高考数列解答题
高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析
[考情分析]预计2025年高考会从以下两个角度对数列的综合问题进行考查:(1)考查等差、等比数列的基本运算和数列求和的问题,可能与函数、方程、不等式等知识综合起来进行考查;(2)以新定义为载体,考查对新数列性质的理解及应用,以创新型题目的形式出现.考点一等差、等比数列的综合问题例1(2024·山东滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解(1)设等差数列{a n }的公差为d ,因为b 2=4,所以a 2=2log 2b 2=4,所以d =a 2-a 1=2,所以a n =2+(n -1)×2=2n .又a n =2log 2b n ,即2n =2log 2b n ,所以n =log 2b n ,所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1,即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n ,因为b 7=a 26=a 64,b 8=a 27=a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的,所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11302.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.利用方程思想和通项公式、前n 项和公式求解,求解时注意对性质的灵活运用.1.(2022·浙江高考)已知等差数列{a n }的首项a 1=-1,公差d >1.记{a n }的前n项和为S n (n ∈N *).(1)若S 4-2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N *,存在实数c n ,使a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,求d 的取值范围.解(1)因为S 4-2a 2a 3+6=0,a 1=-1,所以-4+6d -2(-1+d )(-1+2d )+6=0,所以d 2-3d =0,又d >1,所以d =3,所以a n =3n -4,所以S n =n (a 1+a n )2=3n 2-5n2.(2)因为a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,所以(a n +1+4c n )2=(a n +c n )(a n +2+15c n ),(nd -1+4c n )2=(-1+nd -d +c n )(-1+nd +d +15c n ),c 2n +(14d -8nd +8)c n +d 2=0,由已知可得方程c 2n +(14d -8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d -8nd +8)2-4d 2≥0,所以(16d -8nd +8)(12d -8nd +8)≥0对于任意的n ∈N *恒成立,所以[(n -2)d -1][(2n -3)d -2]≥0对于任意的n ∈N *恒成立,当n =1时,[(n -2)d -1][(2n -3)d -2]=(d +1)(d +2)≥0,当n =2时,由(2d -2d -1)(4d -3d -2)≥0,可得d ≤2,当n ≥3时,[(n -2)d -1][(2n -3)d -2]>(n -3)(2n -5)≥0,又d >1,所以1<d ≤2,即d 的取值范围为(1,2].考点二通项与求和问题例2(2023·黑龙江哈九中模拟)在①S 3=2a 3-15;②a 2+6是a 1,a 3的等差中项;③2S n =t n +1-3(t ≠0)这三个条件中任选一个作为已知条件,补充在下面的问题中,并解答.已知正项等比数列{a n }的前n 项和为S n ,a 1=3,且满足________.(1)求数列{a n }的通项公式;(2)设a n =b n -1b n ,求数列2n n 项和T n .注:若选择多个条件分别解答,按第一个解答计分.解(1)设正项等比数列{a n }的公比为q (q >0),若选①:由S 3=2a 3-15,得a 1+a 2+a 3=2a 3-15,所以a 3-a 2-a 1=15,又由a 1=3,可得3q 2-3q -18=0,解得q =3或q =-2(舍去),所以a n =3×3n -1=3n (n ∈N *).若选②:由a 2+6是a 1,a 3的等差中项,可得a 1+a 3=2(a 2+6),又因为a 1=3,可得3+3q 2=2(3q +6),即q 2-2q -3=0,解得q =3或q =-1(舍去),所以a n =3×3n -1=3n (n ∈N *).若选③:由2S n =t n +1-3(t ≠0),当n =1时,2a 1=6=2S 1=t 2-3,解得t =3或t =-3(舍去),所以2S n =3n +1-3,当n ≥2时,2a n =2S n -2S n -1=3n +1-3-(3n -3)=2·3n ,所以a n =3n (n ≥2).经验证当n =1时,满足a n =3n ,所以a n =3n (n ∈N *).(2)由(1)知a n =3n ,所以b n -1b n =3n ,n =9n ,所以b 2n +1b 2n=9n+2,所以T n 2122 (2)n (91+2)+(92+2)+…+(9n +2)=91+92+…+9n+2n =9(1-9n )1-9+2n =9n +1+16n -98.解决非等差、等比数列求和问题的两种思路思路一转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成思路二不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2.(2024·广东深圳中学月考)若一个数列的奇数项为公差为正的等差数列,偶数项为公比为正的等比数列,且公差、公比相同,则称数列为“摇摆数列”,其表达式为a n =1+n -12d ,n =2k +1,k ∈N ,2qn -22,n =2k ,k ∈N *,若数列{a n }(n ∈N *)为“摇摆数列”且a 1=1,a 1+a 2=a 3,a 2a 3=20.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前2n 项和T 2n ∑ni =1i 2解(1)+a 2=a 3,2a 3=202=4,3=52=-5,3=-4(舍去),∴d =q =4,∴a n n -1,n =2k +1,k ∈N ,n ,n =2k ,k ∈N *.(2)b n =na n n 2-n ,n =2k +1,k ∈N ,·2n ,n =2k ,k ∈N *.先求奇数项的和:b n =2n 2-n ,n =2k +1,k ∈N ,S n =2×[12+32+…+(2n -1)2]-n 2,引入W n =22+42+…+(2n )2=4(12+22+…+n 2),12(S n +n 2)+W n =∑2ni =1i 2=n (2n +1)(4n +1)3⇒S n=2(∑2ni =1i 2-W n )-n 2=2n (2n +1)(4n +1)3-4×n (n +1)(2n +1)6-n 2=8n 3-3n 2-2n 3,再求偶数项的和:b n =n ·2n ,n =2k ,k ∈N *,S n ′=2×22+4×24+…+2n ×22n ,4S n ′=2×24+4×26+…+2(n -1)×22n +2n ×22n +2,两式相减,得-3S n ′=2×22+2×24+2×26+…+2×22n -2n ×22n+2=8×(1-4n )1-4-2n ×22n +2=(1-3n )×22n +3-83,∴S n ′=(3n -1)22n +3+89,∴T 2n =S n +S n ′=8n 3-3n 2-2n3+(3n -1)22n +3+89.考点三数列与不等式的综合问题例3(2023·安徽十校联考)已知数列{a n }满足a 1+a 2+…+a n -1-a n =-2(n ≥2且n ∈N *),a 2=4.(1)求数列{a n }的通项公式;(2)n 项和为T n ,求证:23≤T n <1.解(1)因为a 1+a 2+…+a n -1-a n =-2,所以a 1+a 2+…+a n -a n +1=-2,两式相减得a n +1=2a n (n ≥2),当n =2时,a 1-a 2=-2,又a 2=4,所以a 1=2,a 2=2a 1,所以a n +1=2a n (n ∈N *),所以{a n }是首项为2,公比为2的等比数列,所以a n =2n (n ∈N *).(2)证明:因为2n(a n -1)(a n +1-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1<1,由n ≥1,得2n +1≥4,所以1-12n +1-1≥23,综上,2≤T n <1.1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.2.放缩法常见的放缩技巧(1)1k 2<1k 2-1=121k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k.(3)2(n +1-n )<1n<2(n -n -1).(4)12n +1<12n +1<12n ,13n <13n -1≤12·3n -1.3.(2023·河南五市高三二模)已知数列{a n }满足a 1=23,且2a n +1-a n +1a n =1,n∈N *.(1){a n }的通项公式;(2)记T n =a 1a 2a 3…a n ,n ∈N *,S n =T 21+T 22+…+T 2n .证明:S n 解(1)由2a n +1-a n +1a n =1,得a n +1=12-a n ,则11-a n +1-11-a n=1,是首项为11-a 1=3,公差d =1的等差数列,所以11-a n =3+(n -1)=n +2,整理得a n =n +1n +2(n ∈N *),经检验,符合要求.(2)证明:由(1)得a n =n +1n +2(n ∈N *),T n =a 1a 2…a n =2n +2,∴T 2n =4(n +2)2>4(n +2)(n +3)=∴S n =T 21+T 22+…+T 2n -14+…+1n +2-即S n 考点四数列与函数的综合问题例4(2024·江苏辅仁中学阶段考试)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列前n 项和T n .解(1)由已知,得b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 的图象在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.则a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以T n =2n +1-n -22n.数列与函数综合问题的常见类型及注意事项常见类型类型一已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题类型二已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形注意事项注意点一数列是一类特殊的函数,其定义域是正整数集(或有限子集),它的图象是一群孤立的点注意点二转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题注意点三利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化4.(2024·湖南湘潭一中阶段考试)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .解(1)令f ′(x )=12+cos x =0,所以cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-2n π3=n (n +1)π-2n π3,所以sin S n =sinn (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,所以n (n +1)一定为偶数,所以sin S n =-sin2n π3.当n =3m -2(m ∈N *)时,sinS n =-m π=-32;当n =3m -1(m ∈N *)时,sin S n =-m π=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S nn =3m -2(m ∈N *),=3m -1(m ∈N *),3m (m∈N *).课时作业1.(2023·新课标Ⅱ卷){a n }为等差数列,b n n -6,n 为奇数,a n ,n 为偶数,记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .2.(2023·江苏徐州第七中学校考一模)已知等比数列{a n }的前n 项和为S n =12·3n +b (b 为常数).(1)求b 的值和数列{a n }的通项公式;(2)记c m 为{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数,求数列{a m c m }的前n 项和T n .解(1)由题设S n =12·3n +b ,显然等比数列{a n }的公比不为1,设{a n }的公比为q ,则S n =a 1(1-q n )1-q=a 11-q -a 1q n1-q ,∴b =a 11-q =-12且q =3,∴a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)令-3m ≤3n -1≤3m ,n ∈N *,解得0≤n -1≤m ,∴1≤n ≤m +1,数列{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数为m +1,则c m =m +1,∴a m c m =(m +1)×3m -1,∵T n =2×30+3×31+…+(n +1)×3n -1,①3T n =2×31+3×32+…+(n +1)×3n ,②两式相减,得-2T n =2×30+31+…+3n-1-(n +1)×3n=1+1-3n1-3-(n +1)·3n =(-1-2n )·3n +12,∴T n n -14.3.(2024·河南郑州外国语学校阶段考试)已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式;(2)数列{b n }的前n 项和为T n ,且满足T n +1a 2n =T na 2n +1+16n 2-8n -3,确定b 1的值使得数列{b n }是等差数列.解(1)因为f (x )=-4+1x2,且点P n ,n ∈N *)在曲线y =f (x )上,所以1a n +1=4+1a 2n ,即1a 2n +1-1a 2n=4,1为首项,4为公差的等差数列,所以1a 2n=1+4(n -1)=4n -3,即a n =14n -3(n ∈N *).(2)由(1)知T n +1a 2n =T n a 2n +1+16n 2-8n -3,即为(4n -3)T n +1=(4n +1)T n +(4n -3)(4n +1),整理得T n +14n +1-T n 4n -3=1,T 1为首项,1为公差的等差数列,则T n 4n -3=T 1+n -1,即T n =(4n -3)(T 1+n -1),当n ≥2时,b n =T n -T n -1=4b 1+8n -11,若{b n }是等差数列,则b 1适合上式,令n =1,得b 1=4b 1-3,解得b 1=1.4.(2023·黑龙江齐齐哈尔模拟)在①S n =32a n -3,其中S n 为数列{a n }的前n 项和;②a 1=1,a n -a n +1=a n a n +1这两个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }满足________.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得a m +a m +1为数列{a n }中的项?若存在,求出m ;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解若选择条件①:(1)令n =1,则a 1=321-3,所以a 1=6,由于S n =32a n -3,则当n ≥2时,S n -1=32a n -1-3,两式相减,得a n =32a n -32a n -1,则a n a n -1=3,所以{a n }是首项为6,公比为3的等比数列,则数列{a n }的通项公式为a n =6×3n -1=2×3n .(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则2×3m +2×3m +1=2×3k ,所以4×3m =3k ,此等式左边为偶数,右边为奇数,所以不存在正整数m 满足题意.若选择条件②:(1)因为a 1=1,a n -a n +1=a n a n +1,所以a n ≠0,1a n +1-1a n=1,是首项为1a 1=1,公差为1的等差数列,所以1a n =1+(n -1)×1=n ,所以a n =1n.(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则1m +1m +1=1k,化简得m 2+(1-2k )m -k =0,解得m =2k -1+1+4k 22,因为2k <1+4k 2<2k +1,所以2k -12<m <2k ,m 无正整数解,故不存在正整数m 满足题意.5.已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ成立,求实数λ的取值范围.解(1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4,∴a n =5-n ,S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m 1-1281m ,的值随m 增加而减小,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ,则10<8+λ,解得λ>2.故实数λ的取值范围为(2,+∞).6.(2024·河北衡水调研)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.(1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:1271S n <7528.解(1)由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3an +1-3,即1a n +1-1又因为1a 1-1=73-1=43,是首项为43,公比为43的等比数列,所以1a n -1,所以a n =11.(2)证明:由(1)可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-<7528.综上所述,1271S n <7528成立.。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
数列解答题高考汇编
1.已知等差数列{a n }中,a 1=1,a 3=-3.(I )求数列{a n }的通项公式;(II )若数列{a n }的前k 项和=-35,求k 的值.2、已知等比数列{a n }的公比q=3,前3项和S 3=133(I )求数列{a n }的通项公式;(II )若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式。
3.、等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1){}n a 的通项公式.(2)设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和.4.已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12n n a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.5.已知{}n a 为等差数列,且36a =-,60a =。
(Ⅰ)求{}n a 的通项公式; (Ⅱ)若等差数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式6.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列{a n }的通项; (Ⅱ)求数列{n a 2}的前n 项和S n .7.在等差数列{an }中,4a =-15, 公差d =3,求数列{}n a 的前n 项和n S 的最小值.8.已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈.证明:{}1n a -是等比数列;9.已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和. (Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .。
高考解答题专题:数列
