动量复习课教案

合集下载

《动量》第一轮复习教学案(教师)

《动量》第一轮复习教学案(教师)

第十八章 动量第1课时: 冲量、动量、动量定理【知识梳理】1.动量: p=mv(1) 瞬时性:描述物体某一瞬间的运动状态的物理量。

(2) 动量是状态量. 2.动量的变化: Δp(1) 动量是矢量,当动量发生变化时,动量的变化Δp=p 末一p 初.如上图所示,当初态动量和末态动量不在一条直线上时,动量变化由平行四边形法则运算.(2) 动量变化的方向一般与初态动量和末态动量的方向不相同.其方向与速度的改变量Δv 的方向相同.(3) 当初、末动量在一直线上时通过选定正方向,动量的变化可简化为带有正、负号的代数运算。

3.冲量I=Ft(1) 冲量描述的是力F 对作用时间t 的累积效果.力越大,作用时间越长,冲量就越大. (2) 冲量是一个过程量,讲冲量必须明确研究对象和作用过程,即必须明确是哪个力在哪段时间内对哪个物体的冲量.(3) 如果力的方向是恒定的,则冲量的方向与力的方向相同.如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同. 4.动量定理(1)内容:物体所受的合外力的冲量等于物体的动量变化F ²t=mvt-mv0 (2)几点说明:① 动量定理表达式中的F 是: 研究对象所受的包括重力在内的所有外力的合力. ② 动量定理是牛顿第二定律的变形0t t v v m v m v p p F m a mttt'---====合也可以写成:tp F ∆∆=合 即:物体所受的合外力与物体的动量变化率成正比.5.动量定理解题步骤: ① 确定研究对象;② 分析受力,确定冲量和初、末动量; ③ 规定正方向; ④ 根据动量定理列方程; ⑤ 解方程并分析验证.【典型例题】例1.一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v .在此过程中( B )A .地面对他的冲量为mv +mg Δt ,地面对他做的功为212m vB .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为212m vD .地面对他的冲量为mv -mg Δt ,地面对他做的功为零提示:运动员向上起跳的过程中,由动量定理可得,I m g t m v -∆=,则I m v m g t =+∆;起跳过程中,地面对运动员的作用力向上且其作用点的位移为零(阿模型化,认为地面没有发生形变),所以,地面对运动员做的功为零.例2.以初速度v0竖直向上抛出一个质量为m 的物体,空气阻力不可忽略.关于物体受到的冲量,以下说法错误的是 ( A )A .物体上升和下降两个阶段受到重力的冲量方向相反B .物体上升和下降两个阶段受到空气阻力的冲量方向相反C .物体在下降阶段受到重力的冲量大于上升阶段受到重力的冲量D .物体从抛出到返回抛出点,所受各力冲量的总和方向向下例3.为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45mm.查询得知,当时雨滴竖直下落速度约为12m/s.据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1³103kg/m3) ( A )A.0.15PaB.0.54PaC.1.5PaD.5.4Pa例4.(08四川卷)一倾角为θ=45°的斜血固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜而的固定挡板。

大学物理动量守恒定律教案

大学物理动量守恒定律教案

课时安排:2课时教学目标:1. 理解动量守恒定律的确切含义,掌握其基本原理。

2. 知道动量守恒定律的使用条件和适用范围。

3. 运用动量定理和牛顿第三定律推导出动量守恒定律。

4. 应用动量守恒定律对碰撞问题进行定量的分析和计算。

教学重点和难点:重点:动量守恒定律的理解和推导。

难点:利用动量守恒定律对不同场景进行计算。

教学准备:1. 多媒体教学设备。

2. 动量守恒定律相关教材。

3. 实验器材(如小球、绳摆等)。

教学过程:第一课时一、导入1. 回顾牛顿运动定律,强调力的作用和运动状态的关系。

2. 提出问题:在力的作用下,物体的运动状态会发生怎样的变化?二、新课导入1. 介绍动量的概念:动量是物体运动状态的量度,是物体质量和速度的乘积。

2. 引入动量守恒定律:如果一个系统所受到的外力矢量和为零,那么系统的总动量保持不变。

三、动量守恒定律的推导1. 利用牛顿第二定律,推导出动量定理:动量的变化率等于作用在物体上的合外力。

2. 介绍内力和外力的概念,以及内力和外力的区别。

3. 推导出动量守恒定律:系统内各个物体的动量变化率之和等于外力矢量和。

四、课堂练习1. 举例说明动量守恒定律在实际生活中的应用。

2. 让学生通过实验观察动量守恒现象,加深对动量守恒定律的理解。

第二课时一、复习导入1. 回顾上一节课的内容,强调动量守恒定律的基本原理。

2. 提出问题:如何运用动量守恒定律解决实际问题?二、动量守恒定律的应用1. 介绍碰撞问题,强调碰撞过程中动量守恒定律的应用。

2. 讲解碰撞类型:完全非弹性碰撞、弹性碰撞、非弹性碰撞。

3. 举例说明如何运用动量守恒定律解决碰撞问题。

三、课堂练习1. 让学生根据碰撞问题,运用动量守恒定律进行计算。

2. 分析学生解答过程中存在的问题,并进行解答。

四、总结1. 总结动量守恒定律的基本原理和应用方法。

2. 强调动量守恒定律在物理学中的重要性。

教学评价:1. 课堂提问:了解学生对动量守恒定律的理解程度。

3-5动量和动量定理复习

3-5动量和动量定理复习

应用动量定理求平均作用力
• 1、(2014•厦门一模)古时有“守株待兔” 的寓言.假设兔子质量约为2kg,以15m/s 的速度奔跑,撞树后反弹的速度为1m/s, 则兔子受到撞击力的冲量大小为 ( ) D • A、28N•s B、29N•s • C、31N•s D、32N•s
2、质量是60kg的建筑工人,不慎从高空跌 下,由于弹性安全带的保护作用,最后使 人悬挂在空中.已知弹性安全带缓冲时间 为1.2s,安全带伸直后长5m,求安全带 所受的平均作用力.( g= 10m/s2)
〖点评〗1.本题也可以把物体的运动分为加速、减速和撞墙三 个过程,用牛顿定律进行求解,但过程比较烦琐。可见研究全 过程(或整体法)比分阶段(或隔离法)简便快捷. 2.应注意矢量的方向性.通常要设定正方向,然后用 正、负表示矢量的方向。方向(正、负)弄错是常见的错误。
• 4、如图所示,质量mA为4.0kg的木板A放 在水平面C上,木板与水平面间的动摩擦因 数μ为0.24,木板右端放着质量mB为1.0kg 的小物块B(视为质点),它们均处于静止 状态.木板突然受到水平向右的12N· s的瞬时 冲量I作用开始运动,当小物块滑离木板时, 木板的动能EkA为8.0J,小物块的动能EkB 为0.50J,重力加速度取10m/s2,求:(1) 瞬时冲量作用结束时木板的速度v0; • (2)木板的长度L. B
• 二、冲量和功的区别 • 1、冲量是力对时间的积累效果,即冲量I=____________, 冲量是矢量,有大小,还有_______。 • 2、功是力对位移的积累效果,即功W=_____________, 功是标量,只有正负,没有_________。 • 三、动量和动能的区别和联系 • 1、动量P=__________,动量是矢量,有大小,还有 ____________。 • 2、动能EK =___________,动能是标量,只有正值,没有 负值。 • 3、动量和动能的联系EK =___________或 P=__________ • 四、动量定理 • 1、动量定理:物体在一个过程始末的____________等于 它在这个过程中所受合外力的______。 • 公式:F=________

