北邮电磁场与微波实验53微波单元项目
北邮电磁场实验报告
北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。
本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。
实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。
电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。
磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。
实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。
然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。
在不同电流下,我们分别测量了电磁场的强度,并记录下来。
接下来,我们使用磁力计来测量电磁场的方向。
将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。
然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。
在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。
通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。
根据这些数据,我们可以绘制出电磁场的强度和方向分布图。
从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。
讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。
这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。
而我们的实验结果也验证了这一规律。
此外,我们还发现电磁场的强度和方向与测量位置和角度有关。
在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。
这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。
结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。
微波技术实验报告北邮
微波技术实验报告北邮一、实验目的本实验旨在使学生熟悉微波技术的基本理论,掌握微波器件的测量方法,并通过实际操作加深对微波信号传输、调制和解调等过程的理解。
通过实验,学生能够培养分析问题和解决问题的能力,为将来在微波通信领域的工作打下坚实的基础。
二、实验原理微波技术是利用波长在1毫米至1米之间的电磁波进行信息传输的技术。
微波具有较高的频率和较短的波长,因此能够实现高速数据传输。
在实验中,我们主要研究微波信号的产生、传输、调制和解调等基本过程。
三、实验设备1. 微波信号发生器:用于产生稳定的微波信号。
2. 微波传输线:用于传输微波信号。
3. 微波调制器:用于对微波信号进行调制,实现信号的传输。
4. 微波解调器:用于将调制后的信号还原为原始信号。
5. 微波测量仪器:包括功率计、频率计等,用于测量微波信号的参数。
四、实验内容1. 微波信号的产生与测量:通过微波信号发生器产生微波信号,并使用频率计测量信号的频率。
2. 微波信号的传输:利用微波传输线将信号从一个点传输到另一个点,并观察信号的衰减情况。
3. 微波信号的调制与解调:使用调制器对微波信号进行调制,然后通过解调器将调制后的信号还原。
4. 微波信号的传输特性分析:分析不同条件下微波信号的传输特性,如衰减、反射、折射等。
五、实验步骤1. 打开微波信号发生器,设置合适的频率和功率。
2. 将微波信号发生器的输出端连接到微波传输线的输入端。
3. 测量传输线上的信号强度,并记录数据。
4. 将调制器连接到传输线的输出端,对信号进行调制。
5. 将调制后的信号通过解调器还原,并测量解调后的信号参数。
6. 分析信号在不同传输条件下的特性,如衰减系数、反射率等。
六、实验结果通过本次实验,我们成功地产生了稳定的微波信号,并测量了其频率和功率。
在传输过程中,我们观察到了信号的衰减现象,并记录了不同传输条件下的信号强度。
通过调制和解调过程,我们验证了微波信号的可调制性和可解调性。
北邮微波测量实验+实验总结-(天线与电波传播)
电磁场与微波测量实验实验报告实验名称:班级:姓名:学号:学院:北京邮电大学实验七.天线与电波传播一、 实验目的(1)掌握微波信号发生器及测量放大器的使用方法。
(2)了解水平面接收天线方向性的测量方法。