高考解答题专题:数列1.(本小题满分14分)等差数列{}n a 中,13a =,前n 项和为nS ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =(1)求na 与nb ;(2)求数列1{}nS 的前n 项和2.设正数组成的数列{}n a 是等比数列,其前n 项和为n S ,且21=a , 143=S(1)求数列{}n a 的通项公式;(2)若n n a a a T ⋅⋅⋅⋅=21,其中*N n ∈; 求n T 的值,并求n T 的最小值. 3.已知数列{}n a 为等差数列,n S 为其前项和,1596,63a a S +== (1)求数列{}n a 的通项公式及前项和n S ;(2)若数列{}n b 满足对,2na n n Nb *∀∈=求数列{}n n a b 的前n 项和n T ;4.设数列{}n a 满足1a a =,11n n a ca c +=+-,*n N ∈,其中a 、c 为实数,且0c ≠。
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12a =,12c =,(1),*n n b n a n N =-∈,求数列{}n b 的前n 项的和n S ;5.已知数列{} 的前n 项和,数列{}的前n 项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n ≥3时,<6.设1c ,2c ...,n c ,...是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y=33x 相切,对每一个正整数n,圆n c 都与圆1n c +相互外切,以n r 表示nc 的半径,已知{}nr 为递增数列.(Ⅰ)证明:{}nr 为等比数列;(Ⅱ)设1r =1,求数列n n r ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.7.在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .。
数列(文科)解答题30题--高考数学复习提分复习资料 学生版
专题4数列(文科)解答题30题1.(江西省南昌市金太阳大联考2023届高三上学期10月联考数学(文)试题)在等比数列{n a }中,122554a a a +==.(1)求{n a }的通项公式;(2)求数列{3214n a n +-}的前n 项和Sn .2.(2022·贵州·校联考模拟预测)已知()()2221121216n n n n ++⋅⋅⋅+=++,数列{}n a 满足2121n n a a n n +-=++,11a =.(1)求{}n a 的通项公式;(2)设21n n a b n =+,求数列1n b ⎧⎫⎨⎩⎭的前n 项和n S .3.(河南省许昌济源平顶山2022届高三第三次质量检测文科数学试题)已知等差数列{}n a 的前n 项和为16,3,12n S a S =-=,数列{}n b 满足()*112,2n n b b b n +==∈N .(1)求数列{}{},n n a b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .4.(青海省海东市第一中学2022届高考模拟(二)数学(文)试题)已知正项数列{}n a 满足2123232n a a a na n n ++++=+ ,且()()211n n n n a b n n+-=++.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S .5.(陕西省汉中市2023届高三上学期教学质量第一次检测文科数学试题)已知数列{}n a 是公差为12的等差数列,数列{}n b 是首项为1的等差数列,已知2344a b a b -=-.(1)求n b ;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .6.(陕西省汉中市2022届高三上学期教学质量第一次检测文科数学试题)已知等差数列{}n a 的前n 项和为n S ,满足39a =,___________.在①36S a =,②430S =,③25845a a a ++=这三个条件中任选一个,补充在上面问题中,并解答.(注:如果选择多个条件分别解答,则按第一个解答给分)(1)求{}n a 的通项公式;(2)设2na n nb a =+,求{}n b 的前n 项和n T .7.(山西省太原市2022届高三二模数学(文)试题)已知数列{}n a 为公差大于0的等差数列,2512a a +=,且1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=⋅,数列{}n b 的前n 项和为n S ,若2041m S =,求m 的值.8.(江西省宜春市八校2022届高三下学期联合考试数学(文)试题)已知公差不为0的等差数列{}n a 中,23a =且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}3n n a 的前n 项和为n T .9.(广西柳州市2023届高三第二次模拟数学(文)试题)在数列{}n a 中,()11N ,R,029n a n a a n *=+∈∈≠-,它的最大项和最小项的值分别是等比数列{}n b 中的21b -和39b -的值.(1)求数列{}n b 的通项公式;(2)已知数列{}()3,log n n n n c c b b =⋅,求数列{}n c 的前n 项和n M .10.(江西省部分学校2023届高三上学期1月联考数学(文科)试题)公差不为0的等差数列{}n a 的前n 项和为n S ,且满足310a =,2a 、4a 、7a 成等比数列.(1)求{}n a 的前n 项和n S ;(2)记26n n b S =+,求数列{}n b 的前n 项和n T .11.(2022·陕西西安·西安中学校考一模)已知数列{}n a 的前n 项和是n S ,且2n S n =,数列{}n b 的前n 项和是n T ,且323n n b T =+.(1)求数列{}n a ,{}n b 的通项公式;(2)设n n na cb =,证明:1231nc c c c ++++< .12.(2022·陕西渭南·统考一模)已知等差数列{}n a 的前n 项和为n S ,不等式21280a x S x --<的解集为()1,4-.(1)求数列{}n a 的通项公式;(2)若2111n n nb a S =+-,求数列{}n b 的前n 项和n T .13.(2022·贵州贵阳·校联考模拟预测)已知数列{}n a 的前n 项和为21,n n n S T =-为等差数列{}n b 的前n 项和,且满足23b a =,527T T =.(1)求数列{}{},n n a b 的通项公式;(2)求数列{}n n a b +的前n 项和n H .14.(河南省多校联盟2022届高考终极押题(A 卷)数学(文)试题)已知各项均为正数的数列{}n a 的前n 项和为n Sn a 与1的等差中项.(1)求数列{}n a 的通项公式;(2)若数列11n n a a ⎧⎫⎨⎬+⎩⎭的前n 项和为n T ,证明:1132n T ≤<.15.(河南省郑州市2022届高三第三次质量预测文科数学试题)已知数列{}n a 满足111,1n n a a S +==+,其中n S 为{}n a 的前n 项和,n *∈N .(1)求数列{}n a 的通项公式;(2)设数列{}n n b a -是首项为1,公差为2的等差数列,求数列{}n b 的前n 项和.16.(第四章数列(选拔卷)-【单元测试】2021-2022学年高二数学尖子生选拔卷(苏教版2019选择性必修第一册))已知各项都为正数的数列{an }满足an +2=2an +1+3an .(1)证明:数列{an +an +1}为等比数列;(2)若a 1=12,a 2=32,求{an }的通项公式.17.(辽宁省铁岭市六校2021-2022学年高三上学期12月月考数学试题)设数列{}n a 的前n 项和为n S ,且满足332n n a S =+(n *∈N ).(1)证明:数列{}n a 是等比数列;(2)令()31log n n na c n a *+=∈N ,求数列{}n c 的前n 项和n T .18.(陕西省榆林市2023届高三上学期一模文科数学试题)已知数列{}n a 的前n 项和为n S ,且()1113,1n n n a S S n a ++=+=+.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n T .19.(陕西省西安中学2022届高三下学期八模文科数学试题)记n S 为等比数列{}n a 的前n 项和,且公比1q >,已知24a =,314S =.(1)求{}n a 的通项公式;(2)设()1n n b a n λ=+-,若{}n b 是递增数列,求实数λ的取值范围.20.(山西省吕梁市2022届高三三模文科数学试题)已知正项等比数列{}n a 的前n 项和为n S ,且131,7a S ==.(1)求{}n a 的通项公式;(2)记()()2211log 1log 1n n n b S S +=+⋅+,求{}n b 的前n 项和n T .21.(山西省际名校2022届高三联考二(冲刺卷)文科数学试题)已知数列{}n a 的前n项和为n S ,且31,n n S a n n *+=-∈N .(1)证明{}3n a -是等比数列;(2)求{}n na 的前n 项和n T .22.(内蒙古赤峰市2023届高三下学期1月模拟考试文科数学试题)已知单调递增的等差数列{}n a ,且12a =,2a ,32a +,64a +成等比数列.(1)求{}n a 的通项公式;(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k +=⋅⋅⋅之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.23.(内蒙古呼伦贝尔市满洲里市2022届高三三模数学(文)试题)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,214,22,n n a b S a ==-()()1*21N +-+=+∈n n nb n b n n n .(1)求数列{}n a 的通项公式;(2)证明n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列(){}1n n b -的前2n 项和.24.(内蒙古呼伦贝尔市部分校2022届高考模拟数学(文)试题)已知在等差数列{}n a 中,25a =,1033a a =.(1)求数列{}n a 的通项公式;(2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .25.(宁夏银川一中2022届高三第四次模拟考试数学(文)试题)已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .26.(新疆乌鲁木齐地区2022届高三第二次质量监测数学(文)试题(问卷))设数列{}n a 是由正数组成的等比数列.其中24a =,416a =.(1)求数列{}n a 的通顶公式;(2)若数列n n b a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,其中12b =,求数列{}n b 的前n 项和n T .27.(江西省南昌市2022届高三第三次模拟测试数学(文)试题){}n a 是各项均为正数的等差数列,其前n 项和为n S ,已知12a =,14n n n S a a +=.(1)求{}n a 的通项公式;(2)设1n n n b S a =+,若{}n b 的前n 项和为n T ,求证:1118n T <.28.(江西省九江市2022届第三次高考模拟统一考试数学(文)试题)已知数列{}n a 的前n 项和为n S ,且满足12a =,()1222n n S S n -=+≥.(1)求n a ;(2)求数列()21n n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.29.(广西梧州市2023届高三第一次模拟测试数学(文)试题)已知n S 为数列{}n a 的前n 项和,22n n S a +=.(1)求数列{}n a 的通项公式;(2)记2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,求{}n b 前12项的和.30.(贵州省2023届高三333高考备考诊断性联考(一)数学(文)试题)已知数列{}n a 是递增的等比数列.设其公比为q ,前n 项和为n S ,并且满足1534a a +=,8是2a 与4a 的等比中项.(1)求数列{}n a 的通项公式;(2)若n n b n a =⋅,n T 是n b 的前n 项和,求使12100n n T n +-⋅>-成立的最大正整数n 的值.。
2022浙江高考数学解答题保三争二:数列
2022浙江高考数学解答题保三争二:数列1.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()612n n n S a a =++,*n N ∈. (1)求{}n a 的通项公式;(2)设数列{}n b 满足()211n bn a -=,并记n T 为{}n b 的前n 项和,求证:()21log 3n n T a +<+,*n N ∈.2.已知数列{}n b 为等差数列,数列{}n a 满足2log n n b a =,且451a b ==. (1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}n c 满足n n n c a b =,求{}n c 的前n 项和n T .3.已知数列{}n a ,{}n b 满足111a b ==,()()21124++-=-n n n n a a b b ,其中*n N ∈.记n S 为数列{}n a 的前n 项和.(Ⅰ)若{}n a 是等比数列,且2353=+a S ,求数列{}n b 的通项公式; (Ⅰ)若0n a ≥,*n N ∈,证明:≤+n n S b n ,*n N ∈.4.已知数列{}n a 满足10a =,且()*112n na n N a +=∈-. (1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列;(2)记()11(1)2n n n n b a a ++=---,数列{}n b 的前n 项和为n T ,若存在*n N ∈,使n T λ>成立,求实数λ的取值范围.5.设等差数列{}n a 的前n 项和为n S ,已知152,20a S ==. (1)求数列{}n a 的通项公式;(2)若p a 、30、q S 成等差数列,p a 、18、q S 成等比数列,求正整数p 、q 的值;(3)是否存在k *∈N{}n a 中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.6.在各项均为正数的等比数列{}n a 中,22a =且3542,,3a a a 成等差数列,数列{}n b 满足212log ,n n n b a S +=为数列{}n b 的前n 项和.(1)求数列{}n b 的通项公式; (2)设数列{}n c 满足n n nS nc na -=,求证:1234n c c c c ++++<.7.已知数列{}n a 满足1a =12且21n n n a a a +=-(*N n ∈). (1)证明: 112nn a a +<≤(*N n ∈); (2)设数列{}2n a 的前项和为n S ,证明()()112221n S n n n <≤++(*N n ∈).8.已知公差不为0的等差数列{}n a 的首项a 1为a (a ∈R),设数列的前n 项和为S n ,且11a ,21a ,41a 成等比数列.(1)求数列{a n }的通项公式及S n ;(2)记A n =1211S S ++31S +…+1n S ,B n =1211a a ++…+121n a -,当n ≥2时,试比较A n 与B n 的大小.9.设数列{}n a 是公比为正整数的等比数列,满足2132310,8a a a a +=-=,设数列{}n b 满足11b =,113n n n b b b +-=+ (1)求{}n a 的通项公式.(2)求证数列11n b ⎧⎫⎨⎬+⎩⎭是等差数列,并求{}n b 的通项公式;(3)记,21n nn a b c n n -≥=,求和234n c c c c +++⋯+.10.已知数列{}n a 和{}n b 满足11a =,121n n a a +=+,且()()11112231N n n n n b n n n *+++=+++⨯⨯∈+. (1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n n a b 的前n 项和为n T ,求满足()()2111n n n T a b ≥+--的正整数n 的值.11.设数列{}n a 满足:111,3,n n a a a n N *+==∈,设n S 为数列{}n b 的前n 项和,已知10b ≠,112,n n b b S S n N *-=⋅∈(1)求数列{}{},n n a b 的通项公式(2)求证:对任意的n *∈N 且2n ≥,有223311132n n a b a b a b +++<---12.设数列{}n a 的前n 项之和为n S ,且满足()*(44),n nS n a n nN =-+∈,214a =. (1)求数列{}n a 的通项公式; (2145(45)nn S S ++>+.13.已知正项数列{}n a 的前n 项和为n S ,且()()()11,114n n n a a a a S n +=++=+,n *∈N . (1)求数列{}n a 的通项公式; (2)若234,,a a a 为等差数列,求证:()21223157231222nn n n n N a a a a a a *+++++<∈.14.已知等比数列{}n a 和等差数列{}n b 满足:111a b ==,n b N *∈,且对任意n *∈N ,()121223n n b b b a a a a a a +++=+++.(1)证明{}n b a 是等比数列,并求数列{}n a ,{}n b 的通项公式;(2)设数列{}n b 的前n 项和为n S ,记n n n c a S =-,求数列{}n c 中的最小项.15.已知数列{}n a 的前n 项和为n S ,()*212n n a a n n -==∈N ,数列{}n b 满足:当n S ,1n S +,2n S +成等比数列时,公比为n b ,当n S ,1n S +,2n S +成等差数列时,公差也为n b . (1)求2n S 与21n S -; (2)证明:121112nn b b b +++.16.已知n S 为数列{}n a 的前n 项和,n S ,n a ,1a 成等差数列,且4422a S =+,n N +∈. (1)求数列{}n a 的通项公式;(2)设122(1)n n n n b n n a +++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.17.已知数列{}n a 的前n 项和为n S ,()2*2(21)2n n S n a n n N =+-∈,数列{}n b 满足11b a =,1n n n nb a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)设数列{}n c 满足:14c =,()*1n n n n a c c n N b +=-∈,若不等式()*392n n n c n N λ++≥∈恒成立,求实数λ的取值范围.18.已知数列{}n a 的前n 项积为n T ,112a =,且对一切*n ∈N 均有11n n n n a a T T ++-=-. (1)求证:数列1n T ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式;(2)若数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:ln 1n n S T +>.19.已知首项为32的等比数列{}n a 的前n 项和为()*n S n ∈N ,且22S -,3S ,44S 成等差数列.(1)求数列{}n a 的通项公式; (2)求n S ,并求221n nS S +的最大值.20.已知数列{}n a 的前n 项和为21122n n +,数列{}n b 满足12b =,1430n n n nb a b n +--=,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式; (2)若1(1)n n a n c b =+-,数列{}n c 的前n 项和为n T ,求证:265n T ≤.21.已知正项数列{}()*n a n N ∈及其前n 项和n S 满足:()241n n S a =+.(1)求数列{}n a 的通项公式; (2)令()*12n n n b n N a a +=∈⋅,数列{}n b 的前n 项和为n T.若不等式n T ≥*n N ∈都成立,求M 的取值范围.22.已知公比1q >的等比数列{}n a 和等差数列{}n b 满足:12a =,11b =,其中24a b =,且2a 是2b 和8b 的等比中项. (1)求数列{}n a 与{}n b 的通项公式;(2)记数列{}n n a b 的前n 项和为n T ,若当*N n ∈时,等式()10nn T λ--<恒成立,求实数λ的取值范围.23.已知数列{}n a 中,13a =,111n n n a a n n-+=+(2)n ≥. (1)求2a ,3a ,4a 及数列{}n a 的通项公式; (2)设()12222212341n n n T a a a a a -=-+-++-,求10T 及n T .24.