复习课:动量守恒定律的应用

复习课:动量守恒定律的应用

复习课:动量守恒定律的应用广州市第65中学 周浩【教学目标】:一、知识目标:1.知道应用动量守恒定律解决问题时应注意的问题2.掌握应用动量守恒定律解决问题的一般步骤3.会应用动量定恒定律分析、解决碰撞、反冲等物体相互作用的问题二、能力目标:1.掌握应用动量守恒定律解题的方法和步骤2.通过对问题的分析解决比较和总结建立物理模型,并能学会利用模型解决实际问题3.掌握类比、迁移等物理思想【教学重点】:熟练掌握正确应用动量守恒定律解决有关力学问题的正确步骤【教学难点】:守恒条件的判断,守恒定律模型的建立和应用【教学方法】:讨论,总结,迁移,类比。

【教学用具】:投影片、物理课件【教学过程】:教师:今天这节课我们来复习动量守恒定律一、复习导入新课:1.动量守恒的内容和表达式是什么?2.守恒的适用条件是什么?教师引导学生回顾知识点,并指出表达式的同时性和矢量性,计算时应注意的问题。

二、动量守恒条件的判断1.教师:子弹、木块、弹簧组成的系统受到了哪些外力?(将系统视为一个整体,竖直方向重力、地面的支持力,此二力合力为零,水平方向弹簧压迫墙壁,墙壁会给系统一个向左的弹力,合力不为零。

因此,动量不守恒。

)教师启发:系统机械能守恒吗?(子弹在钻入木块过程中,摩擦生热,因此系统机械能有损失,不守恒)教师:再思考,如果只将子弹和木块视为一系统,则在子弹打入木块这一瞬间,系统动量守恒吗?(子弹打入木块时间极短,因此打入的过程中,弹簧压缩的非常小,系统受到的弹力很小,远小于子弹与木块的内力,所以这个过程系统的动量是守恒的)点评:物理规律总是在一定条件下得出的,因此在分析问题时,不但要弄清选取哪些物体作研究对象,而且一定要弄清对应哪个过程,这样才能做到准确判断。

2.教师:1.请说出系统受到的外力?(重力和地面的支持力,两个带电小球之间库仑力属于内力,因此,系统外力之和为零。

动量守恒)2.两个带电小球相碰之后做什么运动?系统总动量等于碰撞前吗?(相碰之后,电荷重新分配,两球均带正电,因此,互相排斥互相远离;由于外力之和仍然为零,所以碰后动量仍然守恒。

