电磁场与微波实验报告(极化波)
电磁场与电磁波实验指导书(参考)
![电磁场与电磁波实验指导书(参考)](https://img.taocdn.com/s3/m/1df0ab8d02d276a200292ed5.png)
电磁场与电磁波实验指导书目录实验一电磁波感应器的设计与制作实验二电磁波传播特性实验实验三电磁波的极化实验实验四天线方向图测量实验实验一电磁波感应器的设计与制作一、预习要求1、什么是法拉第电磁感应定律?2、什么是电偶极子?3、了解线天线基本结构及其特性。
二、实验目的1、认识时变电磁场,理解电磁感应的原理和作用。
2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。
3、理解电磁波辐射原理。
三、实验原理随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。
电场和磁场构成了统一的电磁场的两个不可分割的部分。
能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。
图1 电磁感应装置如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。
如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。
接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。
电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。
电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。
图2 接收天线本实验重点介绍其中的一种─—半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为/4λ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(/L λ=4)的远区场强有以下关系式:()cos(cos )sin I I E f r rθπθθ==60602 式中,()f θ为方向性函数,对称振子归一化方向性函数为:()()maxcos(cos )sin f F f θθπθθ==2 其中max f 是()f θ的最大值。
极化波实验报告
![极化波实验报告](https://img.taocdn.com/s3/m/399adef7524de518964b7d53.png)
内蒙古工业大学信息工程学院实验报告课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实验室班级:电子10-1班学号:201010203008 姓名:苏宝组别:同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验实验一:反射实验实验目的熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波反射定律的方法实验设备与仪器dh926ad型数据采集仪 dh926b型微波分光仪dh1121b型三厘米固态信号源金属板实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为平行极化波的斜入射示意图实验内容与步骤系统构建时,如图1,开启dh1121b型三厘米固态信号源。
dh926b型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯亮(蓝色),表示已连接好。
然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
极化实验
![极化实验](https://img.taocdn.com/s3/m/c77f9a37dd36a32d737581d3.png)
电磁场与微波测量实验报告实验五极化实验题目:电磁场与微波测量实验学院:电子工程学院班级:20132112xx撰写人:xx组内成员:xxxx一、实验目的1、培养综合性设计电磁波实验方案的能力;2、验证电磁波的马吕斯定律。
二、预习内容线极化波的相关概念和电磁波的马吕斯定律。
三、实验设备1、S426型分光仪:用于验证平面波的传播特点,包括不同媒质分界面时发生的反射和折射等诸多问题。
分光仪的部分组件名称和简要介绍如下:2、DH1121B型三厘米固态信号源该信号源是一种使用体效应管做震荡源的微波信号源,由振荡器、隔离器和主机组成。
三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32.02mm上),当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏振方向是垂直的。
可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大。
晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