已知数列{}n a 满足11a =,若记数列{}n a 前n 项和为n T ,则对于任意的n ∈+N ,121n n T T +=+. (1)求证:{}n a 是等比数列,并写出{}n a 的通项公式和其前n 项和n T 的表达式;(2)已知数列{}n b 满足nn b x =,10,2x ⎛⎫∈ ⎪⎝⎭,设数列()1n b n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和为n S .求证:1ln 2n S <-.参考答案1.(1)31n a n =- (2)证明见解析 【分析】(1)由()()612n n n S a a =++项和转换可得()()1130n n n n a a a a +++--=,结合0n a >,可得13n n a a +-=,分析即得解;(2)由()211n bn a -=可得23log 31n n b n =-,利用对数运算性质可得2363log 2531n n T n ⎛⎫=⋅⋅⋯⋅ ⎪-⎝⎭,利用3323131n n n n +<--放缩即得证 (1) 由()()11111126a S a a ==++,2111132(1)(2)0a a a a ∴-+=--= 结合111a S =>,因此12a =, 由()()()()111111121266n n n n n n n a S S a a a a ++++=-=++-++, 得()()1130n n n n a a a a +++--=,又0n a >,得13n n a a +-=, 从而{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-. (2)由()211n b n a -=,故12131n bn -=- 即3231n b nn =- 可得23log 31n nb n =-,从而 122222363363...log log ...log log 25312531n n n n T b b b n n ⎛⎫=+++=+++=⋅⋅⋯⋅ ⎪--⎝⎭, ∵3323131n n n n +<--, ∴363583232253125312n n n n n ++⋅⋅⋯⋅<⋅⋅⋯⋅=--,于是2363log 2531n n T n ⎛⎫=⋅⋅⋯⋅ ⎪-⎝⎭222583232log log log (32)125312n n n n ++⎛⎫<⋅⋅⋯⋅==+- ⎪-⎝⎭, ∴()221log (32)log 3n n T n a +<+=+.2.(1)4n b n =-,n n *∈,42n n a -=,n n *∈;(2)()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩.【分析】(1)由条件先求出4b ,结合51b =,根据等差数列的通项公式,先求出n b ,再求n a . (2)设()442n n c n -=-⋅',由错位相减法求其前n 项和n T ',当4n ≤时,n n T T '=-,当5n ≥时,42n n T T T ''=-,从而可得答案. 【详解】(1)数列{}n b 为等差数列.4242log log 10b a ===,51b =,则4n b n =-,n n *∈,42n n a -=,n n *∈,(2)()442n n n n c a b n -==-⋅设()442n n c n -=-⋅',n T '为数列{}n c '的前n 项和,则有:()()()()321432221242n n T n ----'=-⨯+-⨯+-⨯++-⨯,(*) ()()()()2130232221242n n T n ---'=-⨯+-⨯+-⨯++-⨯,(**) (*)式-(**)式,得()()()()()()2132143332123222242324212n n n n n T n n ---------⋅--=-⨯++++--⨯=-⨯+--⋅-'()35528n n T n -'=-⨯+.当4n ≤时,()35528n n n T T n -'=-=---⋅;当5n ≥时,()()3345527252452848n n n n T T T n n --''=-=-⋅++-=-⋅+,即()()()()33552,482752,58n n n n n T n n --⎧--⋅-≤⎪⎪=⎨⎪-⋅+≥⎪⎩3.(Ⅰ)21344n n b -=⋅+;(Ⅰ)证明见解析. 【分析】(Ⅰ)根据2353=+a S 可求出数列{}n a 的公比,再利用累加法求出{}n b 的通项公式; (Ⅰ)由已知得()()114142n n n n b b a a ++-+≥-,再累加可证明. 【详解】(Ⅰ)设{}n a 公比为q ,由2353=+a S 得2135+++=q q q ,解得2q,故12n n a ,进而()()2111422294--+-=⋅-=⋅n n n n n b b ,即2194n n n b b -+-=⋅,所以()()()111221n n n n n b b b b b b b b ----=-+-+⋅⋅⋅+-()()132111449444914n n n ----⨯-=++⋅⋅⋅+=⨯-,因此21344n n b -=⋅+. (Ⅰ)由()()()2111412442+++-+=-+≥-n n n n n n b b a a a a , 因此()()()()1211211122---++⋅⋅⋅+-+≥-+⋅⋅⋅+-n n n n b b b b a a a a , 即1112-+-≥+-n n n b b n a S a ,由0n a ≥,111a b ==,所以+≥n n b n S . 4.(I )证明见解析;(II )23λ>. 【分析】 (1)由112n n a a +=-可转化得到111111n n a a +-=---,即得证; (2)由(1)可得11n a n =-,代入可得111(1)1n n b n n +⎛⎫=-+ ⎪+⎝⎭,计算可得111(1)1n n T n +⎛⎫=+- ⎪+⎝⎭,分n 为奇数、n 为偶数讨论,即得解 【详解】 (1)1111122n n n na a a a +--=-=--,111111n n a a +∴=---,即()*111111n n n N a a +-=-∈--,∴数列11n a ⎧⎫⎨⎬-⎩⎭是以1-为公差的等差数列. (2)由(1)可知数列11n a ⎧⎫⎨⎬-⎩⎭是以1-为公差的等差数列,且1111a =--,11n n a ∴=--,11n a n∴=- 111(1)1n n b n n +⎛⎫∴=-+ ⎪+⎝⎭,11111111111(1)1(1)2233411n n n T n n n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=+-+++-+-+=+- ⎪ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭①当n 为奇数时,111n T n =++单调递减,当n →+∞时,1n T →,1n T ∴> ②当n 为偶数时,111n T n =++单调递增,223n T T ∴≥= 所以()min 23n T =, 存在*n N ∈,使得n T λ>成立,()min n T λ∴>即可,23λ∴>5.(1)1n a n =+;(2)5,9p q ==;(3)存在,3k =或14. 【分析】(1)设等差数列的公差为d ,由题设可得关于d 的方程组,求出其解后可得列{}n a 的通项公式.(2)由(1)可得关于,p q 的方程组,其解即为所求的正整数p 、q 的值; (3)根据题设条件可得关于,k n 的方程,利用该方程有正整数解可求k 的值. 【详解】(1)15542,20522a S d ⨯=∴==⨯+⨯,所以1d =, 1(1)211n a a n d n n ∴=+-=+-=+.(2)由(1)可得232n n nS +=.因为,30,p q a S 成等差数列,,18,p q a S 成等比数列,故26018324p q p q a S a S +=⎧⎨⨯==⎩,故654p q a S =⎧⎨=⎩或546p qa S =⎧⎨=⎩ 所以2163108p q q +=⎧⎨+=⎩或215436p q q +=⎧⎨+=⎩(因q 不是正整数,舍),故59p q =⎧⎨=⎩. (3)假设存在k *∈N{}n a 中的项,1n +,其中*N n ∈,221,(22)(23)63n n k =+∴+-+=,故(225)(221)63n k n k ++--=,而225221n k n k ++>--,所以22592217n k n k ++=⎧⎨--=⎩(无正整数解,舍)或225212213n k n k ++=⎧⎨--=⎩或225632211n k n k ++=⎧⎨--=⎩故53n k =⎧⎨=⎩或1514n k =⎧⎨=⎩,所以3k =或14k =.6.(1)2n b n =;(2)证明见解析. 【分析】(1)设各项均为正数等比数列{}n a 的公比为q ,由3542,,3a a a 成等差数列,可求得q ,从而求得数列{}n a 的通项公式,再根据212log n n b a +=即可得出答案;(2)求出数列{}n b 的前n 项和n S ,从而求得数列{}n c 的通项公式,再根据错位相减法即可求得数列{}n c 的前n 项的和,即可得证. 【详解】(1)解:设各项均为正数等比数列{}n a 的公比为q , Ⅰ32a ,5a ,43a 成等差数列, Ⅰ534223a a a =+,即2223q q =+,Ⅰ2q或12q =-(舍去),又22a =,则21222n n n a --=⋅=,即数列{}n a 的通项公式为12n na ,Ⅰ22log 22nn b n ==;(2)证明:由(1)得2n b n =,则12n n b b ,所以{}n b 是等差数列,故2(22)2n n n S n n +==+, 则12n n n n S n nc na --==, 令123423123412222n n n nT c c c c c -=+++++=+++++, 则23111231222222n n nn nT --=+++++, 两式相减得231111112122222222n n n nn n T -+=+++++-=- 故12442n n n T -+=-<, 所以1234n c c c c ++++<.7.(1)证明见解析;(2)证明见解析. 【分析】(1)由题意可得102n a <≤,再由2111n n n n n n a a a a a a +==--即可求证; (2)由21n n n a a a --=可得11n n S a a +=-,再求1n a +的范围,即可求证.【详解】(1)由21n n n a a a +=-得:210n n n a a a +-=-≤,即1n n a a +≤,所以12n a ≤, 若1n n a a +=则2n n n a a a =-可得0n a =,与题设条件不符,故1112n n a a a +≤=<, 由()211111n n n n n a a a a a ------==,得()()()12111110n n n a a a a a --=--⋅⋅⋅->, 由102n a <≤得,(]2111,21n n n n n n a a a a a a +==∈--, 综上所述:112nn a a +<≤; (2)由题意得21n n n a a a +=-,所以222121231112n n n n n S a a a a a a a a a a a ++=+++=-+-++--=①,由1111n n n n a a a a ++-=和112n n a a +<≤,得11112n n a a +<-≤, 11121111111111n n n n n a a a a a a a a ++-⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以11112n n n a a +<-≤,又因为112a =,所以11222n n n a ++<≤+,因此()()*111N 212n a n n n +<≤∈++②, 所以()11111122221n a a n n +-<-≤-++,即()()112221n na a n n n +<-≤++,由①②得()()112221n S n n n <≤++. 8.(1)n a na =,()12n n n aS +=;(2)当a >0时,A n <B n ;当a <0时,A n >B n 【分析】 (1)根据11a ,21a ,41a 成等比数列,利用等比中项可求出等差数列的公差,从而求{a n }的通项公式及S n ; (2)由(1)得出12111n S a n n ⎛⎫=- ⎪+⎝⎭,利用裂项法求n A ;根据题意判断出121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为等比数列,利用等比数列的前n 项和公式求n B ,从而比较A n 与B n 的大小. 【详解】(1)设等差数列{}n a 的公差为d ,因为11a ,21a ,41a 成等比数列,所以4221111a a a =⨯, 即()()21113a d a a d +=+,因为d ≠0,所以d =a 1=a , 所以n a na =,()()()11222n n n a n a a na n n aS +++===. (2)因为()12n n n aS +=,所以12111n S a n n ⎛⎫=- ⎪+⎝⎭, 所以A n =1211S S ++31S +…+1n S 2111a n ⎛⎫=- ⎪+⎝⎭, 因为n a na =,所以1122n n a a--=⨯,所以1121112n n a a --=⨯, 所以121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为等比数列,且首项为1a ,公比为12,所以B n =1211a a ++…+121n a -11121211212n n a a -⎛⎫⨯=- ⎪⎝⎭-, 因为当n ≥2时,0121n nn n n C C C n =+++>+…,所以111n -<+112n-, 又由题意可知0a ≠,所以当a >0时,A n <B n ;当a <0时,A n >B n .9.(1)2nn a =;(2) 证明见解析,21n b n =- ;(3)124n n+-;【分析】(1)用基本量,求出首项和公比,即可求出通项公式. (2)先用已知条件,得到1111112n n b b +-=++,求出11n b ⎧⎫⎨⎬+⎩⎭的通项公式,即可得出{}n b 的通项公式.(3)利用裂项相消法,即可求解. 【详解】(1)2131112222231110102882a a a a q a a a a q a q q q Z q Z ++⎧+=+=⎧=⎧⎪⎪-=⇒-=⇒⎨⎨⎨=⎩⎪⎪∈∈⎩⎩,所以2n n a =,(2)133111111111113122113n n n n n n n n n n n n b b b b b b b b b b b b +++-=-=-=-=-+++-+++++++ 321222n n b b +-=+,又11b =,所以112n nb =+,所以21n b n =-. (3)12212(2)22(2)11(1)1n nn n n n n a b n n c n n n n n n n+⎛⎫- ⎪-⎝⎭====-≥---- 所以233445112342222222224.1223341n n n n c c c c n n n++++++=-+-+-++-=-- 10.(1)21nn a =-,n b n =;(2)1n =或2.【分析】(1)推导出数列{}1n a +为等比数列,确定该数列的首项和公比,可求得{}1n a +的通项公式,即可得出{}n a 的通项公式,利用裂项求和法可求得{}n b 的通项公式;(2)利用错位相减法结合分组求和法可求得n T ,根据已知条件可得出关于n 的二次不等式,结合n *∈N 可得出n 的取值. 【详解】(1)对任意的n *∈N ,121n n a a +=+,则()1121n n a a ++=+,且112a +=, 所以,数列{}1n a +是等比数列,且首项和公比均为2, 故11222n n n a -+=⨯=,21n n a ∴=-,因为()11111n n n n =-++,所以,()()1111111111122312231n n n n b n n n n n +++⎛⎫=+++=+-+-++- ⎪⨯⨯++⎝⎭()1111n n n ⎛⎫=+-= ⎪+⎝⎭;(2)设数列{}2⋅nn 的前n 项和为n S ,则1231222322n n S n =⋅+⋅+⋅++⋅,所以,()23121222122n n n S n n +=⋅+⋅++-⋅+⋅,上式-下式,得()()2311121222222221212n n n n n n S n n n +++--=++++-⋅=-⋅=-+-⋅-,所以,()1122n n S n +=-⋅+,()212n n n n a b n n n =⋅-=⋅-, 则()()()()1231112223221231222n n n n n T n n n ++=⋅+⋅+⋅++⋅-++++=-⋅+-, 由()()2111n n n T a b ≥+--可得()()()1111221212n n n n n n +++-⋅+-≥-⋅-, 整理可得260n n +-≤,解得32n -≤≤, 因为n *∈N ,故1n =或2.11.(1)13-=n n a ,12n n b -=;(2)证明见解析.【分析】(1)利用定义直接判断出{}n a 是等比数列,写出通项公式;利用1n n n b S S -=-得到1=2n n b b -,判断出{}n b 是等比数列,即可写出通项公式. (2)先写出1111=32n n n n a b ----再进行放缩11211323n n n ---<-,得到2113n n n a b -<-, 直接利用等比数列的求和公式即可证明. 【详解】(1)数列{}n a 满足:111,3,n n a a a n N *+==∈,所以{}n a 是公比为3的等比数列,所以1113n n n a a q --==.在{}n b 中,对于112,n n b b S S n N *-=⋅∈,令n =1可得:11112b b S S -=⋅,解得:11b =; 所以21n n b S -=.当2n ≥时,1121n n b S ---=,所以1122n n n n b b S S ---=-,即1=2n n b b -, 所以{}n b 是公比为2的等比数列,所以1112nn n b b q .(2)因为2n ≥时,112111=323n n n n n a b ---<--, 所以11222331113111113131=113323213n n n n n a b a b a b ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦+++<+++=-<⎢⎥ ⎪---⎝⎭⎢⎥⎣⎦- 即证.12.(1)82n a n =-;(2)证明见解析. 【分析】(1)法1:根据n S 与n a 的之间的关系得出{}n a 是等差数列,再由等差数列的通项公式即可求解:;法2:由n S 与n a 的之间的关系可得*1(44),n n n S n S S n n N -=--+∈(2n ≥),n S n ⎧⎫⎨⎬⎩⎭是等差数列,得出242n S n n =+,从而得出通项公式.(2)由(1)可得242n S n n =+,再由裂项求和法即可证明.【详解】解(1)法1:当2n =时222(4)S a =-,又214a =,则16a =由*(44),n n S n a n n N =-+∈知,当2n ≥时11(1)(4(1)4)n n S n a n --=---+, 相减得1(1)(1)8(1)0n n n a n a n ------=,即18n n a a --=,故{}n a 是等差数列, 由214a =,则()142882n a n n =+-⨯=-.法2:由*(44),n n S n a n n N =-+∈得*1(44),n n n S n S S n n N -=--+∈(2n ≥), 即1(1)4(1)n n n S nS n n ---=-,则141n n S S n n --=-,故n S n ⎧⎫⎨⎬⎩⎭是等差数列, 则64(1)42nS n n n=+-=+,即242n S n n =+, ()()22142412182n n n n n n S n n a n S S -⎡⎤+-=-+-=⎣⎦-=-=(2n ≥)即82n a n =-.当1n =时,116a S ==,满足上式, 所以82n a n =-(2412n +,411(41)(45)4145n n n n >=-++++11111159913n n S S ++>-+-++114145n n -++ 11545n =-+45(45)n n =+13.(1)22,21,21,2,n n a n k k N a n n k k N **⎧+-=-∈=⎨-=∈⎩;(2)证明过程见解析. 【分析】(1)根据前n 项和与第n 项的关系,结合等差数列的定义进行求解即可; (2)根据等差数列的性质,结合裂项相消法进行证明即可. 【详解】(1)当1n =时,()()()1211141a a S ++=+,解得23a =, 当2,n n N *≥∈时,()()()111141n n n a a S n --++=+-,所以有()()()()()()1111111441n n n n n n a a a a S n S n +--++-++=+-+-, 由题意可知:0n a >,化简得:114n n a a +--=,所以2114(1)44k a a k k a -=+-=+-,224(1)4441k a a k k a k =+-=+-=-,因此22,21,21,2,n n a n k k N a n n k k N **⎧+-=-∈=⎨-=∈⎩; (2)由(1)可知:23a =,34a a =+,47a =,因为234,,a a a 为等差数列, 所以32422(4)371a a a a a =+⇒+=+⇒=,因此21()n a n n *=-∈N , 因为1123231122(21)(21)2(21)2(21)nn n n n n n n a a n n n n -+++==--+-+, 因此有: 212231215723222111111()()[]112323252(21)2(21)1112(21)n n n n n n n a a a a a a n n n +-++++=-+-++-⨯⨯⨯⨯-+=-<+14.