2024届高考一轮复习物理教案(新教材鲁科版):验证动量守恒定律

2024届高考一轮复习物理教案(新教材鲁科版):验证动量守恒定律

实验八 验证动量守恒定律目标要求 1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律.2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程案例一:研究气垫导轨上滑块碰撞时的动量守恒 1.实验器材气垫导轨、数字计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2.实验过程(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨,如图所示.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度. (4)改变条件,重复实验: ①改变滑块的质量;②改变滑块的初速度大小和方向. (5)验证:一维碰撞中的动量守恒. 3.数据处理(1)滑块速度的测量:v =ΔsΔt ,式中Δs 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. (2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图甲所示安装实验装置.调整固定斜槽使斜槽底端水平.(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下铅垂线所指的位置O.(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.案例提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一 教材原型实验考向1 研究气垫导轨上滑块碰撞时的动量守恒例1 (2022·全国甲卷·23)利用图示的实验装置对碰撞过程进行研究.让质量为m 1的滑块A 与质量为m 2的静止滑块B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A 和B 的速度大小v 1和v 2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平;(2)测得两滑块的质量分别为0.510 kg 和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg 的滑块作为A ;(3)调节B 的位置,使得A 与B 接触时,A 的左端到左边挡板的距离s 1与B 的右端到右边挡板的距离s 2相等;(4)使A 以一定的初速度沿气垫导轨运动,并与B 碰撞,分别用传感器记录A 和B 从碰撞时刻开始到各自撞到挡板所用的时间t 1和t 2;(5)将B 放回到碰撞前的位置,改变A 的初速度大小,重复步骤(4).多次测量的结果如下表所示;1 2 3 4 5 t 1/s 0.49 0.67 1.01 1.22 1.39 t 2/s 0.15 0.21 0.33 0.40 0.46 k =v 1v 20.31k 20.330.330.33(6)表中的k 2=________(保留2位有效数字); (7)v 1v 2的平均值为______(保留2位有效数字); (8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v 1v 2判断.若两滑块的碰撞为弹性碰撞,则v 1v 2的理论表达式为__________________(用m 1和m 2表示),本实验中其值为________________(保留2位有效数字),若该值与(7)中结果间的差别在允许范围内,则可认为滑块A 与滑块B 在导轨上的碰撞为弹性碰撞. 答案 (2)0.304 (6)0.31 (7)0.32(8)v 1v 2=m 2-m 12m 10.34 解析 (2)用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为0.304 kg 的滑块作为A .(6)由于两段位移大小相等,根据表中的数据可得k 2=v 1v 2=t 2t 1=0.210.67=0.31.(7)v 1v 2的平均值为k =0.31+0.31+0.33+0.33+0.335=0.32. (8)弹性碰撞时满足动量守恒和机械能守恒,可得m 1v 0=-m 1v 1+m 2v 2 12m 1v 02=12m 1v 12+12m 2v 22 联立解得v 1v 2=m 2-m 12m 1,代入数据可得v 1v 2=0.34.考向2 研究斜槽末端小球碰撞时的动量守恒例2 (2023·福建省莆田二中模拟)在验证动量守恒定律的实验中,请回答下列问题:(1)实验记录如图乙所示,为测定A 球不碰B 时做平抛运动的落点的平均位置,把刻度尺的零刻度线跟记录纸上的O 点对齐,图乙给出了小球A 落点附近的情况,可得A 的平均落点到O 点的距离应为________cm.(2)小球A 下滑过程中与斜槽轨道间存在摩擦力,这对实验结果________产生误差(填“会”或“不会”).(3)实验装置如图甲所示,A 球为入射小球,B 球为被碰小球,以下有关实验过程中必须满足的条件正确的是________.A .入射小球的质量m A 可以小于被碰小球的质量mB B .实验时需要测量斜槽末端到水平地面的高度C .入射小球每次不必从斜槽上的同一位置由静止释放D .斜槽末端的切线必须水平,小球放在斜槽末端处,且应恰好静止(4)如果碰撞过程中系统机械能也守恒,根据图中各点间的距离,下列式子成立的有________. A .m A ∶m B =ON ∶MPB .m A ∶m B =OP ∶MPC .m A ∶m B =OP ∶(MN -OM )D .m A ∶m B =ON ∶(MN -OM ) 答案 (1)65.50 (2)不会 (3)D (4)AD解析 (1)小球A 落点,应该取多次落点的平均落点,即用尽量小的圆把这些落点圈起来的圆心的位置,由题图乙可得距离应为65.50 cm.(2)在题图甲装置中,只要保证小球A 到达底端的速度相同即可,轨道有无摩擦对实验结果不会产生误差.(3)入射小球的质量m A 不可以小于被碰小球的质量m B ,否则A 球碰后反弹,故A 错误;在实验中不需要小球的下落高度,只要能保证高度相同,即可知道两小球下落时间相同,故B 错误;入射小球每次必从斜槽上的同一位置由静止释放,才能保证每次碰前的速度均相同,故C 错误;斜槽末端的切线必须水平,小球放在斜槽末端处,应能保持静止,故D 正确. (4)两球碰撞后,小球做平抛运动,由于小球抛出点的高度相等,它们在空中做平抛运动的时间t 相等,小球做平抛运动的初速度v A =OP t ,v A ′=OM t ,v B ′=ONt由动量守恒定律得m A v A =m A v A ′+m B v B ′则m A OP t =m A OM t +m B ON t ,m A m B =ON OP -OM =ON MP ,故A 正确,B 错误;由系统机械能守恒得12m A v A 2=12m A v A ′2+12m B v B ′2,代入速度表达式整理得m A (OP 2-OM 2)=m B ON 2,又由m Am B =ONOP -OM,联立解得OP +OM =ON ,故OM =PN ,由几何关系得MN -OM =MN -PN =MP ,则m A ∶m B =ON ∶MP =ON ∶(MN -OM ),故D 正确,C 错误.考点二 探索创新实验考向1 实验装置的创新例3 如图为验证动量守恒定律的实验装置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实验:①用天平测出两个小球的质量分别为m 1和m 2;②安装实验装置,将斜槽AB 固定在桌边,使槽的末端切线水平,再将一斜面BC 连接在斜槽末端;③先不放小球m 2,让小球m 1从斜槽顶端A 处由静止释放,标记小球在斜面上的落点位置P ; ④将小球m 2放在斜槽末端B 处,仍让小球m 1从斜槽顶端A 处由静止释放,两球发生碰撞,分别标记小球m 1、m 2在斜面上的落点位置;⑤用毫米刻度尺测出各落点位置到斜槽末端B 的距离.图中M 、P 、N 三点是实验过程中记下的小球在斜面上的三个落点位置,从M 、P 、N 到B 的距离分别为s M 、s P 、s N .依据上述实验步骤,请回答下面问题:(1)两小球的质量m 1、m 2应满足m 1________m 2(填“>”“=”或“<”);(2)小球m 1与m 2发生碰撞后,m 1的落点是图中________点,m 2的落点是图中________点; (3)用实验中测得的数据来表示,只要满足关系式________________,就能说明两球碰撞前后动量是守恒的;(4)若要判断两小球的碰撞是否为弹性碰撞,用实验中测得的数据来表示,只需比较________与________是否相等即可. 答案 (1)> (2)M N (3)m 1s P =m 1s M +m 2s N (4)m 1s P m 1s M +m 2s N解析 (1)为了防止入射小球碰撞后反弹,一定要保证入射小球的质量大于被碰小球的质量,故m 1>m 2;(2)碰撞前,小球m 1落在题图中的P 点,由于m 1>m 2,当小球m 1与m 2发生碰撞后,m 1的落点是题图中M 点,m 2的落点是题图中N 点;(3)设碰前小球m 1的水平初速度为v 1,当小球m 1与m 2发生碰撞后,小球m 1落到M 点,设其水平速度为v 1′,m 2落到N 点,设其水平速度为v 2′,斜面BC 与水平面的倾角为α,由平抛运动规律得s M sin α=12gt 2,s M cos α=v 1′t ,联立解得v 1′=gs M cos 2 α2sin α,同理可得v 2′=gs N cos 2α2sin α,v 1=gs P cos 2 α2sin α,因此只要满足m 1v 1=m 1v 1′+m 2v 2′,即m 1s P =m 1s M +m2s N.(4)如果小球的碰撞为弹性碰撞,则满足12m1v12=12m1v1′2+12m2v2′2代入以上速度表达式可得m1s P=m1s M+m2s N故验证m1s P和m1s M+m2s N相等即可.考向2实验方案的创新例4某物理兴趣小组设计了如图甲所示的实验装置.在足够大的水平平台上的A点放置一个光电门,其右侧摩擦很小,可忽略不计,左侧为粗糙水平面.当地重力加速度大小为g.采用的实验步骤如下:A.在小滑块a上固定一个宽度为d的窄挡光片;B.用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;C.a和b间用细线连接,中间夹一被压缩了的轻短弹簧(与a、b不连接),静止放置在平台上;D.细线烧断后,a、b瞬间被弹开,向相反方向运动;E.记录滑块a通过光电门时挡光片的遮光时间t;F.小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h 及平台边缘铅垂线与B点之间的水平距离s;G.改变弹簧压缩量,进行多次测量.(1)用游标卡尺测量挡光片的宽度,如图乙所示,则挡光片的宽度为________ mm.(2)针对该实验装置和实验结果,同学们做了充分的讨论.讨论结果如下:①该实验要验证“动量守恒定律”,则只需验证a、b弹开后的动量大小相等,即________=________(用上述实验所涉及物理量的字母表示);②若该实验的目的是求弹簧的最大弹性势能,则弹簧的弹性势能为________(用上述实验所涉及物理量的字母表示);③改变弹簧压缩量,多次测量后,该实验小组得到x a与1t2的关系图像如图丙所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为________(用上述实验数据字母表示).答案 (1)3.80 (2)①m a dt m b sg 2h②m a d 22t 2+m b s 2g 4h ③d 22kg解析 (1)挡光片的宽度d =3 mm +16×0.05 mm =3.80 mm.