二、 实验仪器标准信号发生器、选频放大器、喇叭天线、波导调配器、可变衰减器、波导元件。
三、 实验原理及步骤对于辐射波传输方式,最重要的是测试其辐射场幅值分布的方向性,其表征量是天线方向函数及方向图。
1.系统组成图1-1 系统组成原理框图2.喇叭天线工程上常用的喇叭天线是角锥喇叭,原因是其匹配较好而效率接近100%(G ≈D )。
但是由于其口径场的幅值、相位不是均匀分布,虽然其辐射主向仍是口径面法线方向(波导轴线方向),但是主瓣宽度、方向系数的计算很复杂。
可用以下公式进行估算:E 面(yoz 面)主瓣宽度bE λθ5325.0= (1-1)H 面(xoz 面)主瓣宽度15.0802a H λθ= (1-2)方向系数(最佳尺寸的角锥喇叭)211451.0λπb a D = (1-3)图1-2是角锥喇叭的三维标高方向图。
具体参数喇叭口径1a =5.5λ,1b =2.75λ;波导口径a=0.5λ,b=0.25λ;虚顶点至口径面距离ρ=2ρ=6λ。
1 Array图1-2 角锥喇叭的三维标高方向图图1-3为本实验所用喇叭天线示意图:图1-3 实验所用喇叭天线3.测水平面接收天线方向性图1-1为测量喇叭天线方向性的系统组成情况。
测量时改变接收喇叭天线的方位角,可测出喇叭天线水平面的方向性(按接收到信号的强弱)。
严格的测量应在微波暗室中进行,这样可以消除反射波影响。
但在微波段,因其传播方向性较强,而且房屋墙壁吸收较强,地面影响也可略去,因而这样在普通实验室内测量偏差也不很大。
测天线方向图应有专用天线转台,它有精确的角度(水平面方位角,垂直面俯仰角)刻度指示。
本实验主要测水平面即方位方向性。
四、实验内容及数据处理(1)微波天线方向图测试报告旁瓣宽度-3.0db : 26.33 -6.0db : 39.82 -10.0db : 54.30 -15.0db : 225.13五、心得体会本实验即天线与电波传播实验由老师演示,我们只需了解其原理并会分析其数据即可。
微波实验报告波导波长测量
篇一:电磁场与微波实验报告波导波长的测量电磁场与微波测量实验报告学院:班级:组员:撰写人:学号:序号:实验二波导波长的测量一、实验内容波导波长的测量【方法一】两点法实验原理如下图所示:按上图连接测量系统,可变电抗可以采用短路片。
当矩形波导(单模传输te10模)终端(z=0)短路时,将形成驻波状态。
波导内部电场强度(参见图三之坐标系)表达式为:e =ey =e0 sin(?xa) sin?z在波导宽面中线沿轴线方向开缝的剖面上,电场强度的幅度分布如图三所示。
将探针由缝中插入波导并沿轴向移动,即可检测电场强度的幅度沿轴线方向的分布状态(如波节点和波腹点的位置等)。
yz两点法确定波节点位置将测量线终端短路后,波导内形成驻波状态。
调探针位置旋钮至电压波节点处,选频放大器电流表表头指示值为零,测得两个相邻的电压波节点位置(读得对应的游标卡尺上的刻度值t1和t2),就可求得波导波长为:?g = 2 tmin-tmin由于在电压波节点附近,电场(及对应的晶体检波电流)非常小,导致测量线探针移动“足够长”的距离,选频放大器表头指针都在零处“不动”(实际上是眼睛未察觉出指针有微小移动或指针因惰性未移动),因而很难准确确定电压波节点位置,具体测法如下:把小探针位置调至电压波节点附近,尽量加大选频放大器的灵敏度(减小衰减量),使波节点附近电流变化对位置非常敏感(即小探针位置稍有变化,选频放大器表头指示值就有明显变化)。
记取同一电压波节点两侧电流值相同时小探针所处的两个不同位置,则其平均值即为理论节点位置:1tmin = ? t1 ? t2 ?2最后可得?g = 2 tmin- tmin (参见图四)【方法二】间接法矩形波导中的h10波,自由波长λ0和波导波长?g满足公式:?g =???? 1 ? ? ??2a?2其中:?g=3?108/f,a=2.286cm通过实验测出波长,然后利用仪器提供的对照表确定波的频率,利用公式cλ0=确定出λ0,再计算出波导波长?g。
北邮电磁场与微波实验天线部分实验报告一
信息与通信工程学院电磁场与微波实验报告实验一网络分析仪测量阵子天线输入阻抗一、实验目的:1.掌握网络分析仪校正方法2.学习网络分析仪测量振子天线输入阻抗的方法3.研究振子天线输入阻抗随阵子电径变化的情况(重点观察谐振点与天线电径的关系)二、实验步骤:(1)设置仪表为频域模式的回损连接模式后,校正网络分析仪;(2)设置参数并加载被测天线,开始测量输入阻抗;(3)调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;(4)更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗变化情况;(5)设置参数如下:BF=600MHz,△F=25MHz,EF=2600MHz,n=81(6)记录数据在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。