四、实验原理平面电磁波是横波,它的电场强度矢量E和波长的传播方向垂直。
如果E在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:I=I o cos2∅,式中I为偏振波的强度,∅为I与I O间的夹角。
五、实验步骤1、调整仪器,使分光仪两喇叭口面相互平行并与地面垂直,其轴线在同一条直线上;2、调整旋转短波导的轴承环至0度,然后打开三厘米固态信号源,电流表偏转一定角度,调节射天线上方的可变衰减器使表头指示接近满度,记下电流表数值(实验中取值为94);3、旋转发射喇叭,每转10度记下一组电流表的读数,直到∅=90°;4、将实测值与理论值相比较,进行总结,得出结论。
六、实验结果及分析1、实验数据:2、结论由数据可看出,在一定误差允许的范围下,实验值跟理论值还是比较接近的,所以利用马吕斯定律来计算偏振光强度的方法是可行的,马吕斯定律得到了验证。
电磁场与电磁波实验报告
![电磁场与电磁波实验报告](https://img.taocdn.com/s3/m/1067dc634b35eefdc8d333f9.png)
广东第二师范学院学生实验报告一线等。
本实验重点介绍其中的一种半波天线。
半波天线又称半波振子,是对称天线的一种最简单的模式。
对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。
这种天线是最通用的天线型式之一,又称为偶极子天线。
而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。
半波振子因其一臂长度为λ/4 ,全长为半波长而得名。
其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子( L=λ/4 )的远区场强有以下关系式:│E│=[60Imcos(πcosθ/2)]/R 。
sinθ=[60Im/R 。
]│f(θ)│式中, f(θ) 为方向函数。
对称振子归一化方向函数为│F(θ)│=│f(θ)│/fmax=|cos(πcosθ/2)/sinθ| 其中 fmax 是 f(θ) 的最大值。
由上式可画出半波振子的方向图如下 :半波振子方向函数与ψ无关,故在 H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。
在 E 面的方向图为 8 字形,最大辐射方向为θ=π/2 ,且只要一臂长度不超过 0.625λ,辐射的最大值始终在θ=π/2 方向上;若继续增大 L ,辐射的最大方向将偏离θ=π/2 方向。
【实验内容】(一)测量电磁波发射频率(二)制作半波振子天线广东第二师范学院学生实验报告三广东第二师范学院学生实验报告四天线的极化,就是指天线辐射时形成的电场强度方向。
当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。
北邮电磁场与微波测量实验报告实验五极化实验
![北邮电磁场与微波测量实验报告实验五极化实验](https://img.taocdn.com/s3/m/dcc95d5a76eeaeaad1f330b8.png)
北邮电磁场与微波测量实验报告实验五极化实验北邮电磁场与微波测量实验报告实验五极化实验学院:电子工程学院班号:2011211204组员:执笔人:学号:**********一、实验目的1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理二、实验设备S426型分光仪三、实验原理平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。
如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:20cos I I θ=式中I 为偏振波的强度,θ为I 与I0间的夹角。
DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。
四、实验步骤1.设计利用S426型分光仪验证电磁波马吕斯定律的方案;根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。
2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。
实验仪器布置通过调节,使A1取一较大值,方便实验进行。
然后,再利用前面推导出的θ,将仪器按下图布置。
A1五、实验数据I(uA )0 10 20 30 40 50 60 70 80 90 θ°理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 -1、数据分析:由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许范围内,所以可以认为马吕斯定律得到了验证。
电磁波的极化实验报告
![电磁波的极化实验报告](https://img.taocdn.com/s3/m/648a0a6a905f804d2b160b4e767f5acfa1c783da.png)