(2)①要验证“动量守恒定律”,则应该验证m a v a =m b v b ,由滑块a 通过光电门可求v a =d t ,由b 球离开平台后做平抛运动,根据h =12gt 2,s =v b t ,整理可得v b =sg2h,因此需验证的表达式为m a dt=m b sg 2h ;②弹性势能大小为E p =12m a v a 2+12m b v b 2,代入数据整理得E p =m a d 22t2+m b s 2g 4h ;③根据动能定理可得μmgx a =12m v a 2,而v a =d t ,联立整理得x a =d 22μg ·1t 2,故k =d 22μg ,可得平台A 点左侧与滑块a 之间的动摩擦因数μ=d 22kg.课时精练1.(2023·云南省昆明一中高三检测)某实验小组在进行“验证动量守恒定律”的实验,入射球与被碰球半径相同、质量不等,且入射球的质量大于被碰球的质量.(1)用游标卡尺测量直径相同的入射球与被碰球的直径,测量结果如图甲所示,则直径为________cm ;(2)实验中,直接测定小球碰撞前、后的速度是不容易的,但是可以通过仅测量________(填选项前的字母),间接地解决这个问题; A .小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移D.小球的直径(3)实验装置如图乙所示,先不放B球,使A球从斜槽上某一固定点C由静止滚下,再把B 球静置于水平槽前端边缘处,让A球仍从C处由静止滚下.记录纸上的O点是铅垂线所指的位置,M、P、N分别为落点的痕迹,未放B球时,A球落地点是记录纸上的________点;放上B球后,B球的落地点是记录纸上的________点;(4)释放多次后,取各落点位置的平均值,测得各落点痕迹到O点的距离:OM=13.10 cm,OP=21.90 cm,ON=26.04 cm.用天平称得入射小球A的质量m1=16.8 g,被碰小球B的质量m2=5.6 g.若将小球质量与水平位移的乘积作为“动量”,请将下面的表格填写完整.(结果保留三位有效数字)根据上面表格中的数据,你认为能得到的结论是____________________________;(5)实验中,关于入射小球在斜槽上释放点的高低对实验影响的说法中正确的是________.A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小答案(1)2.14(2)C(3)P N(4)3.66×10-3在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒(5)C解析(1)球的直径d=21 mm+4×0.1 mm=21.4 mm=2.14 cm.(2)小球离开轨道后做平抛运动,因为小球抛出点的高度相等,它们在空中的运动时间相等,小球的水平位移与小球抛出的初速度成正比,可以用小球的水平位移代替其初速度,所以C 正确.(3)A球和B球相撞后,B球的速度增大,A球的速度减小,所以碰撞后A球的落地点距离O 点最近,B球的落地点距离O点最远,所以P点是未放B球时A球的落地点,N点是放上B 球后B球的落地点.(4)碰后“总动量”p ′=m 1OM +m 2ON =0.016 8×0.131 0 kg·m +0.005 6×0.260 4 kg·m ≈3.66×10-3 kg·m则可知碰撞前、后“总动量”近似相等,在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒.(5)入射小球的释放点越高,入射球碰撞前的速度越大,相撞时内力越大,阻力的影响相对越小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,C 正确.2.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示.在小车A 后连着纸带,电磁打点计时器所用的电源频率为50 Hz ,长木板下垫着小木片用以补偿阻力.(1)若已得到打点纸带,测得各计数点间距如图乙所示,A 为运动起始的第一点,则应选________段来计算A 车的碰前速度,应选________段来计算A 车和B 车碰后的共同速度.(以上两空均选填“AB ”“BC ”“CD ”或“DE ”)(2)已测得小车A 的质量m 1=0.40 kg ,小车B 的质量m 2=0.20 kg ,由以上测量结果可得,碰前总动量为______ kg·m/s ;碰后总动量为____ kg·m/s(结果保留小数点后3位).由上述实验结果得到的结论是:________________________________________________________. 答案 (1)BC DE (2)0.420 0.417 A 、B 碰撞过程中,在误差允许范围内,系统动量守恒 解析 (1)小车A 碰前运动稳定时做匀速直线运动,所以选择BC 段计算A 碰前的速度;两小车碰后粘在一起仍做匀速直线运动,所以选择DE 段计算A 和B 碰后的共同速度. (2) 碰前小车A 的速度为v 0=BC t =0.105 05×0.02m/s =1.050 m/s 则碰前两小车的总动量为p =m 1v 0+0=0.40×1.050 kg·m/s =0.420 kg·m/s 碰后两小车的速度为v =DE t =0.069 55×0.02m/s =0.695 m/s则碰后两小车的总动量为p ′=(m 1+m 2)v =(0.40+0.20)×0.695 kg·m/s =0.417 kg·m/s由上述实验结果得到的结论是:A 、B 碰撞过程中,在误差允许范围内,系统动量守恒.3.(2023·福建福州市模拟)某地中学生助手设计了一个实验演示板做“探究碰撞中的不变量”的实验,主要实验步骤如下:①选用大小为120 cm ×120 cm 的白底板竖直放置,悬挂点为O ,并标上如图所示的高度刻度;②悬挂点两根等长不可伸长的细绳分别系上两个可视为质点的A 摆和B 摆,两摆相对的侧面贴上双面胶,以使两摆撞击时能合二为一,以相同速度一起向上摆;③把A 摆拉到右侧h 1的高度,释放后与静止在平衡位置的B 摆相碰.当A 、B 摆到最高点时读出摆中心对应的高度h 2;回答以下问题:(1)若A 、B 两摆的质量分别为m A 、m B ,则验证动量守恒的表达式为________(用上述物理量字母表示).(2)把A 摆拉到右侧的高度为0.8 m ,两摆撞击后一起向左摆到的高度为0.2 m ,若满足A 摆质量是B 摆质量的________倍,即可验证系统动量守恒,从而可以得出A 摆碰前初动能为碰后两摆损失机械能的________倍.答案 (1)m A h 1=(m A +m B )h 2(2)1 2解析 (1)由机械能守恒定律可得m A gh 1=12m A v 12,得碰前速度v 1=2gh 1,由(m A +m B )gh 2=12(m A +m B )v 22,得碰后速度v 2=2gh 2,根据动量守恒可知需要验证的表达式为m A h 1=(m A +m B )h 2.(2)把数据代入上述验证表达式可得m A =m B ,即若满足A 摆的质量是B 摆的质量的1倍,即可验证系统动量守恒;根据动量守恒定律有m A v 1=(m A +m B )v 2,根据能量守恒定律有12m A v 12=12(m A +m B )v 22+ΔE ,联立解得ΔE =14m A v 12,即A 摆碰前初动能为碰后两摆损失机械能的2倍.4.(2023·云南省昆明一中模拟)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与连接打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A(包括弹簧片)的质量m1=0.310 kg,滑块B(包括弹簧片和遮光片)的质量m2=0.108 kg,遮光片的宽度d=1.00 cm,打点计时器所用交流电的频率f=50.0 Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为Δt B=3.500 ms,碰撞前后打出的纸带如图(b)所示.根据图(b)中所标数据,可分析推断出碰撞发生在________间,A滑块碰撞前的速度为________ m/s,B滑块碰撞前的速度为________ m/s, A滑块碰撞后的速度为________ m/s,B 滑块碰撞后的速度为________ m/s.(结果保留三位有效数字)答案EF 2.0000.970 2.86解析由于A滑块与气垫导轨间的摩擦力非常小,所以除了碰撞过程,A滑块运动过程因摩擦力产生的加速度非常小,在相同时间内相邻位移的差值也非常小,根据图(b)中所标数据,可看出只有EF间的位移相比相邻间的位移变化比较明显,故碰撞发生在EF间;A滑块碰撞前的速度为v A=s FGT =4.00×10-20.02m/s=2.00 m/s, B滑块碰撞前的速度为0,A滑块碰撞后的速度为v A′=s DET =1.94×10-20.02m/s=0.970 m/s,B滑块碰撞后的速度为v B′=dΔt B=1.00×10-23.500×10-3m/s≈2.86 m/s.5.某同学利用如图所示的装置进行“验证动量守恒定律”的实验,操作步骤如下:①在水平桌面上的适当位置固定好弹簧发射器,使其出口处切线与水平桌面相平;②在一块长平木板表面先后钉上白纸和复写纸,将该木板竖直并贴紧桌面右侧边缘.将小球a向左压缩弹簧并使其由静止释放,a球碰到木板,在白纸上留下压痕P;③将木板向右水平平移适当距离,再将小球a向左压缩弹簧到某一固定位置并由静止释放,撞到木板上,在白纸上留下压痕P2;④将半径相同的小球b放在桌面的右边缘,仍让小球a从步骤③中的释放点由静止释放,与b球相碰后,两球均撞在木板上,在白纸上留下压痕P1、P3.(1)下列说法正确的是________.A.小球a的质量一定要大于小球b的质量B.弹簧发射器的内接触面及桌面一定要光滑C.步骤②③中入射小球a的释放点位置一定相同D.把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平(2)本实验必须测量的物理量有________.A.小球的半径rB.小球a、b的质量m1、m2C.弹簧的压缩量x1,木板距离桌子边缘的距离x2D.小球在木板上的压痕P1、P2、P3分别与P之间的竖直距离h1、h2、h3(3)用(2)中所测的物理量来验证两球碰撞过程中动量是否守恒,当满足关系式________时,则证明a、b两球碰撞过程中动量守恒.答案(1)AD(2)BD(3)m1h2=m1h3+m2h1解析(1)小球a的质量一定要大于小球b的质量,以防止入射球碰后反弹,选项A正确;弹簧发射器的内接触面及桌面不一定要光滑,只要a球到达桌边时速度相同即可,选项B错误;步骤②③中入射小球a的释放点位置不一定相同,但是步骤③④中入射小球a的释放点位置一定要相同,选项C错误;把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平,选项D正确.(2)小球离开桌面右边缘后做平抛运动,设其水平位移为L,则小球做平抛运动的时间t=L v0小球的竖直位移h =12gt 2 联立解得v 0=L g 2h碰撞前入射球a 的水平速度v 1=L g 2h 2碰撞后入射球a 的水平速度v 2=L g 2h 3碰撞后被碰球b 的水平速度v 3=Lg 2h 1 如果碰撞过程系统动量守恒,则m 1v 1=m 1v 2+m 2v 3 即m 1·Lg 2h 2=m 1·L g 2h 3+m 2·L g 2h 1, 整理得m 1h 2=m 1h 3+m 2h 1 则要测量的物理量是:小球a 、b 的质量m 1、m 2和小球在木板上的压痕P 1、P 2、P 3分别与P 之间的竖直距离h 1、h 2、h 3,故选B 、D. (3)由以上分析可知当满足关系式m 1h 2=m 1h 3+m 2h 1时,则证明a 、b 两球碰撞过程中动量守恒.。