记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。
三、实验数据:1、直径=1mm时:四分之一波长谐振点为662.3-13j二分之一波长谐振点为38.43-3.68j实验图示如下:2、直径=3mm时:二分之一波长谐振点为32.71-1.5j 四分之一波长谐振点为284.9-3.31j实验图示如下:3、直径=9mm时:二分之一波长谐振点为26.62-1.44j 四分之一波长谐振点为131.8-2.16j实验图示如下:四、分析结果实际测量结果与理想的阻抗图仍有一定差别,理想状态下,天线的阻抗原图应该是一个中心在正实轴某处的一个规则的圆,但实际结果发现天线的阻抗原图不是很规则,随着频率的增加,其阻抗特性成非线性变化。
由实验结果可以看出,对于相同材质,振子天线的直径越粗,谐振点输入阻抗越小,网络反射系数越小,回波损耗越小,越容易和馈线匹配,天线的工作频率范围就越宽。
天线的阻抗随着频率的变化不断变化,频率范围为600KHz~2600KHz,变化规律为:前20个点基本不变,后面的点基本随着频率的增加而增加。
北邮实验报告微波
北邮实验报告微波引言微波是一种电磁波,其波长介于红外线和无线电波之间,频率范围在0.3GHz到300GHz之间。
在通信、雷达、烹饪和科学研究等领域中都有广泛的应用。
在本次北邮实验中,我们将对微波进行详细的实验研究,包括微波的产生、传播和接收等方面。
实验目的本次实验的目的是通过实际操作,深入了解微波的特性和应用,掌握微波的基本原理和实验技巧。
实验步骤1. 微波的产生在实验室中,我们使用了一台微波产生器作为实验的起点。
首先,将微波产生器连接到电源上,调节频率和功率到所需的数值。
然后,将微波产生器的输出端连接到实验室的微波传输线上。
2. 微波的传播在传输线的一端,将一根微波天线连接到传输线上。
通过在传输线上调整微波的传播路径、角度和长度,我们可以实现微波的传输和转换。
在传播过程中,我们还观察了微波的反射和折射现象。
3. 微波的接收在传播线的另一端,将一个微波接收器连接到传输线上,以接收并测量传输线上的微波信号。
在接收过程中,我们还研究了微波信号的幅度、频率和相位等特性。
4. 微波的应用在实验的最后阶段,我们探索了微波在通信和雷达系统中的应用。
通过调整频率和功率,我们成功地传输了一个数字信号,并利用雷达系统测量了一个静止目标的距离和速度。
实验结果通过本次实验,我们获得了如下的实验结果:1. 微波产生器的频率和功率对微波的传播和接收都具有重要影响。
调节频率和功率可以改变微波信号的强度和特性。
2. 微波在传输线上的传播路径、角度和长度都会对微波信号的幅度、相位和频率产生影响。
合理地设计和构造传输线可以提高微波的传输效率和保真度。
3. 微波信号的接收和测量需要高灵敏度和高精度的微波接收器和测量仪器。
合理调节接收器的参数可以获得准确的微波信号值。
4. 微波在通信和雷达系统中具有重要的应用。
利用微波技术,可以实现远距离的无线通信和精确测量目标的位置和速度。
结论通过本次实验,我们全面了解了微波的特性和应用。
微波是一种重要的电磁波,具有很多优良特性,如高速传输、高精度测量和无线通信等。
北邮电磁场与微波实验报告
信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:姓名:学号:日期:2016.5.18实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。
因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。
常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。
支节匹配器分单支节、双支节和三支节匹配。
这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
此电纳或电抗元件常用一终端短路或开路段构成。
2. 微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。
微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。
三、实验内容已知:输入阻抗Zin=75Ω负载阻抗Zl=(64+j75)Ω特性阻抗Z0=75Ω介质基片面性εr=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=λ/4,两分支线之间的距离为d2=λ/8。
画出几种可能的电路图并且比较输入端反射系数幅值从1.8GHz至2.2GHz的变化。
四、实验步骤1.建立新项目,确定项目频率,步骤同实验1的1-3步。