电磁波的极化实验报告电磁波的极化实验报告引言电磁波是一种横波,它由电场和磁场交替变化而形成。
电磁波的极化是指电场或磁场在空间中的振动方向。
在本次实验中,我们将通过实验验证电磁波的极化现象,并探讨其应用。
实验目的1. 了解电磁波的极化现象。
2. 掌握电磁波的极化实验方法。
3. 探究电磁波极化的应用领域。
实验材料1. 一台光源。
2. 一块偏振片。
3. 一块检偏片。
4. 一块反射板。
5. 一块透射板。
6. 一块电磁波检测器。
实验步骤1. 将光源打开,使其发出光线。
2. 将偏振片放置在光源前方,调整其方向,使光线通过。
3. 将反射板放置在光线前方,观察光线的反射情况。
4. 将透射板放置在光线前方,观察光线的透射情况。
5. 使用电磁波检测器对透射光进行检测,记录实验数据。
实验结果通过实验观察和数据记录,我们得出以下结论:1. 当光线通过偏振片时,只有与偏振片方向一致的光线能够通过,其余光线被吸收或反射。
2. 当光线经过反射板时,光线的振动方向发生了改变。
3. 当光线经过透射板时,光线的振动方向保持不变。
4. 使用电磁波检测器对透射光进行检测时,可以观察到电磁波的强度变化。
讨论与分析通过以上实验结果,我们可以得出以下结论:1. 偏振片可以选择性地通过特定方向的光线,这是由于光的电场振动方向与偏振片的分子结构相互作用导致的。
2. 反射板可以改变光线的振动方向,这是由于光线在反射时与反射板表面发生相互作用而导致的。
3. 透射板可以保持光线的振动方向不变,这是由于透射板的分子结构不会对光线的振动方向产生影响。
4. 电磁波的强度可以通过电磁波检测器进行测量,这为电磁波的研究提供了重要的实验手段。
应用领域电磁波的极化现象在许多领域都有着广泛的应用,例如:1. 光学领域:偏振片的应用可以实现光的偏振控制,用于光学仪器、光通信等领域。
2. 电子显示:液晶显示屏通过控制光的极化方向来实现图像的显示,这是电磁波极化应用的典型例子。
电磁场与电磁波实验报告2
![电磁场与电磁波实验报告2](https://img.taocdn.com/s3/m/bffdf8f4f18583d0486459aa.png)
电磁场与电磁波实验报告-2电磁场与电磁波实验报告实验一 电磁场参量的测量一、 实验目的1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。
2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波的相位常数β和波速υ。
二、 实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λπβ2=,βωλν==f得到电磁波的主要参量:β和ν等。
本实验采取了如下的实验装置设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在分界面上产生反射波r E 和折射波t E 。
设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。
在一次近似的条件下,接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+∆+=+=;其中12L L L -=∆。
又因为1L 为定值,2L 则随可动板位移而变化。
当2r P 移动L ∆值,使3r P 有零指示输出时,必有1r E 与2r E 反相。
故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。
从而测出电磁波的波长λ和相位常数β。
下面用数学式来表达测定波长的关系式。
在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+=或写成 ()⎪⎭⎫⎝⎛+-∆Φ-=200212cos 2φφj i c r e E T RT E (1-2)式中L ∆=-=∆Φβφφ221为了测量准确,一般采用3r P 零指示法,即02cos =∆φ或 π)12(+=∆Φn ,n=0,1,2......这里n 表示相干波合成驻波场的波节点(0=r E )数。
电磁场与微波技术实验教程 第1章
![电磁场与微波技术实验教程 第1章](https://img.taocdn.com/s3/m/3980205628ea81c758f5788d.png)
如果入射波波长为λ, 两波的波程差为δ, 当δ=kλ(k=0, ±1, ±2, …)时, 接收天线检波后电流 表有极大指示; 当δ=(2k+1)/2λ(k=±1, ±2, ±3, …)时, 接收天线检 波后电流表有极小指示。
B板固定不变, 从端点移动A板改变波程差δ, 当出现 电流表指示极小时, A板位置在某处(由千分尺读出), 再同 方向继续移动A板又再次出现电流表指示极小时, A板的移 动位置改变恰好为λ/2。 继续同方向移动A板, 当出现m+1 个电流表指示极小时, 移动距离就为m/2个波长, 由此可测 出微波源的波长。
图1.1.2 静电场测试电路
五、 1.