动量定理教案最新4篇

动量定理教案最新4篇

动量定理教案最新4篇教学过程:篇一动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.教学目标:篇二一、知识目标1、理解动量守恒定律的确切含义.2、知道动量守恒定律的适用条件和适用范围.二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律.2、能运用动量守恒定律解释现象.3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法.2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用.高二物理《动量定理》微课教学设计篇三一、教材分析本节课是人教版选修3-5第十六章第二节内容,本节的内容为“动量和动量定理”,本节分两课时来完成,这节课为第一课时。

也是本章的重点内容,是第一节“实验:探究碰撞中的守恒量”的继续,同时又为第三节“动量守恒定律”奠定了基础,所以“动量定理”有承前启后的作用。

“动量定理”是牛顿第二定律的进一步展开。

它侧重于力在时间上的累积效果,为解决力学问题开辟了新途径,尤其是打击和碰撞类的问题。

动量定理的知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。

二、学情分析学生已经掌握了动量概念,会运用牛顿第二定律和运动学公式等,为本节课的学习打下了坚实的基础。

高中生思维方式逐步由形象思维向抽象思维过渡,因此在教学中需要以一些感性认识为依托,加强直观性和形象性,以便学生理解,因此在教学中多让学生参与利用动量定理解释生活中的有关现象,加强学生思维由形象到抽象的过渡。

