜想像,如果晶格是 弱非线性的,(从线性弹簧计算出来的) 简正模由于非线性效应发生相互作用,因而阻碍了能量的传播,大 量的这种非线性相互作用 (声子碰撞) 的净效应将体现在具有有限输运系数的扩散方程之中。他们主张, 使所有能量都处在最低模或者在开头几个最低模的光滑初始状态,由于非线性耦合效应,最后终将驰豫到 统计平衡状态。在那种状态下,能量将在平均意义上均匀分布于各个模。于是弛豫时间是扩散系数的一种 度量。 被 FPU 用来描述他们的长为 L 的一维晶体的模型,是由一排 N-1 个完全相的质量 m 组成的,它们之
m1 , m2 是互质的整数,则初始状态将近似地在时间
2m2
2
之后回归).但是,这是怎样发生的呢?为什么非
线性不激励所有的傅里叶模呢? 在恰当的坐标中考察时,系统等价于一组离散的谐振子,答案果真是这样 的吗? 令人欣慰的是,FPU 实验的令人费解的结果并没有被所有的人所忽视。普林斯顿大学的两位应用数学 家克鲁斯克尔 (Martin Kruskal) 和赞巴斯基 (Norman Zabusky) 抓住时机。他们准备把反常现象弄明白。 在此过程中,他们发现了孤子和一个奇妙的非线性行为的新世界。今天,这些非线性行为已经吸引了无数 物理学家的创造力,丰富了以前发现的许多数学构造,并赋予它新的生命。 1962 年,佩里 (Perring) 和斯克尔米 (Skyrme) 将 sine-Gordon 方程用于基本粒子研究; 1965 年,赞巴斯基 (Zabusky) 和克鲁斯克尔 (Kruskal) 命名 Soliton;这通常认为是孤子发现的标志。 1967 年, Gardner, Greene, Kruskal 和 Miura 发明了求解 KdV 方程的逆散射方法, 同年, 麦考尔 (McCall) 和汉姆 (Hahm) 做出了激光自感应透明的孤子实验, 1973 年,斯科特 (Scott) ,邱 (Chu) ,麦劳伦
相关文档
最新文档