2. 本实验方法很简单, 但它是工程上很有效的一种方法。 因此, 除测出所需点电位分布外, 还要深入理解有关的一 些问题。 在做实验报告时除一般要求内容数据外, 还要回 答下列问题: (1) 将平行板电容器的被测模型所测的数据画成距离- 电位图, 与平行板电容器理论上的距离-电位比较, 并解 释为什么在Y=0及Y=10 cm附近(“电极”附近)电位有急剧变 化。 (2) 若要模拟有边缘效应的情况, 其被测模型应如何改
(3) 调节可移动反射板A, 测出电流表指示极小点时A板 的位置S0、 S1、 S2、 S3、 S4, 求出电磁波的波长λ。
在实验时也可以测量其极大点, 但通常测量极小点比 测量极大点准确。
使用微波干涉仪也可以测量介质的相对介电常数Er。 在图1.2.1中, 固定反射板B前插入一块介电常数为Er、 厚度 为d的介质板。 这时在这一路径中电磁波传播的波程改变了, 由于插有介质板的这一路电磁波波程增加了Δδ, 即
Δ 2d ( r 1) (1.2.1)
(1.1.1)
在恒定电流场中, 电场强度E、 电流密度J及电位Ф满 足下列方程:
电磁波的偏振及极化测试
![电磁波的偏振及极化测试](https://img.taocdn.com/s3/m/aaa9b2ed84254b35eefd34e1.png)
电磁波的偏振及极化测试在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。
因此,在移动通信系统中,一般均采用垂直极化的传播方式。
电磁波的极化是电磁理论中的一个重要概念,它表征在空间给定点上电场强度矢量的取向随时间变化的特性,并用电场强度矢量 E 的端点在空间描绘出的轨迹来表示。
由其轨迹方式可得电磁波的极化方式有三种:线极化、圆极化、椭圆极化。
极化波都可看成由两个同频率的直线极化波在空间合成 , 如图所示,两线极化波沿正 Z 方向传播,一个的极化取向在 X 方向,另一个的极化取向在 Y 方向。
若 X 在水平方向, Y 在垂直方向,这两个波就分别为水平极化波和垂直极化波。
若:水平极化波 Ex =Exm sin(wt-kz) 垂直极化波 Ey =Eym sin(wt-kz+δ)其中 Exm 、 Eym 分别是水平极化波和垂直极化波的振幅,δ是 Ey 超前 Ex 的相角(水平极化波取为参考相面)。
取 Z=0 的平面分析,有Ex =Exm sin(wt)Ey =Eym sin(wt+δ)综合得 aEx2-bExEy+cEy2=1式中 a 、 b 、 c 为水平极化波和垂直极化波的振幅 Exm 、 Eym 和相角δ有关的常数。
此式是个一般化椭圆方程,它表明由 E x 、 E y 合成的电场矢量终端画出的轨迹是一个椭圆。
所以:●当两个线极化波同相或反相时,其合成波是一个线极化波;●当两个线极化波相位差为л /2 时,其合成波是一个椭圆极化波;●当两个线极化波振幅相等,相位相差л /2 时,其合成波是一个圆极化波。
实验一所设计的半波振子接收(发射)的波为线极化波,而最常用的接收(发射)圆极化波或椭圆极化波的天线即为螺旋天线。
实际上一般螺旋天线在轴线方向不一定产生圆极化波,而是椭圆极化波。
当单位长度的螺圈数 N 很大时,发射(接收)的波可看作是圆极化波。
微波偏振实验报告
![微波偏振实验报告](https://img.taocdn.com/s3/m/41777b245b8102d276a20029bd64783e09127d79.png)
微波偏振实验报告微波偏振实验报告篇一:电磁场与微波实验六报告——偏振实验偏振实验1. 实验原理平面电磁波是横波,它的电场强度矢量E和波长的传播方向垂直。
如果E在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。
电磁场沿某一方向的能量有sin2φ的关系,这就是光学中的马吕斯定律: I=I0cs2φ,式中I0为初始偏振光的强度,I为偏振光的强度,φ是I与I0之间的夹角。
2. 实验步骤系统构建图由于喇叭天线传输的是由矩形波导发出的TE10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。
D H926B型微波分光仪的两喇叭天线口面互相平行,并与地面垂直,其轴与偏振实验线在一条直线上。
由于接收喇叭口天线是和一段旋转短波导连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。
在主菜单页面点击“偏振实验”,单击“K” 进入“输入采集参数”界面。
本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。
采集点数可根据提示选取。
顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。
终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。
注意事项:①为避免小平台的影响,最好将其取下。
②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。
③转动接收喇叭天线时应注意不能使活动臂转动。
④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。