(1)证明见解析,12n n a ,21n b n =-;(2)59c =-.【分析】(1)根据等差数列和等比数列的定义,证明{}n b a 为等比数列.通过等比数列的求和公式计算出数列{}n a 的公比()0q q ≠和数列{}n b 的公差d 从而写出数列{}n a ,{}n b 的通项公式;(2)由等比数列的求和公式求得122n n c n -=-,11221n n n c c n -+-=--,对其分类讨论,结合二项式定理,判断出{}n c 的单调性即可求出数列{}n c 中的最小项. 【详解】(1)设数列{}n a 的公比为()0q q ≠, 数列{}n b 的公差为()0d d >.由于11n n n nb b b d b a q q a ++-==,故数列{}n b a 是首项为1b a ,公比为d q 的等比数列.易知1q ≠,则()()122122113311n n d nn b b b d q q a a a a a a qq ⎡⎤--⎢⎥+++===+++⎢⎥--⎣⎦,令1132,2n q q q d =⇒+=⇒===,因此12n n a ,21n b n =-.(2)由21n b n =-得2n S n =,所以122n n c n -=-.由于11221n n n c c n -+-=--,则21c c -,32c c -,43c c -,540c c -<,且当5n ≥时,()3122141121n n n n ----=⨯+--01233333=4()21n n n n n C C C C n -----⨯++++--0133>4()21n n C C n --⨯+--=4(1+3)21n n ⨯---290=n ->故当1n =,2,3,4时,1n n c c +<;当5n ≥时,1n n c c +>. 因此数列{}n c 中的最小项是59c =-.15.(1)2(1)n S n n =+,221=n S n -;(2)证明见解析.【分析】(1)根据()*212n n a a n n -==∈N ,可得2n S =(1)n n +,22122n n n S S a n -=-=;(2)当21n k =-时,得21221,,k k k S S S -+成等比数列,求得221211k k k S k b S k--+==, 当2n k =时,22122,,k k k S S S ++成等差数列,求得22121k k k b S S k +=-=+, 由212111111k k k b b k k -+=+=++,分2n k =、21n k =-可得答案. 【详解】(1)因为()*212n n a a n n -==∈N ,所以当1n =时,121a a ==,当2n =时,342a a ==,当3n =时,563a a ==,,所以2122121122n n n S a a a a n n -++++==++++++2(12)(1)n n n =+++=+,()221221n n n S S a n n n n -=-=+-=.(2)当21n k =-时,221k S k -=,2(1)k S k k =+,221(1)k S k +=+,∴222121k k k S S S -+=+,21221,,k k k S S S -+成等比数列,则221211k k k S k b S k--+==, 当2n k =时,2(1)k S k k =+,221(1)k S k +=+,22(1)(2)k S k k +=++,∴212222k k k S S S ++=+,22122,,k k k S S S ++成等差数列, 则22121k k k b S S k +=-=+, ∵212111111k k k b b k k -+=+=++,∴当2n k =时,121112n n b b b +++=, 又∵211112k k b k -=+,∴当21n k =-时,1222211111121122k k k k b b b b ---++++-+=, 即121112nn b b b +++, 综上可得,121112nn b b b +++. 16.(1)2n n a =;(2)证明见解析. 【分析】(1)根据数列前n 项和与通项的关系求解{}n a 的递推公式12n n a a -=,再求出1a ,再得出通项公式即可;(2)代入{}n a 的通项公式,化简可得11122(1)(1)2n n n b n n n n ++=⋅+++,再分别对112,(1)(1)2n n n n n n ++++进行裂项求和证明即可【详解】解:(1)因为n S ,n a ,1a 成等差数列,即12n n a a S =+,当2n ≥时,1112n n a a S --=+,两式相减得12n n a a -=, 所以{}n a 是公比为2的等比数列, 即112n n a a -=⋅,即()()11122112n n n a S a -==--.由4422a S =+,得12a =,所以{}n a 的通项公式2n n a =. (2)由(1)知1112222112(1)(1)22(1)(1)2n n n n n n n n n b n n a n n n n n n ++++++++===⋅+++++,又因为11111111111 (1122334)(1)22311n n n n n ++++=-+-++-=-⋅⋅⋅+++,11211(1)22(1)2n n n n n n n n +++=-+⋅+⋅,故23413452122232342(1)2n n n n ++++++⋅⋅⋅⋅⋅⋅+12231111111111122222322(1)22(1)2n n n n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅, ∴()11111111111212(1)221(1)2n n n T n n n n ++⎛⎫=-+-=--< ⎪++⋅++⋅⎝⎭. 17.(1)2n a n =,2nn b =;(2)164λ≥. 【分析】(1)由()2*2(21)2n n S n a n n N =+-∈,利用数列通项与前n 项和的关系求得{}n a ;再由1n n n nb a b +=求解; (2)由1222n n n n a n nb -==,利用错位相减法求得n T , 由1n n n n ac c b +-=-,利用累加法得到1n n c c T -=-,从而求得212n n n c -+=,然后由21395222n n n n n n λ-++-≥-=恒成立求解. 【详解】(1)当1n =时,11232a a =-,Ⅰ12a =,当2n ≥时,由22112(21)22(21)2(1)n n n n S n a n S n a n --⎧=+-⎨=---⎩得 2212(21)(21)22(1)n n n a n a n a n n -=+---+-,即12n n a a --=,Ⅰ数列{}n a 是公差为2的等差数列, Ⅰ12a =,Ⅰ2n a n =.由条件得12b =,12n n nb nb +=,Ⅰ12n n b b +=,即数列{}n b 是公比为2的等比数列, Ⅰ2n n b =. (2)1222n n n n a n n b -==,设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则23123412222n n nT -=+++++, Ⅰ23111231222222n n n n nT --=+++++, Ⅰ231111111222222n n nn T -=+++++-, 1121212n n n -=--, 222nn +=-Ⅰ1242n n n T -+=-, 由1n n n na c cb +=-得1nn n n a c c b +-=-,累加得11n n c c T --=-, 即21442n n n c -+-=-+, Ⅰ212n n n c -+=, Ⅰ21395222n n n n n n λ-++-≥-=, 令5()2n n f n -=,则11456(1)()222n n n n n n f n f n ++---++-=-=, Ⅰ(1)(2)(6)(7)(8)f f f f f <<<=>>,Ⅰmax 1()(6)(7)64f n f f ===, Ⅰ164λ≥. 18.(1)证明见解析,1n na n =+;(2)证明见解析. 【分析】(1)将已知条件变形得11n n n n a T a T +++=+,再根据111a T +=,得1n n a T +=,变形得11n n n T T T -+=,整理得1111n n T T --=,即可证明,并求出11n T n =+,即可求出数列{}n a 的通项公式;(2)根据(1)得21ln 32ln(1)2n n S T n n n ⎡⎤+=+-+⎣⎦,再证明对一切1≥x ,ln(1)0x x +-<,即可证明. 【详解】(1)∵对一切*n ∈N 均有11n n n n a a T T ++-=-,∴11n n n n a T a T +++=+ 又1112T a ==, ∴111a T +=,即1n n a T += ∴2n ≥时,11n n n T T T -+=,得:1111n n T T --= ∴1n T ⎧⎫⎨⎬⎩⎭为等差数列,首项112T =,公差1d =∴11n n T =+,11n T n =+ ∴一切*n ∈N ,11n n na T n =-=+ (2)∵11n n T =+,∴(21)(3)22n n n n n S ++⋅+== ∴22311ln ln 32ln(1)212n n n n S T n n n n +⎡⎤+=+=+-+⎣⎦+ 先证明,对一切1≥x ,ln(1)0x x +-< 令ln(1)y x x =+-,则当1≥x 时,1101y x '=-<+ 即ln(1)y x x =+-在[1,)+∞上单调递减, 故ln(1)ln 210x x +-≤-<,∴ln(1)n n +<, ∴()2211ln 32ln(1)3222n n S T n n n n n n ⎡⎤+=+-+>+-⎣⎦ 2211111111224224n ⎡⎤⎡⎤⎛⎫⎛⎫=+-≥+-=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦∴ln 1n n S T +>19.(1)()1312n n n a -=-⋅;(2)112nn S ⎛⎫=-- ⎪⎝⎭,最大值为2512. 【分析】(1)已知{}n a 是等比数列,所以用基本量进行计算即可 (2)写出关于221n nS S +的表达式,观察可发现是对勾函数的形式,且变量的范围已知,所以可以求解函数的最大值 【详解】(1)设等比数列{}n a 的公比为()0q q ≠,因为22S -, 3S , 44S 成等差数列,所以324324S S S S +=-, 即4324S S S S -=-, 所以443a a a =--,即432a a =-, 可得4312a q a ==-, 又因为132a =, 所以等比数列{}n a 的通项公式为()113131222n n n na --⎛⎫=⋅-=-⋅⎪⎝⎭. 故数列{}n a 的通项公式为()1312n n na -=-⋅. (2)由(1)得31122111212nn n S ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==-- ⎪⎛⎫⎝⎭-- ⎪⎝⎭,所以2114nn S =-, 所以2211111414n n n nS S +=-+- ,令114n m =-,因为*n ∈N ,所以314m ≤<,则2211n n S m S m +=+,且在3,14⎡⎫⎪⎢⎣⎭单调递减 当34m =,即1n =时,2222max 1134254312n n S S S S ⎛⎫+=+=+= ⎪⎝⎭, 所以221n n S S +的最大值为2512. 20.(1)n a n =,1341n n b -=⋅-;(2)证明见解析.【分析】(1)根据{}n a 的前n 项和即可求出{}n a 通项公式,进而可判断{}1n b +是以3为首项,4为公比的等比数列,即可求出{}n b 的通项公式; (2)可得11341(1)n n nc -=⋅-+-,求和然后放缩利用等比数列求和公式即可证明.【详解】(1)数列{}n a 的前n 项和为21122n n +,∴221111(1)(1)(2)2222n a n n n n n n =+----=≥. 当1n =时,11a =符合,故n a n =, ∴1143430n n n n n nb a b n nb nb n ++--=--=, ∴143n n b b +=+,∴()1141n n b b ++=+,∵12b = ∴{}1n b +是以3为首项,4为公比的等比数列, ∴1134n n b -+=⋅,∴1341n n b -=⋅-.(2)证明:∵1(1)n n a n c b =+-,∴11341(1)n n nc -=⋅-+-, 212321321242n n n n T c c c c c c c c c c -=++++=+++++++, 02221321111111342342342343434n n --=+++++++⨯-⨯-⨯-⨯⨯⨯02221321333111343434343434n n --≤+++++++⨯⨯⨯⨯⨯⨯1111115215261616111344516455111616nn n ⎡⎤⎛⎫⎛⎫--⎢⎥⎪ ⎪⎡⎤⎛⎫⎝⎭⎝⎭⎢⎥=+⨯=-≤<⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦--⎢⎥⎣⎦. 21.(1)21n a n =-;(2)M ≤【分析】(1)根据n S 与n a 的关系由()241n n S a =+求出数列{}n a 的通项公式;(2)由(1) 2(21)(21)n b n n =-+,利用裂项相消法求数列{}n b 的前n 项和n T ,再由n T ≥* n N ∈都成立求M 的范围. 【详解】解:(1)()241n n S a =+,则()21141S a =+得11a =当2n ≥时,()()22114411n n n n S S a a ---=+-+,得()()1120n n n n a a a a --+--=又{}n a 是正项数列,所以12n n a a --=, 所以{}n a 为等差数列, 所以21n a n =- (2)12211(21)(21)2121n n n b a a n n n n +===-⋅-+-+所以11111121133521212121n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭故要使n T* n N ∈都成立, 只需M ≤* n N ∈都成立即可.)*n N ==∈,所以,当11n =,即1n =时,min=所以M ≤22.(1)2n n a =,n b n =;(2)210λ-<<. 【分析】(1)根据已知条件可得出关于d 方程,解出d 的值,可求得q 的值,即可得出数列{}n a 与{}n b 的通项公式;(2)求得2nn n a b n =⨯,利用错位相减法可求得n T ,分析可知数列{}n T 为单调递增数列,对n 分奇数和偶数两种情况讨论,结合参变量分离法可得出实数λ的取值范围.【详解】(1)设等差数列{}n b 的公差为d ,因为12a =,11b =,24a b =,且2a 是2b 和8b 的等比中项,所以()()()213117d d d +=++,整理可得20d d -=,解得0d =或1d =.若0d =,则241a b ==,可得2112a a q ==,不合乎题意; 若1d =,则24134a b d ==+=,可得212a q a ==,合乎题意. 所以1222n nn a -=⨯=,()111n b n n =+-⨯=;;(2)因为1231222322nn T n =⨯+⨯+⨯+⋅⋅⋅+⨯,①234121222322n n T n +=⨯+⨯+⨯+⋅⋅⋅+⨯,②Ⅰ-Ⅰ得()()12311121222222221212n n n n n n T n n n +++-=----⋅⋅⋅-+⨯=-+⨯=+-⨯-.因为()10nn T λ--<,即()1nn T λ-<对*N n ∈恒成立, 所以()()11212nn n λ++-⨯-<.当2n ≥且n *∈N ,120nn n T T n --=⨯>,故数列{}n T 为单调递增数列,当n 为偶数时,()1212n n λ++<-⨯,所以()1min 21210n n λ+⎡⎤+-⨯=⎣<⎦;当n 为奇数时,()1212n n λ++-⨯-<,所以()1min 2122n n λ+⎡⎤-<+-⨯=⎣⎦,即2λ>-.综上可得210λ-<<.23.(1)25a =,37a =,49a =;21n a n =+;(2)10240T =-, ()()22243,21N 24,2N n n n n k k T n n n k k **⎧++=-∈⎪=⎨--=∈⎪⎩【分析】(1)分别令2,3,4n =利用递推公式以及13a =可得2a ,3a ,4a ,将递推公式整理可得1111n n a a n n -++=+,可得11n a n +⎧⎫⎨⎬+⎩⎭是常数列,结合其首项即可求得{}n a 的通项公式; (2)利用并项求和结合等差数列前n 项和公式可得10T ;当n 为偶数时,采用并项求和求n T ,当3n ≥且n 为奇数时,21n n n T T a -=+,再检验1T ,写成分段的形式即可.【详解】(1)当2n =时,1221131352222a a +=+=⨯+=, 当3n =时,3231141573333a a +=⋅+=⨯+=,当4n =时,4341151944744a a +=⋅+=⨯+=, 当2n ≥时,由111n n n a a n n -+=+可得()1111111n n n n n n a a a n n n--+++=+=++, 所以1111n n a a n n -++=+,所以11n a n +⎧⎫⎨⎬+⎩⎭是常数列, 又因为1122a +=,所以121n a n +=+,所以21n a n =+, (2)()()()222222101234910T a a a a a a =-+-++-()()()1234910222a a a a a a =-+-+--+()12349102a a a a a a =-++++++()103210122402+⨯+=-⨯=-,当n 为偶数时 22222212341n n n T a a a a a a -=-+-++-()()()12341222n n a a a a a a -=-+-+--+()123412n n a a a a a a -=-++++++()23212242n n n n ++=-⨯=--,所以当n 为偶数时224n T n n =--,当3n ≥且n 为奇数时,()()()22221214121243n n n T T a n n n n n -=+=----++=++,当1n =时,1129T a ==满足上式,所以当n 为奇数时,2243n T n n =++,综上所述:()()22243,21N 24,2N n n n n k k T n n n k k **⎧++=-∈⎪=⎨--=∈⎪⎩24.(1)证明见解析,12n n a ,21n n T =-;(2)证明见解析.【分析】(1)根据1n n n T T a +-=即可得出12n na a +=,即可求出{}n a 的通项公式和其前n 项和n T 的表达式(2)首先计算出数列()1n b n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和为n S ,利用放缩法结合等比数列的求和公式即答案第23页,共23页 可.【详解】(1)由1111121=2=10221n n n n n n n n T T a a a a T T a +++-=+⎧⇒>⇒=⎨=+⎩,,所以{}n a 是公比为2的等比数列.{}n a 的通项公式为12n n a ,21n n T =-.(2)令{}()1n n b c n n ⎧⎫⎪⎪=⎨⎬+⎪⎪⎩⎭.由题可知,{}n c 的通项公式为()1n n x c n n =+. 对{}n c 求和:()11n n x n n +∞=+∑11n n n x x n n +∞=⎛⎫=- ⎪+⎝⎭∑ 11111n n n n x x n x n ++∞+∞===-+∑∑ ()()ln 1ln 1x x x x---=---()()1ln 11x x x --=+,10,2x ⎛⎫∈ ⎪⎝⎭ 令()()()1ln 11x x f x x --=+,则()()2ln 1x x f x x ='+--. 令()()ln 1g x x x =+-,则()1101g x x'=-<-. 所以()()00g x g <= 则()0f x '>,所以()11ln 22n S f x f ⎛⎫=<=- ⎪⎝⎭。
【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)
专题 06 数列解答题
1.(2022
年全国甲卷理科·第
17
题)记
Sn
为数列 an 的前
n
项和.已知
2Sn n
n
2an
1.
(1)证明: an 是等差数列;
(2)若 a4, a7 , a9 成等比数列,求 Sn 的最小值.
【答案】(1)证明见解析:; (2) 78 .
解析:(1)设数列an 的公差为d
,所以,
aa11dd22bb118ab11
2d
a1
4b1 3d
,即可解得,
b1
a1
d 2
,
所以原命题得证.