2.将归一化输入阻抗和负载阻抗所在位置分别标在Y-Smith导纳图上,步骤类似实验1的4-6步。
3.设计单支节匹配网络,在圆图上确定分支z与负载的距离d以及分支线的长度1,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。
北邮通信工程微波实验报告
本次分支线匹配器实验是微波第一次实验,由于基础知识不牢固和对软件不太熟悉,实验 做得磕磕绊绊,但通过我不断复习、反思、改正,实验的结果还是令人满意的。
这次实验中,我对书本上介绍的单支节匹配和双支节匹配进行了仿真。随着工作频率的提 高及相应波长的减小,集总参数元件的寄生参数效应就会变得明显,当波长明显小于典型的电 路元件长度时,分布参数元件得到了广泛的应用。此时,实现阻抗匹配需要在负载和传输线之 间并联或串联分支短截线,代替分立元件。阻抗匹配通常是为了获得最大传输功率,改善系统 的信噪比,在功分网络中降低振幅相位误差。
图 1.9 调谐界面 在 Graph 中,点菜单栏的 Tune 图标,会出现上图 Variable Tuner 的方框,在里面移动调谐 变量的箭头,观察图的变化,选择最佳的值,使输入端口的反射系数幅值在中心频率 2GHz 处 最低。 调谐前后的反射系数如图 1.10 所示,粉红色为调谐前的反射系数,蓝色为调谐后反射系数。
电磁场与微波技术实验报告
由以上的分析与计算,可绘制电路图,如图 1.5 所示。PORT1 表示端口,输入阻抗Zin 75 ; TL1 表示传输线特性阻抗 Z0 75 ;TL3 为 T 型接头,其分支的作用;MLEF(TL4)为终端开路 微带线,作为并联的单支节线,其宽度和长度为计算得出的值。MLIN(TL2)为传输线,长度为 之前计算得到值。RL1 为电感电阻串联器件,表示负载阻抗 ZL (64 j35) ,最后接地。MSUB 表示介质基片。
3、思考题 如果不考虑微带线不均匀性模型如 T 型接头、阻抗跳变器等,仿真的结果有何变化?分析
变化的原因。
答:除去 T 型接头后,双支节匹配的电路图如下图所示:
第8页
电磁场与微波技术实验报告
北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量
电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。
选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。
2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。
北邮微波实验报告
信息与通信工程学院电磁场与微波技术实验报告实验二微带分支线匹配器实验目的1.熟悉支节匹配器的匹配原理2.了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络实验原理1.支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器:调谐时,主要有两个可调参量:距离d和分支线的长度l。
匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是0+B形式,即=0+B,其中0=1/0 。
并联开路或短路分支线的作用是抵消Y的电纳部分,使总电纳为0 ,实现匹配,因此,并联开路或短路分支线提供的电纳为−B,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。
双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
2.微带线微带线是有介质(>1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质,可以近似等效为均匀介质填充的传输线,等效介质电常数为,介于1和之间,依赖于基片厚度H和导体宽度W。
而微带线的特性阻抗与其等效介质电常数为、基片厚度H和导体宽度W有关。
实验内容已知:输入阻抗 Zin=75Ω负载阻抗 Zl=(64+j35)Ω特性阻抗 Z0=75Ω介质基片εr=2.55,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。
实验步骤1.根据已知计算出各参量,确定项目频率。
3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。
北邮电磁场实验三微波驻波比的测量
北京邮电大学电磁场与微波测量实验实验三微波驻波比的测量学院:电子工程学院班级: 2011211207组员:邹夫、李贝贝、马睿执笔:李贝贝目录1.实验内容 11.1实验目的 11.2实验设备 12.实验原理 13.实验内容及数据处理 33.1直接法测量驻波系数 33.1.1实验框图 33.1.2实验步骤 33.1.3实验数据 33.2等指示度法测量驻波系数 43.2.1实验框图 43.2.2实验步骤 43.2.3实验数据 44.思考题 55.实验心得与体会 61. 实验内容1.1实验目的1、了解波导测量系统,熟悉基本微波元件的作用。