最好每隔一定读数读取电压值时,将螺丝重新拧紧。
⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。
电磁波极化实验报告
![电磁波极化实验报告](https://img.taocdn.com/s3/m/ad55a772fe4733687e21aa82.png)
竭诚为您提供优质文档/双击可除电磁波极化实验报告篇一:电磁场与微波实验报告(极化波)实验报告课程名称:电磁场与微波技术实验指导老师:谢银芳、王子立成绩:实验名称:极化波实验类型:验证型实验同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量e随时间变化的规律。
若e的末端轨迹在一条直线上时,称为线极化波;若e末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。
若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。
而椭圆极化波末端为椭圆形。
线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。
设同频率的两个正交线极化波为:ex?exme?j(kz??x)ey?eyme?j(kz??y)当?x??y??,exm??eym时,是线极化波当?x??y???2,exm??eym时,是圆极化波当?x??y介于线极化波与圆极化波时,是椭圆极化波内容:1.圆极化波的调整与测量2.线极化波的调整与测量3.椭圆极化波的调整与测量三、主要仪器设备如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。
其中固态信号源工作频率为f=9375mhz。
接收喇叭由矩形喇叭,检波器,,微安表等组成。
其它装置基本上与实验一相同。
四、实验步骤和结果记录1、圆极化波根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差?o?2。
因此,先使发射喇叭的转角为45左右,分别将接收喇叭垂直与水平放置,收到em1和em2,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于em1值的情况。
电磁场与电磁波实验报告.
![电磁场与电磁波实验报告.](https://img.taocdn.com/s3/m/dc577736182e453610661ed9ad51f01dc28157d5.png)
电磁场与电磁波实验报告.中南⼤学信息科学与⼯程学院课题名称:电磁场与电磁波实验报告信息科学与⼯程学院通信⼯程1201 学班学姓院:级:号:名:0909120927 苏⽂强指导⽼师:陈宁实验⼀电磁波反射实验⼀实验⽬的1. 掌握微波分光仪的基本使⽤⽅法;2. 了解3cm 信号源的产⽣、传输及基本特性;3. 验证电磁波反射定律。
⼆预习内容电磁波的反射定律三实验原理微波与其它波段的⽆线电波相⽐具有:波长极短,频率很⾼,振荡周期极短的特点。
微波传输具有似光特性,其传播为直线传播。
电磁波在传播过程中如遇到障碍物,必定要发⽣反射。
本实验以⼀块⼤的⾦属板作为障碍物来研究当电磁波以某⼀⼊射⾓投射到此⾦属板上所遵循的反射定律,即:反射电磁波位于⼊射电磁波和通过⼊射点的法线所决定的平⾯上反射电磁波和⼊射电磁波分别位于法线两侧;反射⾓θr 等于⼊射⾓θi。
原理如图1.1所⽰。
图1.1四实验内容与步骤1. 调整微波分光仪的两喇叭⼝⾯使其互相正对,它们各⾃的轴线应在⼀条直线上,指⽰两喇叭位置的指针分别指于⼯作平台的0-180 刻度处。
将⽀座放在⼯作平台上,并利⽤平台上的定位销和刻线对正⽀座,拉起平台上四个压紧螺钉旋转⼀个⾓度后放下,即可压紧⽀座。
2. 将反射全属板放到⽀座上,应使⾦属板平⾯与⽀座下⾯的⼩圆盘上的90-90 这对刻线⼀致,这时⼩平台上的0 刻度就与⾦属板的法线⽅向⼀致。
将⾦属板与发射、接收喇叭锁定,以保证实验稳定可靠。
3. 打开信号源开关,将三厘⽶固态信号源设置在:“电压”和“等幅”档。
4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。
5. 转动微波分光仪的⼩平台,使固定臂指针指在刻度为30 度处,这个⾓度数就是⼊射⾓度数,然后转动活动臂,使得表头指⽰最⼤,此时活动臂上指针所指的刻度就是反射⾓度数,记下该⾓度读数。
如果此时表头指⽰太⼤或太⼩,应调整微波分光仪中的可变衰减器或晶体检波器,使表头指⽰接近满量程的80%做此项实验。
电磁场与电磁波实验报告
![电磁场与电磁波实验报告](https://img.taocdn.com/s3/m/ca5a13facc7931b764ce150b.png)
电磁场与电磁波实验陈述之宇文皓月创作班级:学号:姓名:实验一:验证电磁波的反射和折射定律(1学时)1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律。
(1)研究电磁波在良好导体概况上的全反射。
(2)研究电磁波在良好介质概况上的反射和折射。
(3)研究电磁波全反射和全折射的条件。