高中物理动量的定义教案

高中物理动量的定义教案

高中物理动量的定义教案
一、教学目标
1. 掌握动量的定义及其计算方法;
2. 了解动量守恒定律的基本原理;
3. 能够应用动量定律解决相关问题。

二、教学重难点
1. 动量的概念及其计算;
2. 动量守恒定律的理解和运用。

三、教学准备
1. 教学PPT;
2. 实验器材:小车、弹簧、测量尺等;
3. 课堂练习题。

四、教学过程
1. 导入:通过实验展示动量的概念,引导学生了解动量的作用和重要性。

2. 探究:利用实验器材进行动量定律的探究,让学生通过实验来理解动量的计算方法及其
重要性。

3. 讲解:通过PPT讲解动量的定义及计算公式,引导学生掌握相关知识点。

4. 练习:让学生进行课堂练习,巩固所学知识。

5. 拓展:引导学生思考动量守恒定律的原理,以及动量在日常生活中的应用。

6. 总结:总结本节课的重点内容,强调掌握动量的定义和守恒定律的重要性。

五、课堂作业
完成课后习题,巩固所学内容。

六、教学反思
本节课主要通过理论讲解和实验探究相结合的方式,引导学生理解动量的定义及其计算方法,培养学生的动手能力和实践能力,提高学生对物理知识的理解和掌握。

在后续教学中,可通过更多的实例和案例,帮助学生更深入地理解和运用动量定律。

动量和动量定理教案动量和动量定理教案优秀5篇

动量和动量定理教案动量和动量定理教案优秀5篇

动量和动量定理教案动量和动量定理教案优秀5篇作为一名优秀的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。

那么大家知道正规的教案是怎么写的吗?读书破万卷,下笔如有神,如下是作者爱岗敬业的小编飞白帮家人们收集的动量和动量定理教案优秀5篇,仅供借鉴。

动量和动量定理教案篇一教学目标:1. 理解动量的概念及其物理意义,掌握动量的定义式和单位。

2. 理解动量定理的内容,能够运用动量定理解释生活中的物理现象。

3. 通过实验或案例分析,培养学生的观察、分析和解决问题的能力。

4. 培养学生的逻辑思维能力和物理建模能力。

教学重点:动量的概念及计算。

动量定理的理解与应用。

教学难点:动量定理中力的冲量与动量变化之间的关系。

运用动量定理解决实际问题。

教学准备:多媒体课件、实验器材、生活实例素材教学过程:一、引入新课情境导入:播放一段运动员跳水的视频,引导学生观察运动员入水前后的速度变化,思考是什么因素导致了这种变化,引出动量的概念。

提出问题:为什么我们常说“不要在高速行驶的车辆旁停留”,这与我们今天要学的动量有什么关系?二、讲授新知1. 动量的概念定义:物体的质量和速度的乘积称为物体的动量,用符号p表示,即p=mv。

物理意义:动量是描述物体运动状态的。

物理量,反映了物体运动的“惯性”和“冲击力”。

单位:千克米每秒(kg·m/s)。

2. 动量定理内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。

强调:动量定理是矢量定理,要注意动量和冲量的方向性。

三、实验探究实验设计:利用小车、斜面等器材,设计实验验证动量定理。

例如,观察不同速度下小车撞击静止物体后的运动状态变化,测量并计算动量变化与冲量之间的关系。

学生分组实验:指导学生进行实验,记录数据,分析实验结果。

讨论交流:各组分享实验现象和结论,教师总结归纳。

四、巩固练习例题讲解:选取几道典型例题,如汽车刹车问题、运动员跳跃问题等,引导学生运用动量定理解题。

最新版-高中物理动量定理教案(优秀4篇)

最新版-高中物理动量定理教案(优秀4篇)