(2)由(1)知, b1
a1
d 2
,所以 bk
am
a1
b1 2k1
a1
m 1 d
a1 ,即 2k1
2m ,亦即
m 2k2 1,500 ,解得 2 k 10 ,所以满足等式的解 k 2,3, 4,,10 ,故集合
解析:(1)解:因为
2Sn n
n
2an
1,即 2Sn
n2
2nan
n
①,
当 n 2 时, 2Sn1 n 12 2 n 1 an1 n 1 ②,
① ②得, 2Sn n2 2Sn1 n 12 2nan n 2n 1 an1 n 1 ,
即 2an 2n 1 2nan 2n 1 an1 1 ,
k | bk am a1,1 m 500 中的元素个数为10 2 1 9 .
【题目栏目】数列\数列的综合应用\数列的综合问题 【题目来源】2022 新高考全国 II 卷·第 17 题
数列大题-近两年高考题
数列大题-近两年高考题一.解答题(共28小题)1.对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.2.设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.3.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.4.记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否能成等差数列.5.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.6.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n项和T n.7.已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n<x n;+1(Ⅱ)2x n﹣x n≤;+1(Ⅲ)≤x n≤.8.已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.9.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.10.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).11.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).12.等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.13.记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.14.对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.15.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.16.S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.17.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.19.已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.20.已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.21.已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=2,求e12+e22+…+e n2.22.设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G 时刻”组成的集合.(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(Ⅲ)证明:若数列A满足a n﹣a n﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N﹣a1.23.已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n 的等比中项.和a n+1(1)设c n=b n+12﹣b n2,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:<.24.设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.25.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.26.已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.27.若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.28.已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(Ⅰ)若2a2,a3,a2+2成等差数列,求a n的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=,证明:e1+e2+⋅⋅⋅+e n>.数列大题-近两年高考题参考答案与试题解析一.解答题(共28小题)1.(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,﹣3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:当n≥4时,因为数列{a n}是P(3)数列,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,①,因为数列{a n}是“P(2)数列”,所以a n﹣3+a n﹣3+a n+a n+1=4a n﹣1,②,a n﹣1+a n+a n+2+a n+3=4a n+1,③,②+③﹣①,得2a n=4a n﹣1+4a n+1﹣6a n,即2a n=a n﹣1+a n+1,(n≥4),因此n≥4从第3项起为等差数列,设公差为d,注意到a2+a3+a5+a6=4a4,所以a2=4a4﹣a3﹣a5﹣a6=4(a3+d)﹣a3﹣(a3+2d)﹣(a3+3d)=a3﹣d,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.2.(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d1>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2≤0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.3.(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,{b2n}是等比数列,公比为3,首项为1.﹣1b1+b3+b5+…+b2n﹣1==.4.(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否能成等差数列.【解答】解:(1)设等比数列{a n}首项为a1,公比为q,则a3=S3﹣S2=﹣6﹣2=﹣8,则a1==,a2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),则S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)由S n+1n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,+S n+2=2S n,即S n+1,S n,S n+2成等差数列.∴S n+15.(2017•新课标Ⅲ)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.6.(2017•山东)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.7.(2017•浙江)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,<x n;(Ⅰ)0<x n+1(Ⅱ)2x n﹣x n≤;+1(Ⅲ)≤x n≤.【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.8.(2017•山东)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.9.(2017•新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.10.(2017•天津)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.11.(2017•天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.12.(2016•新课标Ⅱ)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3+a4=4,a5+a7=6.∴,解得:,∴a n=;(Ⅱ)∵b n=[a n],∴b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{b n}的前10项和S10=3×1+2×2+3×3+2×4=24.13.(2016•江苏)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【解答】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.14.(2016•上海)对于无穷数列{a n}与{b n},记A={x|x=a n,n∈N*},B={x|x=b n,n∈N*},若同时满足条件:①{a n},{b n}均单调递增;②A∩B=∅且A∪B=N*,则称{a n}与{b n}是无穷互补数列.(1)若a n=2n﹣1,b n=4n﹣2,判断{a n}与{b n}是否为无穷互补数列,并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列,求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列,{a n}为等差数列且a16=36,求{a n}与{b n}的通项公式.【解答】解:(1){a n}与{b n}不是无穷互补数列.理由:由a n=2n﹣1,b n=4n﹣2,可得4∉A,4∉B,即有4∉A∪B=N*,即有{a n}与{b n}不是无穷互补数列;(2)由a n=2n,可得a4=16,a5=32,由{a n}与{b n}是无穷互补数列,可得b16=16+4=20,即有数列{b n}的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{a n}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与{a n}与{b n}是无穷互补数列矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.15.(2016•山东)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.16.(2016•新课标Ⅱ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.【解答】解:(Ⅰ)S n为等差数列{a n}的前n项和,且a1=1,S7=28,7a4=28.可得a4=4,则公差d=1.a n=n,b n=[lgn],则b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(Ⅱ)由(Ⅰ)可知:b1=b2=b3=…=b9=0,b10=b11=b12=…=b99=1.b100=b101=b102=b103=…=b999=2,b10,00=3.数列{b n}的前1000项和为:9×0+90×1+900×2+3=1893.17.(2016•新课标Ⅰ)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+b n+1=nb n.+1=b n.即3b n+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.18.(2016•浙江)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1满足a n=3a n,+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.19.(2016•新课标Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.20.(2016•新课标Ⅲ)已知各项都为正数的数列{a n}满足a1=1,a n2﹣(2a n+1﹣1)a n﹣2a n+1=0.(1)求a2,a3;(2)求{a n}的通项公式.【解答】解:(1)根据题意,a n2﹣(2a n﹣1)a n﹣2a n+1=0,+1当n=1时,有a12﹣(2a2﹣1)a1﹣2a2=0,而a1=1,则有1﹣(2a2﹣1)﹣2a2=0,解可得a2=,当n=2时,有a22﹣(2a3﹣1)a2﹣2a3=0,又由a2=,解可得a3=,故a2=,a3=;﹣1)a n﹣2a n+1=0,(2)根据题意,a n2﹣(2a n+1变形可得(a n﹣2a n+1)(a n+1)=0,即有a n=2a n+1或a n=﹣1,又由数列{a n}各项都为正数,则有a n=2a n+1,故数列{a n}是首项为a1=1,公比为的等比数列,则a n=1×()n﹣1=n﹣1,故a n=n﹣1.21.(2016•四川)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N+(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=2,求e12+e22+…+e n2.【解答】解:(Ⅰ)根据题意,数列{a n}的首项为1,即a1=1,=qS n+1,则S2=qa1+1,则a2=q,又由S n+1又有S3=qS2+1,则有a3=q2,若a2,a3,a2+a3成等差数列,即2a3=a2+(a2+a3),则可得q2=2q,(q>0),解可得q=2,=2S n+1,①则有S n+1进而有S n=2S n﹣1+1,②①﹣②可得a n=2a n﹣1,则数列{a n}是以1为首项,公比为2的等比数列,则a n=1×2n﹣1=2n﹣1;(Ⅱ)根据题意,有S n=qS n+1,③+1同理可得S n=qS n﹣1+1,④③﹣④可得:a n=qa n﹣1,又由q>0,则数列{a n}是以1为首项,公比为q的等比数列,则a n=1×q n﹣1=q n﹣1;若e 2=2,则e2==2,解可得a2=,则a2=q=,即q=,a n=1×q n﹣1=q n﹣1=()n﹣1,则e n2=1+a n2=1+3n﹣1,故e12+e22+…+e n2=n+(1+3+32+…+3n﹣1)=n+.22.(2016•北京)设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列A:﹣2,2,﹣1,1,3,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(Ⅲ)证明:若数列A满足a n﹣a n﹣1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N﹣a1.【解答】解:(Ⅰ)根据题干可得,a1=﹣2,a2=2,a3=﹣1,a4=1,a5=3,a1<a2满足条件,2满足条件,a2>a3不满足条件,3不满足条件,a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)={2,5}.(Ⅱ)因为存在a n>a1,设数列A中第一个大于a1的项为a k,则a k>a1≥a i,其中2≤i≤k﹣1,所以k∈G(A),G(A)≠∅;(Ⅲ)设A数列的所有“G时刻”为i1<i2<…<i k,对于第一个“G时刻”i 1,有>a1≥a i(i=2,3,…,i1﹣1),则﹣a 1≤﹣≤1.对于第二个“G时刻”i 1,有>≥a i(i=2,3,…,i1﹣1),则﹣≤﹣≤1.类似的﹣≤1,…,﹣≤1.于是,k≥(﹣)+(﹣)+…+(﹣)+(﹣a 1)=﹣a1.对于a N,若N∈G(A),则=a N.若N∉G(A),则a N≤,否则由(2)知,,…,a N,中存在“G时刻”与只有k个“G时刻”矛盾.从而k≥﹣a 1≥a N﹣a1.23.(2016•天津)已知{a n}是各项均为正数的等差数列,公差为d,对任意的n ∈N+,b n是a n和a n+1的等比中项.(1)设c n=b n+12﹣b n2,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:<.【解答】证明:(1)∵{a n}是各项均为正数的等差数列,公差为d,对任意的n ∈N+,b n是a n和a n+1的等比中项.∴c n=b﹣b=a n+1a n+2﹣a n a n+1=2da n+1,﹣c n=2d(a n+2﹣a n+1)=2d2为定值;∴c n+1∴数列{c n}是等差数列;(2)T n=(﹣1)k b k2=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=2d (a2+a4+…+a2n)=2d=2d2n(n+1),∴==(1﹣…+﹣)=(1﹣).即不等式成立.24.(2016•浙江)设数列满足|a n﹣|≤1,n∈N*.(Ⅰ)求证:|a n|≥2n﹣1(|a1|﹣2)(n∈N*)(Ⅱ)若|a n|≤()n,n∈N*,证明:|a n|≤2,n∈N*.【解答】解:(I)∵|a n﹣|≤1,∴|a n|﹣|a n+1|≤1,∴﹣≤,n∈N*,∴=(﹣)+(﹣)+…+(﹣)≤+++…+==1﹣<1.∴|a n|≥2n﹣1(|a1|﹣2)(n∈N*).(II)任取n∈N*,由(I)知,对于任意m>n,﹣=(﹣)+(﹣)+…+(﹣)≤++…+=<.∴|a n|<(+)•2n≤[+•()m]•2n=2+()m•2n.①由m的任意性可知|a n|≤2.否则,存在n 0∈N*,使得|a|>2,取正整数m 0>log且m0>n0,则2•()<2•()=|a|﹣2,与①式矛盾.综上,对于任意n∈N*,都有|a n|≤2.25.(2016•北京)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)c n=a n+b n=2n﹣1+3n﹣1,则数列{c n}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.26.(2016•天津)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.﹣b n=1.∴b n+1∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.27.(2016•上海)若无穷数列{a n}满足:只要a p=a q(p,q∈N*),必有a p+1=a q+1,则称{a n}具有性质P.(1)若{a n}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{b n}是等差数列,无穷数列{c n}是公比为正数的等比数列,b1=c5=1;b5=c1=81,a n=b n+c n,判断{a n}是否具有性质P,并说明理由;(3)设{b n}是无穷数列,已知a n+1=b n+sina n(n∈N*),求证:“对任意a1,{a n}都具有性质P”的充要条件为“{b n}是常数列”.【解答】解:(1)∵a2=a5=2,∴a3=a6,a4=a7=3,∴a5=a8=2,a6=21﹣a7﹣a8=16,∴a3=16.(2)设无穷数列{b n}的公差为:d,无穷数列{c n}的公比为q,则q>0,b5﹣b1=4d=80,∴d=20,∴b n=20n﹣19,=q4=,∴q=,∴c n=∴a n=b n+c n=20n﹣19+.∵a1=a5=82,而a2=21+27=48,a6=101=.a1=a5,但是a2≠a6,{a n}不具有性质P.(3)充分性:若{b n}是常数列,设b n=C,则a n+1=C+sina n,若存在p,q使得a p=a q,则a p+1=C+sina p=C+sina q=a q+1,故{a n}具有性质P.必要性:若对于任意a1,{a n}具有性质P,则a2=b1+sina1,设函数f(x)=x﹣b1,g(x)=sinx,由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,∴一定能找到一个a1,使得a1﹣b1=sina1,∴a2=b1+sina1=a1,∴a n=a n+1,=a n+2﹣sina n+1=a n+1﹣sina n=b n,故b n+1∴{b n}是常数列.28.(2016•四川)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(Ⅰ)若2a2,a3,a2+2成等差数列,求a n的通项公式;(Ⅱ)设双曲线x2﹣=1的离心率为e n,且e2=,证明:e1+e2+⋅⋅⋅+e n>.=qS n+1 ①,∴当n≥2时,S n=qS n﹣1+1 ②,两式相减可【解答】解:(Ⅰ)∵S n+1得a n=q•a n,+1即从第二项开始,数列{a n}为等比数列,公比为q.当n=1时,∵数列{a n}的首项为1,∴a1+a2=S2=q•a1+1,∴a2 =a1•q,∴数列{a n}为等比数列,公比为q.∵2a2,a3,a2+2成等差数列,∴2a3 =2a2+a2+2,∴2q2=2q+q+2,求得q=2,或q=﹣.根据q>0,故取q=2,∴a n=2n﹣1,n∈N*.(Ⅱ)证明:设双曲线x2﹣=1的离心率为e n,∴e n==.由于数列{a n}为首项等于1、公比为q的等比数列,∴e2===,q=,∴a n=,∴e n==>=.∴e1+e2+⋅⋅⋅+e n>1+++…+==,原不等式得证.。
高考数学《数列》大题训练50题含答案解析
一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.2.(2011•重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{a n}的通项公式;(Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n.3.(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.4.(2011•浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列.(Ⅰ)求数列{a n}的通项公式及S n;(Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n 与B n的大小.5.(2011•上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,…(1)写出c1,c2,c3,c4;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…;(3)求数列{c n}的通项公式.6.(2011•辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10(I)求数列{a n}的通项公式;(II)求数列{}的前n项和.7.(2011•江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值;(2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列?若存在,求{a n},{b n}的通项公式;若不存在,说明理由.8.(2011•湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(I)求数列{b n}的通项公式;(II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.9.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(4)证明:对于一切正整数n,2a n≤b n+1+1.10.(2011•安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.(I)求数列{a n}的通项公式;(Ⅱ)设b n=tana n•tana n+1,求数列{b n}的前n项和S n.11.(2010•浙江)设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(Ⅰ)若S5=5,求S6及a1;(Ⅱ)求d的取值范围.12.(2010•四川)已知等差数列{a n}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.13.(2010•四川)已知数列{a n}满足a1=0,a2=2,且对任意m、n∈N*都有a2m﹣1+a2n﹣1=2a m+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设b n=a2n+1﹣a2n﹣1(n∈N*),证明:{b n}是等差数列;(3)设c n=(a n+1﹣a n)q n﹣1(q≠0,n∈N*),求数列{c n}的前n项和S n.14.(2010•陕西)已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求数列{2an}的前n项和S n.15.(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列的前n项和S n.16.(2010•江西)正实数数列{a n}中,a1=1,a2=5,且{a n2}成等差数列.(1)证明数列{a n}中有无穷多项为无理数;(2)当n为何值时,a n为整数,并求出使a n<200的所有整数项的和.17.(2009•陕西)已知数列{a n}满足,,n∈N×.(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;(2)求{a n}的通项公式.18.(2009•山东)等比数列{a n}的前n项和为S n,已知对任意的n∈N*,点(n,S n),均在函数y=b x+r(b>0)且b≠1,b,r均为常数)的图象上.(1)求r的值;(2)当b=2时,记b n=n∈N*求数列{b n}的前n项和T n.19.(2009•江西)数列{a n}的通项,其前n项和为S n,(1)求S n;(2),求数列{b n}的前n项和T n.20.(2009•辽宁)等比数列{a n}的前n项和为s n,已知S1,S3,S2成等差数列,(1)求{a n}的公比q;(2)求a1﹣a3=3,求s n.21.(2009•湖北)已知数列{a n}是一个公差大于0的等差数列,且满足a2a6=55,a2+a7=16(1)求数列{a n}的通项公式;(2)数列{a n}和数列{b n}满足等式a n=(n∈N*),求数列{b n}的前n项和S n.22.(2009•福建)等比数列{a n}中,已知a1=2,a4=16(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.23.(2009•安徽)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和Tn=2﹣b n(Ⅰ)求数列{a n}与{b n}的通项公式;(Ⅱ)设c n=a n2•b n,证明:当且仅当n≥3时,c n+1<c n.24.(2009•北京)设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?如果存在,求p和q 的取值范围;如果不存在,请说明理由.25.(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+np(n∈N*,p,q为常数),且成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.26.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.27.(2008•四川)在数列{a n}中,a1=1,.(Ⅰ)求{a n}的通项公式;(Ⅱ)令,求数列{b n}的前n项和S n;(Ⅲ)求数列{a n}的前n项和T n.28.(2008•陕西)已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前n项和S n.29.(2008•辽宁)在数列{a n},{b n}是各项均为正数的等比数列,设.(Ⅰ)数列{c n}是否为等比数列?证明你的结论;(Ⅱ)设数列{lna n},{lnb n}的前n项和分别为S n,T n.若a1=2,,求数列{c n}的前n项和.30.(2008•辽宁)在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:.答案与评分标准一.解答题(共30小题)1.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.考点:数列递推式;数列的函数特性。
高考数学《数列》专题好题集锦(100道)含详细解答