2、实验原理电磁波在传播过程中如遇到障碍物,肯定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验。
1、实验目的(1)研究当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度不是均匀的,中央最强;(2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。
由两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。
2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。
在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。
当然电磁波通过每个缝也有狭缝现象。
因此实验将是衍射和干涉两者结合的结果。
为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°。
“电磁场与电磁波”和“微波技术”实验大纲及指导说明书
![“电磁场与电磁波”和“微波技术”实验大纲及指导说明书](https://img.taocdn.com/s3/m/73ec6defa1c7aa00b52acbb6.png)
“电磁场与电磁波”和“微波技术”课内实验大纲及实验指导书唐万春,车文荃编制陈如山审定南京理工大学通信工程系2006年12月目录1.“电磁场与电磁波”课内实验大纲2.“电磁场与电磁波”课内实验指导说明书实验一电磁波参量的测定实验二电磁波的极化3.“微波技术”课内实验大纲4.“微波技术”课内实验指导说明书实验一传输线的工作状态及驻波比测量实验二微波网络散射参量测试5.“电磁场与电磁波”和“微波技术”课内实验评分标准南京理工大学实验教学大纲课程名称:电磁场与电磁波开课实验室:电磁场与微波技术实验室执笔人:唐万春审定人:陈如山修(制)订日期: 2005年4月*由学校出版、印刷的实验教材(或指导书),统一写作“南京理工大学出版”。
“电磁场与电磁波”课内实验指导书唐万春编写南京理工大学通信工程系二00六年十二月实验一电磁波参量的测定实验1.实验目的a)观察电磁波的传播特性。
b)通过测定自由空间中电磁波的波长,来确定电磁波传播的相位常数k和传播速度v。
c)了解用相干波的原理测量波长的方法。
2.实验内容a)了解并熟悉电磁波综合测试仪的工作特点、线路结构、使用方法。
b)测量信号源的工作波长(或频率)。
3.实验原理与说明a)所使用的实验仪器分度转台晶体检波器可变衰减器喇叭天线反射板固态信号源微安表实验仪器布置图如下:体检波器图1 实验仪器布置图参阅图1。
固态信号源所产生的信号经可变衰减器至矩形喇叭天线,由喇叭天线辐射出去,在接收端用矩形喇叭天线接收,接收到的信号经晶体检波器后通过微安表指示。
b) 原理本实验利用相干波原理,通过测得的电磁波的波长,再由关系式2,k v f kπωλλ===得到电磁波的主要参量k ,v 等。
实验示意图如图2所示。
图中0r P 、1r P 、2r P 和3r P 分别表示辐射喇叭、固定反射板、可动反射板和接收喇叭,图中介质板是一23030()mm ⨯的玻璃板,它对电磁波进行反射、折射后,可实现相干波测试。
微波偏振实验报告
![微波偏振实验报告](https://img.taocdn.com/s3/m/af224636fad6195f312ba6fb.png)
微波偏振实验报告篇一:电磁场与微波实验六报告——偏振实验偏振实验 1. 实验原理平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。
如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。
电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。
2. 实验步骤系统构建图于喇叭天线传输的是矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。
dh926b型微波分光仪的两喇叭天线口面互相平行,并与地面垂直,其轴与偏振实验线在一条直线上。
于接收喇叭口天线是和一段旋转短波导连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。
在主菜单页面点击“偏振实验”,单击“ok” 进入“输入采集参数”界面。
本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。
采集点数可根据提示选取。
顺时针或逆时针匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。
终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。
注意事项:①为避免小平台的影响,最好将其取下。
②实验用到了接收喇叭天线上的光栅通道,应将该通道与数据采集仪通道3用电缆线连接。
③转动接收喇叭天线时应注意不能使活动臂转动。
④于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。