2、掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。
3、掌握大、中、小电压驻波系数的测量原理和方法。
1.2实验设备1.DH1121C型微波信号源2.DH364A00型3cm测量线2.实验原理1、直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。
若驻波腹点和节点处电表读数分别为Umax、Umin,则电压驻波系数当驻波系数1.55时直接可读出Umax、Umin即可。
当电压驻波系数在1.051.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可移动探针到几个波节和波腹记录数据,然后取平均值。
2、等指示度法:当被测器件的驻波系数大于10时,由于驻波最大与最小处的电压相差很大,若在驻波最小点处使晶体输出的指示电表上得到明显的偏转,那么在驻波最大点时由于电压较大,往往使晶体的检波特性偏离平方律,这样用直接法测量就会引入很大的误差。
等指示度法是通过测量驻波图形在最小点附近场强的分布规律,从而计算出驻波系数,如图五所示。
若最小点处的电表指示为Z,在最小点两边取等指示点,两等指示度点之间的距离为W,有,设晶体检波律为n,由驻波场的分布公式可以推出: (1)通常取K=2(二倍最小法),且设n=2,有 (2)WD图五等指示度法波节点附近场分布当ρ>10时,上式可简化为 (3)这种方法取k=2时进行测量,所以也称为“二倍最小值”法,或3分贝方法。
北京邮电大学_电磁场与电磁波实验微波接收系统的测量
北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:报告撰写人:微波收发机的系统调测微波TV收系统的基本原理一、实验原理基本无线通信系统一般由发信机、收信机及其天线(含馈线)构成。
如图1所示。
天馈信源信宿图1 无线通信系统的组成1.发信机发信机的主要作用是将需要传输的信源信号进行处理并发送出去。
首先通过调制器用信源信号对高频正弦载波进行调制形成中频已调制载波,中频已调制载波经过变频器和滤波器转换成射频已调制载波,射频已调制载波送至射频放大器进行功率放大,最后送至发射天线,转换成辐射形式的电磁波发射到空间。
一个典型的无线发信机的组成框图,如图2所示。
图2 无线发信机的组成框图2.收信机收信机的主要作用是将天线接收下来的射频载波还原成要传输的信源信号。
收信机的工作过程实际上是发信机的逆过程,首先对来自接收天线的射频载波信号进行低噪声放大,然后经过下变频器、中频滤波器中频放大器变换称为满足解调电平要求的中频已调制载波,最后经过解调器还原出原始的信源信号。
一个典型的无线收信机的组成框图,如图3所示。
输出信号图3 无线收信机的组成框图3.天线天线是无线通信系统不可缺少的重要组成部分之一。
天线的主要作用是把发信机送来的射频载波变换成空间电磁波并辐射出去(发射端)或者把收到的空间电磁波变换成射频载波并送给收信机(接收端)。
本实验将对使用的额微波收发系统(SD3200)微波电路实验训练系统的各个参数进行测量,实验者能完整、透彻的了解微波射频系统,掌握微波收发系统的基础知识。
SD3200R/T微波TV收发系统由发射机系统和接收机系统两个试验箱组成。
该微波TV收发系统是一套工作在900MHz微波频段的无线通信实训系统,可以进行图像和话音业务的无线传输实验,同时可以进行滤波器,放大器,滤波放大器等电路的相关实验。
微波TV收发系统主要由TV发射机系统和TV 接收机系统两部分组成。
微波发射机和接收机组成方框图如下图所示微波TV收发系统可以提供6个无线信道,信道间隔8MHz,频率设置如二、实验内容及步骤1、发射机的输出频谱测量(1)连接测试系统(频谱分析仪街道功率放大器的输出端)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学电子工程学院电磁场微波测量实验5.3微波实验单元项目组员:2015-5-3执笔:目录5.3.1 频谱分析仪的使用 (2)一、实验目的 (2)二、实验设备 (2)三、实验原理 (2)四、实验内容 (3)A. 单载波信号的频谱测量 (3)B. 带载波信号的杂散测量 (4)C. 相位噪声测量 (5)D. 幅频特性测量 (6)5.3.2 衰减器的特性测量 (8)一、实验目的 (8)二、实验仪器 (8)三、实验内容 (8)5.3.3 定向耦合器特性测量 (9)A. 耦合度测量 (9)B. 插入损耗测量 (10)C. 定向耦合器的隔离度测量 (11)5.3.4 滤波器的特性及测量 (12)实验总结 (13)5.3.1 频谱分析仪的使用一、实验目的1. 了解频谱分析仪的工作原理,熟悉它的使用方法2. 了解微波信号发生器的使用方法二、实验设备1. 频谱分析仪2. 微波信号发生器三、实验原理频谱分析系统主要的功能是在频域里显示输入信号的频谱特性。