全国各地数学模拟试卷《数列》题集锦1.已知数列{n a }中,111,22n n a n a a +=-,点()在直线y=x 上,其中n=1,2,3…. (1)令11n n n b a a ,+=--求证数列{}n b 是等比数列; (2)求数列{}的通项;n a⑶ 设分别为数列、n n T S {}、n a {}n b 的前n 项和,是否存在实数λ,使得数列n n S T n λ+⎧⎫⎨⎬⎩⎭为等差数列?若存在,试求出λ.若不存在,则说明理由。
解:(I )由已知得 111,2,2n n a a a n +==+2213313,11,4424a a a =--=--=- 又11,n n n b a a +=--1211,n n n b a a +++=--11112111(1)111222.1112n n n n n n n n n n n n n n a n a n a a b a a b a a a a a a +++++++++++-----∴====------ {}n b ∴是以34-为首项,以12为公比的等比数列.(II)由(I)知,13131(),4222n n n b -=-⨯=-⨯1311,22n n n a a +∴--=-⨯21311,22a a ∴--=-⨯ 322311,22a a --=-⨯⋅⋅⋅⋅⋅⋅11311,22n n n a a --∴--=-⨯将以上各式相加得:1213111(1)(),2222n n a a n -∴---=-++⋅⋅⋅+11111(1)31313221(1)(1) 2.12222212n n n n a a n n n ---∴=+--⨯=+---=+--32.2n n a n ∴=+-(III )解法一:存在2λ=,使数列{}n nS T nλ+是等差数列. 12121113()(12)2222n n n S a a a n n =++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+-11(1)(1)22321212n n n n -+=⨯+--2213333(1) 3.2222n n n n n n --=-+=-++ 12131(1)313342(1).1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 数列{}n n S T n λ+是等差数列的充要条件是,(n nS T An B A n λ+=+、B 是常数)即2,n n S T An Bn λ+=+又2133333()2222n n n n n n S T λλ+-+=-+++-+2313(1)(1)222n n n λ-=+--∴当且仅当102λ-=,即2λ=时,数列{}n nS T nλ+为等差数列. 解法二:存在2λ=,使数列{}n nS T nλ+是等差数列. 由(I )、(II )知,22n n a b n +=-(1)222n n n S T n +∴+=- (1)222n nn n n n n T T S T n nλλ+--++=322n n T n λ--=+ 又12131(1)313342(1)1222212n n n n n T b b b +--=++⋅⋅⋅+==--=-+- 13233()222n n n S T n n n λλ++--=+-+∴当且仅当2λ=时,数列{}nn S T n λ+是等差数列. 2.已知等比数列{}n a 的各项均为正数,且公比不等于1,数列{}n b 对任意正整数n ,均有:1221223125()log ()log ()log 0n n n n n n b b a b b a b b a ++++-⋅+-+-=成立,又171,13b b ==。
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
高考中的数列解答题参考答案
高考中的数列大题1.(2021·新高考Ⅱ卷)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.2.(2021·全国乙卷,理)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.3.(2021·新高考Ⅰ卷)已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.4.(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.5.(2020·新高考Ⅰ卷)已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.6.(2018·浙江)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.1.【多选题】(2021·新高考Ⅱ卷)设正整数n=a0·20+a1·21+…+a k-1·2k-1+a k·2k,其中a i∈{0,1},记w(n)=a0+a1+…+a k.则( ACD )A.w(2n)=w(n) B.w(2n+3)=w(n)+1 C.w(8n+5)=w(4n+3) D.w(2n -1)=n2.(2018·课标全国Ⅰ,理)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=(B)A.-12 B.-10 C.10 D.12 3.(2019·课标全国Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=(C)A.16 B.8 C.4 D.2 4.(2016·课标全国Ⅰ)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为____64____.5.(2019·课标全国Ⅱ,理)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)求证:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.6.(2018·课标全国Ⅰ,文)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n . (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.7.(2016·课标全国Ⅲ)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明:{a n}是等比数列,并求其通项公式;(2)若S5=3132,求λ.8.(2015·课标全国Ⅰ)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
专题13 数列(解答题)(教师版)
专题13 数列(解答题)1.【2022年全国甲卷】记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【答案】(1)证明见解析;(2)−78.【解析】【分析】(1)依题意可得2S n+n2=2na n+n,根据a n={S1,n=1S n−S n−1,n≥2,作差即可得到a n−a n−1=1,从而得证;(2)由(1)及等比中项的性质求出a1,即可得到{a n}的通项公式与前n项和,再根据二次函数的性质计算可得.(1)解:因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N*,所以{a n}是以1为公差的等差数列.(2)解:由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.2.【2022年新高考1卷】记S n为数列{a n}的前n项和,已知a1=1,{S na n }是公差为13的等差数列.(1)求{a n }的通项公式; (2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n (n+1)2(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得S na n=1+13(n −1)=n+23,得到S n =(n+2)a n3,利用和与项的关系得到当n ≥2时,a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,进而得:a nan−1=n+1n−1,利用累乘法求得a n =n (n+1)2,检验对于n =1也成立,得到{a n }的通项公式a n =n (n+1)2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n=2(1−1n+1),进而证得.(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵{S na n}是公差为13的等差数列,∴S na n=1+13(n −1)=n+23,∴S n =(n+2)a n3,∴当n ≥2时,S n−1=(n+1)a n−13,∴a n =S n −S n−1=(n+2)a n3−(n+1)a n−13,整理得:(n −1)a n =(n +1)a n−1, 即a nan−1=n+1n−1,∴a n =a 1×a2a 1×a3a 2×…×an−1a n−2×ana n−1=1×32×43×…×n n−2×n+1n−1=n (n+1)2,显然对于n =1也成立, ∴{a n }的通项公式a n =n (n+1)2;(2)1a n=2n (n+1)=2(1n −1n+1),∴1a 1+1a 2+⋯+1a n=2[(1−12)+(12−13)+⋯(1n −1n+1)]=2(1−1n+1)<23.【2022年新高考2卷】已知{a n }为等差数列,{b n }是公比为2的等比数列,且a 2−b 2=a 3−b 3=b 4−a 4. (1)证明:a 1=b 1;(2)求集合{k |b k =a m +a 1,1≤m ≤500}中元素个数. 【答案】(1)证明见解析; (2)9. 【解析】 【分析】(1)设数列{a n }的公差为d ,根据题意列出方程组即可证出; (2)根据题意化简可得m =2k−2,即可解出. (1)设数列{a n }的公差为d ,所以,{a 1+d −2b 1=a 1+2d −4b 1a 1+d −2b 1=8b 1−(a 1+3d ) ,即可解得,b 1=a 1=d2,所以原命题得证. (2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k−1=a 1+(m −1)d +a 1,即2k−1=2m ,亦即m =2k−2∈[1,500],解得2≤k ≤10,所以满足等式的解k =2,3,4,⋯,10,故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10−2+1=9.4.【2021年甲卷文科】记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列{}n S 是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】21S S {}n S 的公差d ,进一步写出{}n S 的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列{}n S 是等差数列,设公差为d 212111a a a a S S +111(1)n S a n a a n =-,()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列. 【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列{}n S 是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】n S ,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.n S 选②③作条件证明①时,n S an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式 (0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d ,等差数列{}n S 的公差为1d , 11(1)n S a n d -,将1(1)2n n n S na d -=+11(1)n S a n d -, 化简得())222221111111222d d n a n d n a d d n a d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有2121111112,2440,d d a d a d d a d ⎧=⎪⎪-=-⎨=,解得111,2d a d a =.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=1n S a n =, )11111n n S S a n a n a +=+ 所以{}n S 是等差数列. 选②③作条件证明①: [方法一]:定义法(0)n S an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3n S an b an a =+-103aS =-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =11S a =21212S a a a +{}n S 也为等差数列,所以公差1211d S S a ()1111n S a n d n a -=21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S 的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系11d a =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S n S 进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,直接设出(0)n S an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数n S 1211d S S a ==nS 的通项公式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n n S n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n nn nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【解析】 【分析】 (1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b bb b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】 (1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积, 所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb bb b +++=-,由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; [方法二]【最优解】: 由已知条件知1231-⋅=⋅⋅⋅⋅n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥n n b S S S S n . ②由①②得1nn n b S b -=. ③又212n nS b +=, ④ 由③④得112n n b b --=. 令1n =,由11S b =,得132b =. 所以数列{}n b 是以32为首项,12为公差的等差数列. [方法三]: 由212n n S b +=,得22=-nn n S b S ,且0n S ≠,0n b ≠,1n S ≠. 又因为111--=⋅⋅=⋅n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S . 故数列{}n b 是以32为首项,12为公差的等差数列. [方法四]:数学归纳法 由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+. 下面用数学归纳法证明. 当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S k 331(1)1222k k k k ++⋅==+++. 综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列. (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【整体点评】 (1)方法一从212n n S b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论; 方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解; 方法三由212n n S b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论. (2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7. 【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【答案】(1)2-;(2)1(13)(2)9nn n S -+-=. 【解析】 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论;(2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论. 【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】 (1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n nS a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n n x x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)nn n n x x nx n x f x x x nx x x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果. 【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =, 【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S . 【答案】(1)2n n a =;(2)100480S =. 【解析】 【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍), 所以2n n a =,所以数列{}n a 的通项公式为2n n a =. (2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以 1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2; 8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15],则89153b b b ====,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31],则1617314b b b ====,即有42个4; 323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63],则3233635b b b ====,即有52个5; 6465100,,,b b b 对应的区间分别为(0,64],(0,65],,(0,100],则64651006b b b ====,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =. 【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==. (1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +-- 【解析】 【分析】(1)由题意得到关于首项、公比的方程组,求解方程组得到首项、公比的值即可确定数列的通项公式;(2)首先求得数列(){}111n n n a a -+-的通项公式,然后结合等比数列前n 项和公式求解其前n 项和即可. 【详解】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, 整理可得:22520q q -+=, 11,2,2q q a >==,数列的通项公式为:1222n nn a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512nn n +⎡⎤--⎢⎥⎣⎦==----. 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,等差数列与等比数列求和公式是数列求和的基础. 15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n *≤≤∈N . 【解析】 【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于1a 和d 的方程组,求得1a 和d 的值,利用等差数列的通项公式求得结果;(2)根据题意有50a =,根据10a >,可知0d <,根据n n S a >,得到关于n 的不等式,从而求得结果. 【详解】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩,解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n *≤≤∈N 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列; (2)求{an }和{bn }的通项公式. 【答案】(1)见解析;(2)1122nn a n,1122nnb n.【解析】 【分析】(1)可通过题意中的1434n n n a a b +-=+以及1434n n n b b a +-=-对两式进行相加和相减即可推导出数列{}n n a b +是等比数列以及数列{}n n a b -是等差数列;(2)可通过(1)中的结果推导出数列{}n n a b +以及数列{}n n a b -的通项公式,然后利用数列{}n n a b +以及数列{}n n a b -的通项公式即可得出结果.【详解】(1)由题意可知1434n n n a a b +-=+,1434n n n b b a +-=-,111a b ,111a b -=, 所以1144323442n n n n n n n n a b a b b a a b ,即1112n n n n a b a b ,n n 22n n 因为11443434448n n n n n n n n a b a b b a a b ,所以112n n n n a b a b ,数列{}n n a b -是首项1、公差为2的等差数列,21n na b n .(2)由(1)可知,112n n n a b ,21n na b n ,所以111222nnn n n na ab a b n,111222nn n n n nb a b a b n.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+. (1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】 【分析】(1)本题首先可以根据数列{}n a 是等比数列将3a 转化为21a q ,2a 转化为1a q ,再然后将其带入32216a a 中,并根据数列{}n a 是各项均为正数以及12a =即可通过运算得出结果;(2)本题可以通过数列{}n a 的通项公式以及对数的相关性质计算出数列{}n b 的通项公式,再通过数列{}n b 的通项公式得知数列{}n b 是等差数列,最后通过等差数列求和公式即可得出结果. 【详解】(1)因为数列{}n a 是各项均为正数的等比数列,32216a a ,12a =, 所以令数列{}n a 的公比为q ,2231=2a a q q ,212a a qq ,所以22416q q =+,解得2q =-(舍去)或4,n n (2)因为2log n n b a =,所以21n b n =-,+121n b n ,12n nb b , 所以数列{}n b 是首项为1、公差为2的等差数列,21212n n S nn .【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =;(2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列; (3)借助等比数列的通项公式求得12n na n-=,从而求得12n n a n -=⋅. 【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =.从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)an =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得n S 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{an }的通项公式为an =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)()12n n a -=-或12n n a -= .(2)6m =. 【解析】 【详解】分析:(1)列出方程,解出q 可得;(2)求出前n 项和,解方程可得m .详解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故()12n n a -=-或12n n a -=.(2)若()12n n a -=-,则()123nn S --=.由63m S =得()2188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.点睛:本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.。
高三数列专题练习30道带答案
高三数列专题训练二一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T . 10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T . 11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+.(1)求数列{}n a 的通项公式;(2)若2n an b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T . 13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
高考大题规范解答系列(三)数列