最好每隔一定读数读取电压值时,将螺丝重新拧紧。
⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。
3. 实验结果从?90°到90°匀速转动微波分光仪的接收喇叭,采集到数据曲线如下:可以看出,几乎就是三角函数的形式,在0°的时候微波强度达到最大,在两侧减为0,现取45°时的光强为,是最大光强的,按理论计算应当是cos2 45°=,误差仍然7231还是存在。
电磁波的极化实验
![电磁波的极化实验](https://img.taocdn.com/s3/m/5cf7eb27b52acfc789ebc95d.png)
60°
70°
80°
90°
cos2θ
Ii
比较第二行和第四行数据,结论为:
表1.2a(发射喇叭天线置于水平极化状态,实验过程中保持不变)
调整发射衰减器及接收天线极化,使测量信号最强,此时电表指示满量程。
对应接收天线极化指针指示角度θ=
调整接收天线极化指针置于0°位置
测量信号I=
调整接收天线极化指针置于+90°位置
图1.2圆极化波发射(或接收)装置
左旋右旋的判定:
为了确定圆极化波右旋、左旋的特性,把 转到 方向符合右手螺旋规则的波,定为右旋圆极化波;把 转到 方向符合左手螺旋规则的波,定为左旋圆极化波。
九、实验步骤:
波的极化实验
1、调整系统,使发射天线和接收天线对正。转动刻度盘使其0°的位置正对固定臂(发射天线)的指针,转动可动臂(接收天线)使其指针指着刻度盘的180°处,使发射天线喇叭与接收天线喇叭对正后固定可动臂。
2、电场的分解
如图1.1所示,电场 在X坐标轴和Y坐标轴上的分量分别为 , ,对于矢量应满足关系式:
,
图1.1
由于电磁波的平均功率流密度(对应于光学中的光强)正比于电场强度的平方,故可得到马吕斯公式。
3、均为矩形口径喇叭天线,又称为角锥喇叭天线,它是一种线极化天线。按天线口面电场矢量方向与地平面的关系,可以规定水平极化和垂直极化。一般情况下,如果喇叭天线窄边平行于地面,则称水平极化,如果喇叭天线窄边垂直于地面,则称垂直极化。
2、调整微波分光仪的接收喇叭口面应与电磁波圆极化天线口面互相正对,即它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的或0-180刻度处。
3、打开信号源。
4、将发射喇叭旋转45°,其内部介质片也随之旋转,内部介质片应与喇叭垂直轴线成45°。此时,理论上实现了圆极化波幅度相等条件的要求。
北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量
![北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量](https://img.taocdn.com/s3/m/8aee75c9b14e852458fb575c.png)
电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。
微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。
一、实验目的1.了解谐振腔的基本知识。
2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。
反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。
谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。
谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。
谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。
如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。
电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。
选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。
假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。
2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。
这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。
北邮电磁场与微波测量实验报告实验五极化实验
![北邮电磁场与微波测量实验报告实验五极化实验](https://img.taocdn.com/s3/m/dcc95d5a76eeaeaad1f330b8.png)
北邮电磁场与微波测量实验报告实验五极化实验北邮电磁场与微波测量实验报告实验五极化实验学院:电子工程学院班号:2011211204组员:执笔人:学号:**********一、实验目的1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理二、实验设备S426型分光仪三、实验原理平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。