频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪( Real-Time Spectrum Analyzer)与扫描调谐频谱分析仪(Sweep-Tuned Spectrum Analyzer).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器( Detector),再经由同步的多工扫描器将信号传送到CRT或液晶等显示仪器上进行显示,其优点是能显示周期性杂散波( Periodic Random Waves )的瞬间反应,其缺点是价昂且性能受限于频宽范围,滤波器的数目与最大的多工交换时间( Switchi ng Time).最常用的频谱分析仪是扫描调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。
较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助於宽频带信号的侦测,将增加杂讯底层值(Noise Floor),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。
四、实验内容A. 单载波信号的频谱测量a )实验操作步骤1. 按照下图连接测试微波信号发生器图12. 设置微波信号发生器输出指定频率和功率的单载波信号( 900MHz 、10dBm )3.设置频谱分析仪的中心频率为微波信号发生器的输出频率, 设置合适的扫描带宽, 适当调整参考电平使频谱图显示在合适的位置。
f Af图24. 用峰值搜索功能测量信号的频率和电平,测试数据记录到表 4-1中5.用差值光标功能测量信号和噪声的相对电平(信噪比) ,同时记录频谱分析仪的分辨率和带宽设置频谱分析仪b)实验数据记录B. 带载波信号的杂散测量a)实验操作步骤1. 设置微波信号发生器输出制定频率和功率的正弦波(850MHz、-20dBm)2. 设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置。
3. 用频谱分析仪测量输出信号的频率和电平,测试数据记录到表4.2中4. 增加频谱分析仪的扫描带宽,如100M Hz,用手动设置功能适当减小频谱分析仪的分辨率带宽,观察频谱图的变化,直到观测到杂散信号为止。
5. 在频谱图中确定最大杂散信号,用差值光标功能测量信号和最大杂散信号的相对电平(杂散抑制度)b)实验数据记录C)实验数据分析杂散信号产生原因:过度激励分析仪的输入可能会导致杂散信号C. 相位噪声测量a)实验操作步骤1. 设置微波信号发生器输出指定频率和功率的单载波信号(850MHz、-10dBm)2. 设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置扫描带宽为50KHZ,设置合适的分辨率带宽和视频带宽,适当调整参考电平使频谱图显示在合适的位置图43. 用峰值搜索功能测量信号的频率和电平,测试数据记录到表4.3中4. 用差值光标和噪声光标功能测量偏离信号10KHZ的相位噪声,测试数据记录到表 4.3中5. 将扫描带宽设置为500KHZ,设置合适的分辨率带宽和扫描带宽,利用同样的方法测量偏离信号100KHZ的相位噪声,测试数据记录到表 4.3中6. 改变输出频率,重复以上测量,测试数据记录到表 4.3中b)实验数据记录表3D. 幅频特性测量a)实验操作步骤1. 设置微波信号发生器输出指定频率和功率的单载波信号。
2. 设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描带宽,适当调整参考电平,使频谱图显示在合适的位置。
3. 设置频谱分析仪的轨迹为最大值保持功能。
4. 按照一定的步进(0.1MHz),用手动旋钮在指定的频率范围内(土20MHz)调整微波信号发生器的输出频率,观测频谱分析仪显示的幅频特性曲线。
總丰MHzB5-10幅频特性曲线图55. 用峰值搜索功能测量输出信号在指定频带内的最高电平,测试数据记录到表4-4中。
6. 用差值光标功能测量输出信号在指定频带内的幅频特性,测试数据记录到表4-4中。
7. 改变测试频率范围,重复以上测量,测试数据记录到表5-5中。
b)实验数据记录532衰减器的特性测量实验目的1. 2.熟练掌握频谱分析仪的使用了解衰减器对微波信号的衰减机理以及相关特性。
_ 、实验仪器微波信号发生器、衰减器(10db),频谱分析仪三、实验内容A. 实验操作步骤1. 设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-10dBm和-20dBm)。