高中物理动量定理教案(优秀4篇)高中物理教学设计篇一高三复习到五月份,基本结束了前两轮的复习。

但是学生在应用动量守恒定律解决问题时依然存在若干问题。

比较突出的问题有:弄不清楚守恒过程和不能正确的选择研究对象等。

学生屡屡出现类似问题的背后其实是忽略了守恒条件所造成。

当然学生在审题中不能正确的挖掘出隐含条件也是失分的主要原因。

如何解决这一现象呢?我做了这样的教学设计。

一.回归课本,指导学生进行弹性碰撞特点的理论推导。

本环节中强调守恒条件以及对弹性碰撞特点的理解。

二.归纳试题类型,找到解题模型。

主要选择子弹模型、木板滑块模型、滑块碰撞模型、微观粒子碰撞模型、微观粒子衰变模型。

采用讲一题练一题的方法,让学生熟悉这几个模型的解题思路和题中常见的隐含的条件。

为学生解决类似题型打好基础。

三.针对多过程的运动模型,引导学生做好运动分析,逐一过程利用守恒条件分析研究对象是否动量守恒。

四.针对多物体多运动过程模型,引导学生做好受力分析,运动过程分段处理,围绕守恒条件逐一分析所选定的研究对象是否守恒。

本教学设计的优点在于由易到难,由特殊模型到一般模型,从常见问题到复杂问题。

也很好的展示了利用守恒条件为解题起点,展开解题过程的示范。

通过多次训练能够有效的解决学生挖掘不出常见隐含条件和弄不清守恒过程的问题。

动量守恒定律教学反思篇二每学期举行一次教学开放活动,已成为我校教育教学的传统贯例,很好的促进青年教师专业成长,推动学校教学研究长足发展。

本次观课议课活动安排在高二年级组进行,由汪梦洁老师和孙正老师上同课异构课《动量守恒定律》,物理教研组全体老师参与听课、议课。

本人把听课议课的一些不成熟的心得体会总结如下。

一、以人为本在听中教课堂教学的核心是学生,所有的教学活动实施应围绕学生展开,以人为本是课堂教学的核心理念。

故评价一节课成败的核心标准是以学生为基准,看老师的教学是否以学生为主体,看老师在课堂上是否关心人、尊重人、依靠人、发展人、满足人。

高中物理动量的教案

高中物理动量的教案

高中物理动量的教案
教学目标:
1. 理解动量的概念和计算方法。

2. 掌握动量守恒定律的应用和推导。

3. 能够解决涉及动量的物理问题。

4. 发现动量在日常生活和工程实践中的应用。

教学重难点:
1. 动量的计算方法和单位。

2. 动量守恒定律的理解和应用。

3. 动量问题的解题方法和技巧。

教学过程:
一、复习与导入(15分钟)
请学生回顾前几节课的内容,简要介绍动量的概念和意义,引出本节课的主题。

二、讲解与示范(30分钟)
1. 动量的计算方法和单位。

2. 动量守恒定律的推导与应用。

3. 动量问题的解题方法和技巧。

三、练习与讨论(30分钟)
1. 给学生若干动量问题,并让他们分组讨论解决方法。

2. 鼓励学生积极参与讨论,提出问题和解答疑惑。

3. 教师适时给予指导和提示,引导学生找到正确的解题思路。

四、课堂小结与作业布置(10分钟)
1. 小结本节课的重点内容和难点。

2. 布置相关作业,巩固和拓展学生的知识点。

五、课后作业
1. 完成书本上相关习题。

2. 搜集和整理一些实际动量应用的例子,并写出问题解答。

反思:通过这节课的教学,学生可以深入理解动量的概念和应用,提高其动量问题的解题能力和应用能力。

同时,也促进学生发现和了解动量在日常生活和实践中的重要性和应用价值。

高考物理一轮复习冲量和动量教案

高考物理一轮复习冲量和动量教案

教案示例——冲量和动量教学目标一、知识目标1、理解动量的概念,知道动量的定义,知道动量是矢量.2、理解冲量的概念,知道冲量的定义,知道冲量是矢量.3、知道动量的变化也是矢量,知道动量的运算服从矢量运算的规则.二、能力目标1、会计算力的冲量和物体的动量.2、会正确计算一维的动量变化.三、情感目标培养学生的创新思维能力,建立正确的认识论和方法论.教学方法:加强直观教学,组织学生观察讨论.课时安排:1课时教学用具:小车、钩码、带有定滑轮的长木板、细绳、小球、挡板.师生互动活动设计:1、教师通过演示实验展示所要讨论的问题.2、学生观察演示实验,分析寻找物体获得的速度与作用力和作用时间的关系.教学过程1、冲量的概念设问:对于一定质量的物体,力所产生的改变物体速度的效果,与作用力F 和力的作用时间t 有什么关系呢?(学生思考,教师演示实验)演示实验:实验小车在不同拉力作用下获得同一速度所用的时间不同结果:力大的作用时间短,力小的作用时间长.定量讨论:质量为m 的静止物体,在力作用下经时间t 将获得多大的速度v ?根据牛顿第二定律m F a /=,根据运动学公式at v =,所以,t mF v = 变化公式,得:mv Ft = 结论:对一定质量的物体,力所产生的改变物体速度的效果,是由Ft 这个物理量决定的.在物理学中,力F 与力的作用时间t 的积Ft 叫做冲量.说明:冲量是表示物体在力的作用下经历一段时间的积累的物理量,因此,力对物体有冲量作用须具备力和该力作用下的时间两个条件.换句话说,只要有力并且作用一段时间,那么该力对物体有冲量作用.可见,冲量是过程量.(1)定义式:t t F I ⋅=是力F 的作用时间.(2)冲量是矢量.①大小:t F I ⋅=,式中的 F 必须是恒力,因此,该公式只用于求恒力的冲量.②方向:与F 的方向一致.③单位:注意:求合冲量应按矢量合成法则计算.继续讨论表达式Mv Ft =得出动量的概念.2、动量的概念动量的定义:在物理学中,物体的质量m 和速度v 的乘积mv 叫做动量,动量常用字母p 表示,即:mv p =说明:动量是描述质点运动状态的物理量,它对应着某个时刻或某一位置,是一个状态量,此为动量的瞬时性.(2)动量的单位冲量单位与动量单位相同,动量单位与力的单位不同:1kg ·m /s =1N ·s ,1kg ·m /2m/s kg 1⋅≠(3)动量的相对性因为物体的运动速度v 与参考系的选取有关,所以物体的动量也与参考系的选取有关.通常选取地球为参考系.(4)动量的矢量性动量是一个矢量,动量的方向与速度的方向相同,对质量一定的物体,只要物体速度的大小和方向有一个发生变化,我们就说物体的动量发生了变化.动量的合成服从矢量运算规则,要按平行四边形定则进行.如果物体的运动在同一直线上,而动量矢量在同一条直线上,在选定一个正方向后,动量的运算就可以化简为代数运算.【例题1】——动量大小与速度的关系质量为60kg 以1m/s 速度步行的人和以800m/s 速度飞行的质量为0.01kg 的子弹,哪个动量大?解 人m/s 60kg m/s 1kg 60111⋅=⋅⨯=⋅=v m p子弹m/s kg 8m/s kg 80001.0222⋅=⋅⨯=⋅=v m p即:人的动量大.3、引入动量概念的目的上例中人与子弹的动量大小不同,那么动量的大小表达了怎样的不同的意义呢?可以考察一个力对物体作用时引起物体运动状态变化的特点,用不同的力作用于质量不同的物体上(阻力不计)11t F22t F33t F)1从表中数据可知,只要力与作用时间的乘积相同,尽管物体运动过程中的加速度各不相同,末速度各不相同,但物体的质量与速度的乘积始终相等,即物体的动量相等.由此可见,质量和速度的乘积可以反映力在时间过程中的累积作用效果,也就是说,引入了动量的概念,就可以把力与力的作用时间联系起来,研究力在一段时间内的累积作用效果,从而比较方便的研究力在不同时间过程中的效果.4、动量的变化末动量p '与初动量p 的矢量差,即p p p -'=∆.动量是矢量,动量的变化量也是矢量.那么如何求动量的变化呢?我们来看下面的例题.【例题2】————[课本例题]一个质量是0.1kg 的钢球,以6 m /s 的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m /s 的速度水平向左运动(如图).碰撞前后钢球的动量有没有变化?变化了多少?分析:动量是矢量,它的大小和(或)方向发生了变化,动量就发生了变化,碰撞前后虽然钢球速度大小没有变化,都是6m /s ,但速度的方向发生了变化,动量的方向与速度的方向相同,动量的方向也发生了变化,所以钢球的动量发生了变化.解:取水平向右的方向为正方向,碰撞前钢球的速度6=v m/s ,碰撞前钢球的动量为: m/s 0.6kg m/s kg 61.0⋅=⋅⨯==mv p碰撞后钢球的速度6-='v m/s ,碰撞后钢球的动量为m/s 0.6kg m/s kg 61.0⋅-=⋅⨯-='='v m p碰撞前后钢球动量的变化为m/s kg 2.1m/s 0.6kg m/s 0.6kg ⋅-=⋅-⋅-=-'p p动量的变化p p p -'=∆也是矢量,求得的数值为负值,表示p ∆的方向与所取的正方向相反,p ∆的方向水平向左。

(新课标卷)河北省2013年高考物理二轮专题复习 动量教案

(新课标卷)河北省2013年高考物理二轮专题复习 动量教案

河北2013年高考二轮专题复习教案动量一、.动量和冲量1.动量物体的质量m 和速度v 的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一种状态量,它与时刻相对应。

⑵动量是矢量,它的方向和速度的方向相同。

2.冲量力F 和力的作用时间t 的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是一种过程量,它与时间相对应。

⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

⑶高中阶段只要求会用I=Ft 计算恒力的冲量。

对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

⑷冲量和功不同。

恒力在一段时间内可能不做功,但一定有冲量。

例1.质量为m 的小球由高为H 倾角为α的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? 解:力的作用时间都是g H g H t 2sin 1sin 22αα==,力的大小依次是mg 、mg cos α和mg sin α,所以它们的冲量依次是: gH m I gH m I gH m I N G 2,tan 2,sin 2===合αα 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