高考大题规范解答系列(三)——数列1.(2020·课标Ⅲ,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8.解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1.故S n =n (n -1)2.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2). 即m 2-5m -6=0.解得m =-1(舍去)或m =6.2.(2021·新高考八省联考)已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n . (1)证明:数列{a n +a n +1}为等比数列; (2)若a 1=12,a 2=32,求{a n }的通项公式.[解析] (1)∵a n +2=2a n +1+3a n , ∴a n +2+a n +1=3(a n +1+a n ). 又∵a n >0,∴a n +2+a n +1a n +1+a n =3,∴数列{a n +1+a n }为等比数列.(2)由(1)得,a n +a n +1=(a 1+a 2)×3n -1=2×3n -1 ① ∴a n +1+a n +2=2×3n ② ②-①得a n +2-a n =4×3n -1 当n 为奇数时, a 3-a 1=4×30 a 5-a 3=4×32 a 7-a 5=4×34 ……a n -a n -2=4×3n -3相加得a n -a 1=4×(30+32+34+…+3n -3)=4×30-3n -3×321-32=3n -1-12,∴a n =12×3n -1.当n 为偶数时由a n +a n +1=2×3n-1得a n =2×3n -1-a n +1=2×3n -1-12×3n =12×3n -1.综上所述a n =12×3n -1.3.(2020·课标Ⅲ,17,12分)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n . [解析] (1)a 2=5,a 3=7. 猜想a n =2n +1.由已知可得 a n +1-(2n +3)= 3[a n -(2n +1)], a n -(2n +1)=3[a n -1-(2n -1)], ……a 2-5=3(a 1-3).因为a 1=3,所以a n =2n +1. (2)由(1)得2n a n =(2n +1)2n ,所以S n = 3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.② ①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1. 所以S n =(2n -1)2n +1+2.4.(2021·湖北武汉部分重点中学联考)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.[解析] (1)当n ≥2时,a n =S n -S n -1=2n -1; 当n =1时,a 1=S 1=2,不满足上式.所以a n =⎩⎪⎨⎪⎧2(n =1),2n -1(n ≥2),于是b n=⎩⎨⎧23(n =1),1n (n ≥2).(2)由题意得c n =T 2n +1-T n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, 所以c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0,即c n +1<c n ,所以数列{c n }为递减数列.5.(2020·新高考Ⅰ,Ⅱ,18,12分)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)(新高考Ⅰ)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.(新高考Ⅱ)求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.[解析] (1)设{a n }的公比为q .由题设得a 1q +a 1q 3=20,a 1q 2=8. 解得q 1=12(舍去),q 2 =2.由题设得a 1=2.所以{a n }的通项公式为a n =2n .(2)(新高考Ⅰ)由题设及(1)知b 1=0,且当2n ≤m <2n+1时,b m =n .所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63) =480.(新高考Ⅱ)a 1a 2-a 2a 3+…+(-1)n -1a n a n +1 =23-25+27-29+…+(-1)n -1·22n +1 =23[1-(-22)n ]1-(-2)2=85-(-1)n22n +35.6.(理)(2021·辽宁鞍山一中模拟)数列{a n }的前n 项和为S n ,S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求{a n }和{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .(文)(2020·长沙长郡中学检测)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解析] (理)(1)由S n =2n 2+n ,可得当n ≥2时,a n =S n -S n -1=(2n 2+n )-[2(n -1)2+(n -1)]=4n -1.当n =1时,a 1=3符合上式,所以a n =4n -1,由a n =4log 2b n +3可得4n -1=4log 2b n +3,解得b n =2n -1,n ∈N *.(2)a n b n =(4n -1)·2n -1∴T n =3+7·21+11·22+15·23+…+(4n -1)·2n -1① ∴2T n =3·21+7·22+11·23+…+(4n -5)·2n -1+(4n -1)·2n ②①-②可得-T n =3+4[21+22+23+24+…+2n -1]-(4n -1)·2n =3+4×2(1-2n -1)1-2-(4n -1)·2n=-5+(5-4n )·2n , ∴T n =5+(4n -5)·2n ,n ∈N *.(文)(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由b 2+S 2=10,a 5-2b 2=a 3,a 1=3,b 1=1,得⎩⎪⎨⎪⎧ q +6+d =10,3+4d -2q =3+2d 解得⎩⎪⎨⎪⎧d =2,q =2.∴a n =3+2(n -1)=2n +1,b n =2n -1. (2)由a 1=3,a n =2n +1得S n =n (n +2), 则当n 为奇数时,c n =2S n =1n -1n +2,当n 为偶数时,c n =2n -1,∴T 2n =(c 1+c 3+…+c 2n-1)+(c 2+c 4+…+c 2n )=⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1+(2+23+…+22n -1)=1-12n +1+2(1-4n)1-4=2n 2n +1+23(4n -1). 7.(理)(2020·山西大学附中模拟)已知数列{a n }的前n 项和为S n ,且2S n =na n +2a n -1. (1)求数列{a n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:T n <4.(文)(2021·北京西城区期中)已知等比数列{a n }满足a 3-a 2=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,请说明理由.[解题思路] (1)先根据2S n =na n +2a n -1和a n =S n -S n -1(n ≥2),推出数列{a n }的递推公式,再求a n .(2)根据⎩⎨⎧⎭⎬⎫1a 2n 的通项公式的结构形式,联系裂项求和法进行适当放缩.再求和,证明T n <4.[解析] (理)(1)解法一:当n =1时,2S 1=a 1+2a 1-1, 所以a 1=1.当n ≥2时,2S n =na n +2a n -1, ① 2S n -1=(n -1)a n -1+2a n -1-1.②①-②,得2a n =na n -(n -1)a n -1+2a n -2a n -1,所以na n =(n +1)a n -1. 所以a nn +1=a n -1n .所以a n n +1=a n -1n =…=a 11+1=12,即a n =n +12.当n =1时,a 1=1也满足此式. 故数列{a n }的通项公式为a n =n +12. 解法二:当n =1时,2S 1=a 1+2a 1-1,所以a 1=1. 当n ≥2时,2S n =na n +2a n -1, ① 2S n -1=(n -1)a n -1+2a n -1-1.②①-②,得2a n =na n -(n -1)a n -1+2a n -2a n -1, 所以na n =(n +1)a n -1. 所以a n a n -1=n +1n .所以a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=1×32×43×…×n +1n =n +12.当n =1时,a 1=1也满足此式. 故数列{a n }的通项公式为a n =n +12. (2)证明:由(1)得a n =n +12,所以1a 2n =4(n +1)2<4n (n +1)=4⎝⎛⎭⎫1n -1n +1, 所以T n =422+432+442+…+4(n +1)2<41×2+42×3+43×4+…+4n (n +1)=4⎣⎡⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎦⎤⎝⎛⎭⎫1n -1n +1=4⎝⎛⎭⎫1-1n +1<4.(文)(1)设等比数列{a n }的公比为q , 则a 3-a 2=a 1q 2-a 1q =10 ①, a 1a 2a 3=(a 1q )3=125②,由①②得q =3,a 1=53.∴数列{a n }的通项公式为a n =a 1q n -1=53×3n -1=5×3n -2.(2)假设存在正整数m ,使得1a 1+1a 2+…+1a m ≥1.由(1)知a n =5×3n -2, ∴1a n =15×⎝⎛⎭⎫13n -2,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列,∴1a 1+1a 2+…+1a m =35⎣⎡⎦⎤1-⎝⎛⎭⎫13m 1-13=910⎝⎛⎭⎫1-13m ≥1, ∴32-m≤-1,显然不成立,因此不存在正整数m ,使得1a 1+1a 2+…+1a m≥1.8.(2021·山东全真模拟)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列,________,b 1=a 5,b 2=3,b 5=-81,是否存在k ,使得S k >S k +1且S k +1<S k +2?注:如果选择多个条件分别解答,按第一个解答计分. [解析] 选条件①,设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,所以b n =-(-3)n -1.从而a 5=b 1=-1,a 2=b 1+b 3=-10,由于{a n }是等差数列,所以a n =3n -16. S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,由⎩⎪⎨⎪⎧3(k +1)-16<0,3(k +2)-16>0,得103<k <133,又k ∈N *,所以k =4.所以满足题意的k 存在. 选条件②.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,所以b n =-(-3)n -1.从而a 5=b 1=-1,a 4=b 4=27,所以{a n }的公差d =-28.因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,此时d =a k +2-a k +1>0,与d =-28矛盾,所以满足题意的k 不存在.选条件③.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,所以b n =-(-3)n -1.从而a 5=b 1=-1,由{a n }是等差数列得S 5=5(a 1+a 5)2,由S 5=-25得a 1=-9. 所以a n =2n -11.S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,由⎩⎪⎨⎪⎧2(k +1)-11<0,2(k +2)-11>0,得72<k <92,又k ∈N *,所以k =4.所以满足题意的k 存在.。
2024年高考数学总复习第六章《数列》测试卷及答案解析
2024年高考数学总复习第六章《数列》测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为()A .11B .12C .13D .14答案C解析由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a2a 1等于()A.32B.23C.12D .2答案A解析设等差数列的首项为a 1,公差为d ,则a 3=a 1+2d ,a 7=a 1+6d .因为a 1,a 3,a 7成等比数列,所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d=32.故选A.3.已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于()A .-160B .-80C .20D .40答案B解析a 1+15d =30,a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B.4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33答案D解析由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-qa 1(1-q 3)1-q =1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-qa 1(1-q 5)1-q=1+q 5=1+25=33.5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于()A .6B .7C .8D .9答案B解析由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5000m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5000m ,以后每天比前1天多跑200m ,则这个同学7天一共将跑()A .39200mB .39300mC .39400mD .39500m答案A解析依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5000,公差为200的等差数列,则这个同学7天一共将跑5000×7+7×62×200=39200(m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于()A .38B .20C .10D .9答案C解析因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于()A.139B.79C .3D .1答案A解析设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列,∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0,解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中的()A .第404组B .第405组C .第808组D .第809组答案A解析正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1,则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .在直线y =2x -1上,则a 9等于()A .1290B .1280C .1281D .1821答案C解析由已知可得S n +1n +1-1=又S11-1=a 1-1=1,1,公比为2的等比数列,所以Sn n -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1,故a 9=10×128+1=1281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为()A.175264B.3988C.173264D.181264答案A解析由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n=a n =2n +3,结合题设条件,应用累加法可求得1b n n 2+2n ,所以b n =1n 2+2n =1n (n +2)=所以数列{b n }的前n项和为T n -13+12-14+…+1n --1n +1-所以T 10-111-=175264,故选A.12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N *,若a 1+a 2+a 3+…+a 2018<1,则实数x 可以等于()A .-23B .-512C .-1348D .-1160答案B 解析∵a n =nx(x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2018=x x +1+1x +1-1(x +1)(2x +1)…(2018x +1)=1-1(x +1)(2x +1)…(2018x +1),当x =-23x +1>0,nx +1<0(2≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________.答案-10解析由a 4+a 10=0,2S 12=S 2+10,1+3d +a 1+9d =0,a 1+12×112d2a 1+d +10,解得d =-10.14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若Sn T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -2则S 2019=________.答案2020解析∵a n =(2n -2=(1-2n )sinn π2,∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…,归纳可得,每相邻四项和为4,∴S 2019=504×4+a 2017+a 2018+a 2019=2016+[(1-2×2017)+0+(2×2019-1)]=2016+4=2020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________.答案3×2n -n -3解析根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1,根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3.三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.(1)解由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n+k -1=2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5.当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1,∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列,∴a n =5·5n -1=5n .∴b n =log 55n =n .(2)证明∵c n =1n (n +1)=1n -1n +1,∴T n…=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3.(1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列;(2)求出数列{a n }的通项公式和前n 项和S n .(1)证明b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列.(2)解由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n )=2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *).(1)证明:{a n +1}是等比数列;(2)若数列b n =log 2(a n +1)n 项和T n .(1)证明当n =1时,S 1=2a 1-1,∴a 1=1.∵S n =2a n -n ,∴S n +1=2a n +1-(n +1),∴a n +1=2a n +1,∴a n +1+1=2(a n +1),∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.(2)解由(1)得a n +1=2n ,∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=∴T n -13+13-15+…+12n -1-=n 2n +1.21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n .(1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n .解(1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n ,∴a n n =1,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n ,∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列,∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n≥m 成立,求实数m 的最大值.解(1)∵S n =2a n -2,①∴S n +1=2a n +1-2,②∴②-①得a n +1=2a n +1-2a n (n ≥1),∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,成等差数列,公差为12.首项T 11=b11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2,当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n2n =n 2n -1=-1,令M n =2b 1a 1+2b 2a 2+…+2b na n,只需(M n )max ≥m .∴M n =1+2×12+3+…+n -1,③12M n =12+2+3+…+n ,④③-④得,12M n =1+12++…-1-n 1-12n=2-(n +,∴M n =4-(n +-1.∵M n +1-M n =4-(n +-4+(n +-1=n +12n>0.∴{M n }为递增数列,且(n +-1>0,∴M n <4.∴m ≤4,实数m 的最大值为4.。
新高考题型《数列》:解答题开放性问题(条件3选1)及答案解析
新高考题型《数列》:解答题开放性问题(条件3选1)及答案解析1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T .3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ,*n N ∈. (1)求n S 的最小值; (2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n n n b a a +=,求数列{}n b 的前n 项和n T .7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <.10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<.11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T .13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n 项和n T .15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S .17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值. 注:如果选择多个条件分别解答,那么按第一个解答计分.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)注:如果选择多个条件分别解答,按第一个解答计分.19.给出以下三个条件:①34a ,43a ,52a 成等差数列;①对于*n N ∀∈,点(,)n n S 均在函数2x y a =-的图象上,其中a 为常数;①37S =.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{}n a 是一个公比为(0,1)q q q >≠的等比数列,且它的首项11a =,. (1)求数列{}n a 的通项公式;(2)令*22log 1()n n b a n N =+∈,证明数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和12n T <.20.在①133a a b +=,①52a =-,①254b S b +=-这三个条件中任选两个,补充在下面的问题中.若问题中的m 存在,求出m 的值;若不存在,请说明理由.等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列, , ,且12b =,2312b b +=.是否存在大于2的正整数m ,使得14S ,3S ,m S 成等比数列?21.在①2213(0)n n n a a a +-=>,①211390n n n n a a a a -----=,①222n S n n =-+这三个条件中任选一个,补充在下面问题中.已知:数列{}n a 的前n 项和为n S ,且11a =, .(1)求数列{}n a 的通项公式;(2)对大于1的自然数n ,是否存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列.若存在,求m 的最小值;若不存在,说明理由.22.在①21n n S b =-,①14(2)n n b b n --=,①12(2)n n b b n -=+这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求出k 的值;若k 不存在,说明理由. 已知数列{}n a 为等比数列,123a =,312a a a =,数列{}n b 的首项11b =,其前n 项和为n S , ,是否存在k ,使得对任意*n N ∈,n n k k a b a b 恒成立?23.已知函数()log (k f x x k =为常数,0k >且1)k ≠.(1)在下列条件中选择一个 使数列{}n a 是等比数列,说明理由; ①数列{()}n f a 是首项为2,公比为2的等比数列; ①数列{()}n f a 是首项为4,公差为2的等差数列;①数列{()}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241n n n a b n +=-,求数列{}n b 的前n 项和n T .24.在①44a b =,①624S =-这两个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设n S 为等差数列{}n a 的前n 项和,{}n b 是等比数列, ,15b a =,39b =-,6243b =.是否存在k ,使得1k k S S ->且1k k S S +<?注:如果选择多个条件分别解答,按第一个解答计分.25.设33M a =-,22N a =,4T a =,给出以下四种排序:①M ,N ,T ;①M ,T ,N ;①N ,T ,M ;①T ,N ,M .从中任选一个,补充在下面的问题中,解答相应的问题. 已知等比数列{}n a 中的各项都为正数,11a =,且___依次成等差数列. (①)求{}n a 的通项公式;(①)设,01,1,1,n n n n na ab a a <⎧⎪=⎨>⎪⎩数列{}n b 的前n 项和为n S ,求满足100n n S b >的最小正整数n .26.已知数列{}n a 的前n 项和为n S ,11a =,1(0n n S pa p +=≠且1p ≠-,*)n N ∈. (1)求{}n a 的通项公式;(2)在①1k a +,3k a +,2k a +①2k a +,1k a +,3k a +这两个条件中任选一个,补充在下面的问题中:对任意的正整数k ,若将1k a +,2k a +,3k a +按______的顺序排列后构成等差数列,求p 的值.27.设*n N ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,①69a =,①535S =这三个条件中任选一个补充在上面题干中,并解答下面问题. (1)求数列{}n a 的通项公式;(2)若数列{}n b满足1(1)n a n n n b a +=+-,求数列{}n b 的前2n 项的和2n T .28.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且 ______(①1a ,2a ,4a 成等比数列;①(3)2n n n S +=;①926a =任选一个条件填入上空). 设3n a n b =,nn n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 注:如果选择多个条件分别解答,按第一个解答计分.29.在①2a ,3a ,44a -成等差数列;①1S ,22S +,3S 成等差数列;①12n n a S +=+中任选一个,补充在下列的问题中,并解答.在各项均为正数等比数列{}n a 中,前n 项和为n S ,已知12a =,且 . (1)求数列{}n a 的通项公式; (2)数列{}n b的通项公式nn b =,*n N ∈,求数列{}n b 的前n 项和n T .30.在①36S a =,①420S =,①14724a a a ++=这三个条件中任选一个,补充在下面问题中,并解答.(注:如果选择多个条件分别解答,则按第一个解答给分) 已知等差数列{}n a 的前n 项和为n S ,满足36a =,____. (1)求{}n a 的通项公式;(2)设2n a n n b a =+,求{}n b 的前n 项和n T .31.已知{}n a 是等差数列,{}n b 是等比数列,15b a =,23b =,581b =-. (1)求数列{}n b 的通项公式:(2)设数列{}n a 的前n 项和为n S ,在①132b b a +=,①44a b =这两个条件中任选一个,补充在题干条件中,是否存在k ,使得1k k S S +>且21k k S S ++>?若问题中的k 存在,求k 的值;着k 不存在,说明理由.32.已知等差数列{}n a 的公差为d ,前n 项和为n S ,315S =,0n a >,1d >,且______从“①21a -为11a -与31a +的等比中项”,“①等比数列{}n b 的公比12q =,12b a =,33b a =”这两个条件中,选择一个补充在上面问题中的划线部分,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,求n T .33.