2. 将输入输出电缆短接。
用频谱分析仪测量衰减器的输入信号电平,测试数据记录到表格1中。
3. 接入被测衰减器。
用频谱分析仪测量衰减器的输出信号电平,计算衰减器的衰减量以及与标称值得误差,测试数据记录到表格1中。
4. 改变微波信号发生器的输出频率,重复以上测量,测试数据记录到表格1中标称值(10dBm)B. 实验数据记录C. 实验数据分析因为我们本次实验并没有对应的衰减器,因此使用的衰减器是PIN衰减器,上面标明的衰减量为>=10dB,而实际上要求用的衰减器其衰减量为10dB,因此在计算标称误差的时候,是以标准衰减量10dB来计算的。
相应的数据计算过程如下:衰减量=输出信号电平-输入信号电平;标称误差=衰减量-10;误差率=标称误差/10*100% 误差率在3%-5%之间,实验结果满足要求。
5.3.3定向耦合器特性测量A. 耦合度测量a)实验操作步骤1.按照下图连接测试系统:图12. 设置微波信号发生器输出指定频率和功率的单载波信号;3. 将输入和输出电缆短接,用频谱分析仪测量定向耦合器输入端口的输入电平信号,记录测试数据;4. 接入被测定向耦合器,用频谱分析仪测量定向耦合器耦合端口的输出信号电平,计算定向耦合器的耦合度,记录数据;5. 改变测试频率,重复以上操作。
b)实验数据记录设端口1输入功率为P i,端口3输入功率为P3 ,则耦合度L应该为L= P1/P3 ;转换为dB值即为L(dB)=10lgL = 10lg P 1 - 10lg P 3。
根据推导出来的公式和测量数据,可以计算相应的耦合度B. 插入损耗测量a)实验操作步骤1. 按照如图所示连接测试系统:2. 设置微波信号发生器输出指定频率和功率的单载波信号;3. 将输入和输出电缆短接,用频谱分析仪测量定向耦合器输入端口的输入信号电平,记录测试数据;4. 接入被测定向耦合器,用频谱分析仪测量定向耦合器输出端口的输出信号电平,计算定向耦合器额插入损耗和传输损耗,记录数据;5. 改变测试频率,重复以上操作。
b)实验数据记录设端口1输入功率为P i,端口2输入功率为P ,则插入损耗IL应为:IL= -10lgP 2/P1 =-10lg P 2 + 10lg P 1。
则相应的插入损耗= 端口1输入功率-端口2输入功率传输损耗TL应该为:TL = -10lgP 3/P2= 10lg P 2-10lg P 3。
则相应的传输损耗= 端口2输入功率-端口3输入功率C. 定向耦合器的隔离度测量a)实验操作步骤1.按照下图连接测试系统:2. 设置微波信号发生器输出指定频率和功率的单载波信号;3. 将输入和输出电缆短接,用频谱分析仪测量并记录定向耦合端口的输入信号电平, 记录测量数据;4. 接入被测定向耦合器,用频谱分析仪测量定向耦合器输出端口的输出信号电平,计算端口隔离度,记录测量数据;5. 改变测试频率,重复以上操作。
b)实验数据记录隔离度的计算公式如下:D=10lgP3/P2=10lgP3-10lgP 2;端口隔离度=耦合端口3输入功率-输入端口2输出功率5.3.4滤波器的特性及测量a)实验操作步骤图11. 按图所示连接测试系统。
2. 设置微波信号发生器输出指定频率和功率的单载波信号(如850MHz、-20dBm).3. 将输入和输出电缆短接。
用频谱分析仪测量衰减器的输入信号电平。
4. 接入被测滤波器。
设置频谱分析仪的中心频率为指定频率(如880MHz),设置合适的扫描带宽(如80MHz),适当调整参考电平使频谱图显示在合适的位置。
5. 按照一定的步进(如1MHz),用手动旋钮在指定的频率范围内(如840~920MHz)调整微波信号发生器的输出频率,在频谱分析仪上观察扫描带宽是否合适,根据观测结果适当调整频谱分析仪的扫描线。
6. 设置频谱分析仪的轨迹为最大值保持功能(Trace—Trace Type— Max Hold)。
7. 按照一定的步进(如0.1MHz),用手动旋钮在指定的频率范围内(如830~870MHz )调整微波信号发生器的输出频率,在频谱分析仪上观察扫描带宽是否合适,根据观测结果适当调整频谱分析仪的扫描线。
8. 根据频谱分析仪显示的幅频特性曲线,测量并计算滤波器的中心频率、3db带宽、插入损耗、带内波动。
裙带带宽、带外抑制度等指标,测量数据记录在数据表格中。
9. 将滤波器的输入和输出端口互换、重复上述测量。
观察幅频特性曲线的变化并进行分析。
b)幅频特性曲线c) 实验数据分析实验总结本次实验重点在与频谱分析仪的使用和衰减器、定向耦合器、滤波器的特性及测量。
实验过程中我们遇到了一些困难,对频谱分析仪的使用有了新的了解。
频谱仪可以以图示化的方式显示设定频率范围内的射频信号,信号越强,频谱仪显示的幅度也越大。
在使用过程中,合适的分辨率带宽RBW能让我们更好地观察频谱仪的波形,得到较为精准的数据和结论。