如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:20cos I I θ=式中I 为偏振波的强度,θ为I 与I0间的夹角。
DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。
四、实验步骤1.设计利用S426型分光仪验证电磁波马吕斯定律的方案;根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。
2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。
实验仪器布置通过调节,使A1取一较大值,方便实验进行。
然后,再利用前面推导出的θ,将仪器按下图布置。
A1五、实验数据I(uA )0 10 20 30 40 50 60 70 80 90 θ°理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 -1、数据分析:由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许范围内,所以可以认为马吕斯定律得到了验证。
电磁波的极化实验报告
![电磁波的极化实验报告](https://img.taocdn.com/s3/m/173fcc06a9956bec0975f46527d3240c8547a15a.png)
电磁波的极化实验报告引言在物理学中,电磁波的极化是指电磁波的振动方向。
电磁波可以不受限制地在空间中传播,但是当电磁波遇到特定的界面或介质时,它的振动方向可能会发生变化。
本实验旨在通过观察电磁波在不同介质中的传播和振动方向变化,了解电磁波的极化现象。
实验目的1.了解电磁波的极化现象;2.熟悉极化过程中电磁波的振动方向变化;3.掌握实验方法和技巧。
实验器材1.一台微波发生器;2.一根微波天线;3.一台微波接收器;4.一块极化片;5.一根扇形极化片;6.一台旋转平台。
实验步骤1.将微波发生器和接收器连接好,并将接收器放置在旋转平台上。
2.将微波发生器的频率调至适当的数值,以确保发出的波长较长。
3.将微波发生器的天线朝向接收器,并将天线放置在旋转平台上。
4.将极化片放置在两者之间,然后将旋转平台调整至合适的位置,以使电磁波能够通过极化片。
5.打开微波发生器和接收器,并调整其功率适当。
6.观察微波接收器的读数,并记录下来。
7.将扇形极化片放置在极化片上,并调整旋转平台,以改变扇形极化片的角度。
8.观察微波接收器的读数,并记录下来。
9.将扇形极化片取下,并将极化片旋转90度,使其垂直于之前的方向。
10.重复步骤8,记录读数。
11.关闭微波发生器和接收器,结束实验。
数据记录与分析根据实验步骤中记录的读数,我们可以绘制出电磁波的振幅随极化片角度变化的图表。
通过观察图表,我们可以得出以下结论: 1. 当极化片与电磁波振动方向垂直时,微波接收器读数最低; 2. 当极化片与电磁波振动方向平行时,微波接收器读数最高; 3. 当极化片角度介于垂直和平行之间时,微波接收器读数为中间值。
结论通过实验我们发现,电磁波的极化现象可以通过极化片来观察和控制。
当电磁波与极化片振动方向垂直时,电磁波无法通过,而当二者振动方向平行时,电磁波可以完全通过。
实验结果与我们对电磁波的极化现象的理解相吻合。
总结本实验通过使用微波发生器、接收器和极化片,成功观察到了电磁波的极化现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告 课程名称: 电磁场与微波技术实验 指导老师: 谢银芳、王子立 成绩:
实验名称: 极化波 实验类型: 验证型实验 同组学生姓名:
一、实验目的和要求(必填) 二、实验内容和原理(必填)
三、主要仪器设备(必填) 四、操作方法和实验步骤
波都可由两个同频率的正交线极化波组合而成。设同频率的两个正交线极化波为:
Ex?Exme?j(kz??x)
Ey?xm??Eym时,是线极化波
当?x??y???
2,Exm??Eym时,是圆极化波
当?x??y介于线极化波与圆极化波时,是椭圆极化波
内容:1.圆极化波的调整与测量
2.线极化波的调整与测量
3.椭圆极化波的调整与测量
三、主要仪器设备
如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。其中固态信号源工
作频率为f=9375MHz。接收喇叭由矩形喇叭,检波器,,微安表等组成。其它装置基本上
与实验一相同。
五、实验数据记录和处理 六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理
原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。
若 E的末端轨迹在一条直线上时,称为线极化波; 若E末端的轨迹是圆(或椭圆),称为
圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称
为右旋(或左旋)圆极化波。而椭圆极化波末端为椭圆形。线极化波、圆极化波和椭圆极化