在①312S =,①2123a a -=,①824a =这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是公差不为0的等差数列,其前n 项和为n S ,__,且1a ,2a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 是各项均为正数的等比数列,且21b a =,44b a =,求数列{}n n a b +的前n 项和n T .34.在①4516a a +=;①39S =;①2(n S n r r =+为常数)这3个条件中选择1个条件,补全下列试题后完成解答(选择多个条件并分别解答的按第1个评分).设等差数列{}n a 的前n 项和为n S ,若数列{}n a 的各项均为正整数,且满足公差1d >,______. (1)求数列{}n a 的通项公式;(2)令21n a n b =+,求数列{}n b 的前n 项的和.35.已知{}n a 为等差数列,各项为正的等比数列{}n b 的前n 项和为n S ,且1122a b ==,2810a a +=,_____.在①1()n n S b R λλ=-∈;①43212a S S S =-+;①2()n a n b R λλ=∈.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .36.在①5CA CB =-,①ABC ∆的面积为-一个,补充在下面问题中,并解决该问题:在ABC ∆中,角A ,B ,C 所对各边分别为a ,b ,c , 已知sin sin 1sin sin sin sin A CB C A B+=++,_______,且1b =.(1)求ABC ∆的周长;(2)已知数列{}n a 为公差不为0的等差数列,数列{}n b 为等比数列,1cos 1a A =,且11b a =,23b a =,37b a =.若数列{}n c 的前n 项和为n S ,且113c =,111n n n n n a c b a a -+=-.2n . 证明:116n S <. 注:在横线上填上所选条件的序号,如果选择多个条件分别解答,按第一个解答计分.新高考题型:解答题开放性问题(条件3选1)《数列》答案解析1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .解:设等差数列{}n a 的公差为d ,选①:由1a ,3a ,7a 成等比数列得22111(6)(2)a a d a d +=+, 化简得20d dd =≠,11n d a n ∴=∴=+,于是1(1)2n n b n -=+,∴21213242(1)2n n T n -=+++⋯++,232223242(1)2n n T n =+++⋯++,相减得:212222(1)22n n n n T n n --=+++⋯+-+=-,∴2n n T n =;选①:()()()13122,122n n n n n n n n a S S n -+-+=-=-=+时,1n =时,12a =,符合上式,1n a n ∴=+,下同①; 选①:81281a a d -==-,22(1)2n a n n ∴=+-=, ∴2n n b n =,231222322n n T n =⨯+⨯+⨯+⋯+, 234121222322n n T n -=⨯+⨯+⨯+⋯+,相减得2311122222222n n n n n T n n +++-=+++⋯+-=--,∴1(1)22n n T n +=-+.2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, 22b =,3433a a b += .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T . 解: 选择①(1)35a =,2526a a b +=,11a b =,d q =,111251256a d d a d a d +=⎧>∴⎨+=⎩,解得112a d =⎧⎨=⎩或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),∴112b q =⎧⎨=⎩,1(1)21n n d n αα∴=+--=-,1112n n n b b q --==,(2)n n n a c b =,11211(21)()22n n n n c n ---∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212n n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.选择①22b =,3433a a b +=;(1)设11a b t ==,1d q =>,由22b =,3433a a b +=,可得2tq =,2253t d tq +=, 又d q =,解得2d q ==,1t =, 可得12(1)21n a n n =+-=-;12n n b -=; (2)11(21)()2n n n n a c n b -==-, 前n 项和11111135(21)()242n n T n -=+++⋯+-, 11111135(21)()22482n n T n =+++⋯+-, 两式相减可得21111111()(21)()22422n n n T n -=++++⋯+--,111121(1)()1212n n n --=+---, 化简可得116(23)()2n n T n -=-+.选择①39S ∴=,4528a a b +=,11a b =,d q =,1d >,∴1113278a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或121838a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),1(1)21n a a n d n ∴=+-=-,1112n n n b b q --==.(2)11211(21)()22n n n n n n a n c c n b ---=∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212m n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.解:(1)由题意,设等差数列{}n a 的公差为d ,则 115121736a d a d +=⎧⎨+=⎩,解得122a d =⎧⎨=⎩, 2(1)22n a n n ∴=+-⨯=,*n N ∈.(2)方案一:选条件① 由(1)知,144122(1)(1)n n n b a a n n n n +===++, 12n n S b b b =++⋯+1111223(1)n n =++⋯+⨯⨯+ 1111112231n n =-+-+⋯+-+ 111n =-+ 1nn =+. 方案二:选条件①由(1)知,(1)(1)2n n n n b a n =-=-,122468(1)2n n n S b b b n ∴=++⋯+=-+-+-⋯+-,()i 当n 为偶数时, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(1)2]n n =-++-++⋯+--+222=++⋯+22n =⨯ n =,()ii 当n 为奇数时,1n -为偶数, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(2)2(1)]2n n n =-++-++⋯+--+--2222n =++⋯+-1222n n -=⨯- 1n =--,,,1,.n n n S n n ⎧∴=⎨--⎩为偶数为奇数;方案三:选条件①由(1)知,222224n a n n n n b a n n ===,1231224446424n n n S b b b n ∴=++⋯+=⨯+⨯+⨯+⋯+⨯, 231424442(1)424n n n S n n +=⨯+⨯+⋯+-⨯+⨯,两式相减,可得123132424242424n n n S n +-=⨯+⨯+⨯+⋯+⨯-⨯ 12118(1444)24n n n -+=⨯+++⋯+-⨯11482414nn n +-=⨯-⨯-12(13)8433n n +-=-.12(31)8499n n n S +-∴=+. 4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ①① ,*n N ∈. (1)求n S 的最小值; (2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.解:(1)①若选择①①; 由题知:6650a S S =-=, 又因为15535()5152a a S a +===-,所以33a =-. 所以6333d a a =-=,解得1d =. 所以6(6)6n a a n n =+-=-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①;由题知:5541a S S =-=-, 又因为15535()5152a a S a +===-, 所以33a =-.所以5322d a a =-=,1d =. 所以3(3)6n a a n d n =+-=-. 所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①; 由题知:1666()152a a S +==-,所以161255a a a d +=+=- 由题知:1444()142a a S +==-,所以141237a a a d +=+=-所以15a =-,1d =. 所以6n a n =-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==-. 证明(2)因为6n a n =-, 所以671111(1)1n n a a n n n n ++==-++ 所以11111111122311n T n n n =-+-+⋯+-=-<++. 5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值. 解:选择①2(1)n n S n a =+,112(2)n n S n a ++∴=+,相减可得:112(2)(1)n n n a n a n a ++=+-+,∴11n na a n n+=+, ∴111n a a n ==,可得:n a n =. 2(2)(12)(2)(3)22k k k k k S ++++++∴==. 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(3)2k k k ++∴=,*k N ∈,解得6k =.选择(2)n a n =,1n n S S -=-=,0n S >1=,∴数列是等差数列,首项为1,公差为1.∴11n n =+-=,解得2n S n =.2n ∴时,221(1)21n n n a S S n n n -=-=--=-.2(2)(123)(2)(2)2k k k S k k ++++∴==++1a ,k a ,2k S +成等比数列,∴212kk a a S +=,22(21)(2)k k ∴-=+,*k N ∈,解得3k =. 选择①0n a >,22n n n a a S +=,∴21112n n n a a S ++++=,相减可得:221112n n n n n a a a a a ++++--=,化为:11()(1)0n n n n a a a a +++--=, 可得:11n n a a +-=,∴数列{}n a 是首项与公差都为1的等差数列,11n a n n ∴=+-=.(1)2n n n S +∴=, 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(12)2k k k +++∴=,*k N ∈,解得6k =.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n n n b a a +=,求数列{}n b 的前n 项和n T .解:(1)选择条件①:设等差数列{}n a 的公差为d , 则11265,4347,2a d a d +=⎧⎪⎨⨯+=⎪⎩解得11,1,2a d =⎧⎪⎨=⎪⎩ ∴12n n a +=,*n N ∈; 选择条件①:243n S n n =+,∴当2n 时,2214443(1)3(1)22n n n a S S n n n n n -=-=+--+-=+即1(2)2n n a n +=, 当1n =时,21113114a S +⨯===,也适合上式,∴12n n a +=,*n N ∈; 选择条件①:设等差数列{}n a 的公差为d , 则112115(46)14(2),9(4)(2),2a d a d a d a d ⨯+=+⎧⎪⎨+=+⎪⎩, 解得11a =,12d =,或10a =,0d =,不合题意,舍去, ∴12n n a +=,*n N ∈; (2)由(1)可知,22214112()(21)(23)2123n n n b a a n n n n +===-++++,∴121111112()35572123n n T b b b n n =++⋯+=-+-+⋯+-++ 1142()32369nn n =-=++. 7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .解:(1)若选择条件①12a =,则放在第一行的任何一列,满足条件的等差数列{}n a 都不存在,若选择条件①11a =,则放在第一行的第二列,结合条件可得11a =,24a =,37a =,则32n a n =-,则*n N ∈,若选择条件①13a =,则放在第一行的任何一列,结满足条件的等差数列{}n a 都不存在, 综上可得32n a n =-,则*n N ∈, (2)由(1)知,12(1)(32)n n b n +=--, 当n 为偶数时,22222212312341n n n n T b b b b a a a a a a -∴=+++⋯+=-+-+⋯+-,1212343411()()()()()()n n n n a a a a a a a a a a a a --=+-++-+⋯+-+,2123(132)933()3222n n n a a a a n n +-=-+++⋯+=-⨯=-+,当n 为奇数时,22219393(1)(1)(32)22222n n n T T b n n n n n -=+=--+-+-=--,2293,22932,22n n n n T n n n ⎧-+⎪⎪∴=⎨⎪--⎪⎩为偶数为奇数 8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 解:选①:当1n =时,112a S ==,当2n 时,12n n n a S S n -=-=,又1n =满足2n a n =,所以2n a n =.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =; 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①:设公差为d ,由1353512616,16,42,81342,a d a a S S a d +=⎧+=+=⎨+=⎩得解得12,2,a d =⎧⎨=⎩所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =.由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①: 由11111,,,11n n n n n n a a a a an a a n a n n n n +++====+得所以即,74172856S a a ===,所以12a =,所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12,2,2n n b q b ===所以. 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++, 故11112212111n n n T n n ++=-+-=--++. 9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <. 解:(1)若选择①2342a a a +=,可得231112a q a q a q +=,化为220q q --=,解得2(1q =-舍去),又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n nn b a ==++; 选择①22n n S a =-,可得11122a S a ==-,解得12a =,又122222a a S a +==-,解得24a =,可得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n nn b a ==++; 选择①425S S =,可得4211(1)(1)511a q a q q q--=--,即215q +=,解得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n n n b a ==++; (2)证明:111211(21)(21)2121n n n n n n n n a b b +++==-++++, 2231111111111()()()212121212121321n n n n T ++=-+-+⋯+-=-+++++++, 由11021n +>+,可得13n T <. 10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<. 解:选择①①:(1)解:由131n n S S +=+⇒当2n 时,有131n n S S -=+,两式相减得:13n n a a +=,即113n n a a +=,2n .又当1n =时,有2112313()S S a a =+=+,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 选择:①①:(1)解:由1213n n S a +=-⇒当2n 时,1213n n S a -=-,两式相减得:1233n n n a a a +=-+,即113n n a a +=,2n .又当1n =时,有1212132S a a =-=,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .解:选①,由已知142n n S S +=+⋯①, 当2n 时,142n n S S -=+⋯①,①-①可得14n n a a +=,当1n =时,2142S S =+可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知2132n n S λ+==+⋯①211.32n n S λ--==+⋯①, ①-①可得21212132232n n n n a +--=-=. 当1n =时,12a =满足212n n a -=.∴数列{}n a 是首项为2,公比为4的等比数列,即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知132n n S a +=-⋯①, 当2n 时,12n n S S -=-⋯①, ①-①可得14n n a a +=,当1n =时,可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++.∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T . 解:方案一:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--= 解得2q =或1q =-,0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为435d a b b =+,5462a b b =+,∴113431316b d b d +=⎧⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)由(1)可知:12,n n n a b n -==,012111221222(1)22n n n n n T a b a b a b n n --∴=++⋯+=⨯+⨯+⋯+-⨯+⨯,∴12121222(1)22n n n T n n -=⨯+⨯+⋯+-⨯+⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分) ∴1211212222221212nn nn n n n T n n n ---=+++⋯+-⨯=-⨯=--⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-(9分)∴(1)21n n T n =-+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)方案二:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=. 解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d ,435a b b =+,135141344()235b d a a b b b d +=⎧+=+∴⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2). 方案三:选条件①(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=,解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d . 435a b b =+,4235S a b =,∴11340b d b d +=⎧⎨-=⎩解得111b d =⎧⎨=⎩,n b n ∴=,∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2).13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.解:(1){}n a 是公差d 为2的等差数列,若选①4S 是2a 与21a 的等差中项,可得42212S a a =+, 即有112(46)221a d a d +=+,即为16918a d ==,解得13a =; 若①7a 是33S 与22a 的等比中项,可得2732213a S a =,即21111(62)(332)(212)3a a a +⨯=+⨯+⨯, 即2111(12)(2)(42)a a a +=++, 解得13a =;若选①数列2{}n a 的前5项和为65,可得241065a a a ++⋯+=, 即1115(13579)52555065a d a d a +++++=+=+=, 解得13a =;综上可得32(1)21n a n n =+-=+,*n N ∈; (2)33()(21)()44n n n n b a n ==+,由1133523(23)()(21)()()4444n n nn n n b b n n ++--=+-+=,当1n =,2时,可得10n n b b +->,即321b b b >>;当3n ,*n N ∈时,可得10n n b b +-<,即345b b b >>>⋯, 则n b 的最大项为318964b =, 由18927648<, 可得不存在k N ∈,使得278k b >. 14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n项和n T .解:选条件①: (1)数列1{}n S a +为等比数列,2211131()()()S a S a S a ∴+=++,即2121123(2)2(2)a a a a a a +=++.设等比数列{}n a 的公比为q ,22(2)2(2)q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)点(n S ,1)n a +在直线1y x =+,11n n a S +∴=+,又11(2,)n n a S n n N -=+∈,两式相减有:12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列.1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)1121222n n n n a a a na -+++⋯+=,12121222(1)(2)n n n n a a a n a n ---∴++⋯+=-. 由两式相减可得:122(1)n n n a na n a +=--,即12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列. 1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++.15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2351a a a b +=-,3d ∴=,31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2372a a a =,(2)(22)2(26)d d d ∴++=+,0d >,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又315S =,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S . 解:方案一:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,53A B =,∴112351096a d a d d +=⎧⎨+=+⎩,解得111a d =⎧⎨=⎩,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)由(1)知, 331122()(21)(23)22123n n n c n n n n =+=+-++++,12n n S c c c ∴=++⋯+2311311311[2()][2()][2()]23525722123n n n =+-++-+⋯++-++23111111(222)[()()()]235572123n n n =++⋯++-+-+⋯+-++2(12)311()122323n n -=+--+13(2)223n n n ++=-+. 方案二:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且21221143,A a a B =-=, ∴11123114232a d a a d d +=⎧⎪⎨-=⎪+⨯+⎩, 整理,得()()1111231,4621a d a a a d d d d +==⎧⎧⎨⎨+=+=⎩⎩解得,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程. 方案三:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,535B =, ∴11231,541352352a d a d d +=⎧=⎧⎪⎨⎨⨯=⨯+⨯=⎩⎪⎩解得, 11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程.17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值. 注:如果选择多个条件分别解答,那么按第一个解答计分.解:由21n n T b =-,可得1n =时,11b =;2n 时,1121n n T b --=-,相减可得122n n n b b b -=-,即12n n b b -=,由此可得{}n b 为首项为1,公比为2的等比数列,故12n n b -=, ①当535a b b =+,1632a b ==,541620a =+=, 设{}n a 的公差为d ,则20324d =+,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当387S =时,132a =,2387a =,设{}n a 的公差为d ,则3(32)87d +=,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当91012a a b b -=+时,132a =,9103a a -=, 设{}n a 的公差为d ,则3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列解答题
题目:
分析:已知两个数列的首项,以及数列{a n}的第n+1项与前n项和的关系,对于数列{b n}来说,将点P坐标代入直线方程即可得到相邻两项之间的关系。
至于第二小题,看完题之后就可以肯定前两个数列的比值肯定能化简为某种形式,而这种形式在求前n项和的时候肯定可以化简,否则肯定前面解错了。
解答:
(1)先来解决{a n}的通项公式,
根据a n+1=2S n+1,不难想到将其替换为
a n=2S n-1+1
而S n和S n-1刚好相差一个a n,
如果我们将两个等式相减,就可以得到只留下 a n+1和a n的等式关系
a n+1-a n=2 a n,
所以a n+1=3a n
即{a n}是等比数列,那么a n=a1·3^(n-1)=3^(n-1)
根据点P的坐标,代入直线方程得
b n-b n+1+2=0
即b n+1-b n=2,
所以{b n}是等差数列
则b n=b1+2(n-1)=2n-1
(2)分式没法手打,所以图片展示
分母是乘方,不用想,全部给它除以3,用两个式子相减来化简,
式子中间部分成一个等比数列,将他们求和即可得到倒数第二层的式子。