二、动量定理1.动量定理物体所受合力的冲量等于物体的动量变化。

既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量是物体所受的合力的冲量(或者说是物体所受各外力冲量的矢量和)。

⑵动量定理给出了冲量(过程量)和动量变化(状态量变化)间的互求关系。

⑶动量定理的表达式是矢量式。

在一维的情况下,各个矢量必须以同一个规定的方向为正。

例2.以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少? 解:本题若用动量变化求,将遇到矢量相减的问题。

若利用动量定理求则相当简单:抛出后物体所受合力就是重力,所以Δp =F t =m g t有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。

区公开课物理动量守恒定律教案及反思

区公开课物理动量守恒定律教案及反思

区公开课物理动量守恒定律教案及反思一、教学目标:1. 让学生理解动量的概念,掌握动量的计算公式。

2. 引导学生理解动量守恒定律,能够运用动量守恒定律解决实际问题。

3. 培养学生的实验操作能力,提高学生的科学思维能力。

二、教学内容:1. 动量的概念及计算公式。

2. 动量守恒定律的定义及其适用条件。

3. 动量守恒定律在实际问题中的应用。

4. 实验操作:测量物体的动量。

三、教学过程:1. 导入:通过一个简单的日常生活中的例子,引出动量的概念。

2. 讲解:讲解动量的计算公式,引导学生理解动量守恒定律的定义及其适用条件。

3. 案例分析:分析一些实际问题,让学生学会运用动量守恒定律解决问题。

4. 实验操作:引导学生进行实验,测量物体的动量,巩固所学知识。

四、教学方法:1. 讲授法:讲解动量的概念、计算公式和动量守恒定律的定义及其适用条件。

2. 案例分析法:分析实际问题,让学生学会运用动量守恒定律解决问题。

3. 实验操作法:引导学生进行实验,提高学生的动手能力。

五、教学评价:1. 课堂问答:检查学生对动量概念、计算公式和动量守恒定律的理解程度。

2. 课后作业:布置一些实际问题,让学生运用动量守恒定律解决。

3. 实验报告:评估学生在实验过程中的操作能力和对知识的运用能力。

4. 学生反馈:了解学生在学习过程中的需求和困惑,不断调整教学方法。

反思:在教学过程中,发现部分学生对动量概念和计算公式的理解不够深入,需要在课堂上进行更多的举例和讲解。

在案例分析环节,应选取更多贴近生活的实例,让学生更容易理解和运用动量守恒定律。

实验操作环节,要注意引导学生正确操作,确保实验结果的准确性。

在今后的教学中,要根据学生的实际情况,调整教学方法和策略,提高教学效果。

六、教学资源:1. 教学PPT:制作动量守恒定律的相关PPT,包括动量的概念、计算公式、动量守恒定律的定义及其适用条件等内容。

2. 案例分析资料:收集一些实际问题,用于让学生学会运用动量守恒定律解决问题。

高中物理选修三动量教案

高中物理选修三动量教案

高中物理选修三动量教案
一、教学目标
1. 了解物体的动量概念及动量定理。

2. 掌握动量守恒定律。

3. 能够计算动量的大小和方向。

4. 能够应用动量定理解决相关问题。

二、教学内容
1. 动量的定义和计算。

2. 动量定理。

3. 动量守恒定律。

4. 动量定理的应用。

三、教学重点和难点
1. 动量的定义和计算。

2. 动量定理的理解和应用。

四、教学方法
1. 课堂讲解结合实例分析。

2. 小组讨论解决问题。

3. 实验演示加深理解。

五、教学过程
1. 动量的定义和计算:
- 引导学生了解动量的概念及计算方法。

- 通过实例演示和练习让学生掌握动量的计算方法。

2. 动量定理:
- 讲解动量定理的原理和公式。

- 带领学生理解动量定理在实际问题中的应用。

3. 动量守恒定律:
- 介绍动量守恒定律的概念和条件。

- 分析实例演示动量守恒定律的应用。

4. 动量定理的应用:
- 给学生布置相关练习题,让学生应用动量定理解决问题。

- 实验演示加深学生对动量定理的理解。

六、教学反思
通过本节课的教学,学生对动量概念和定理有了更深入的了解。

通过实例分析和练习,学生掌握了动量的计算方法和应用技巧。

同时,通过实验演示,学生对动量定理的应用有了更加直观的认识。

在未来的教学中,可以通过更多实例和案例来帮助学生加深对动量理论的理解。

高中物理动能动量问题教案

高中物理动能动量问题教案

高中物理动能动量问题教案
一、教学目标
1. 理解动能和动量的定义及其关系。

2. 掌握动能和动量的计算方法。

3. 能够运用动能和动量的原理解决实际问题。

二、教学内容
1. 动能和动量的概念及计算方法。

2. 动能和动量的关系及应用。

三、教学重点
1. 动能和动量的定义及计算方法。

2. 运用动能和动量的原理解决实际问题。

四、教学难点
1. 动量守恒原理的应用。

2. 动能和动量的关系及计算方法。

五、教学过程
1. 热身:让学生回顾上节课的内容,复习动能和动量的相关知识。

2. 导入:通过一个生动的实例引入动能和动量的概念,引起学生的兴趣。

3. 理解动能和动量:讲解动能和动量的定义及其关系,引导学生理解两者之间的联系。

4. 计算动能和动量:进行一些例题演练,让学生掌握动能和动量的计算方法。

5. 应用练习:让学生通过一些实际问题的解答,运用动能和动量的原理解决问题。

6. 拓展延伸:进行一些拓展性的练习,引导学生进一步思考和理解动能和动量的应用。

7. 总结归纳:总结本节课的重点内容,让学生掌握动能和动量的基本知识。

六、教学反思
通过这节课的教学,学生应该能够理解动能和动量的概念,掌握其计算方法,并能够运用其原理解决实际问题。

在教学过程中,要注重引导学生思考和提高解决问题的能力,同时
要注重培养学生实际动手操作的能力,提高他们的动手实践能力。

同时,教师也要及时反馈学生的学习情况,及时帮助他们解决学习中的问题,提高学习效果。

2024届高考一轮复习物理教案(新教材人教版浙江专用):动量守恒定律及应用

2024届高考一轮复习物理教案(新教材人教版浙江专用):动量守恒定律及应用

第2讲动量守恒定律及应用目标要求 1.理解系统动量守恒的条件.2.会应用动量守恒定律解决基本问题.3.会用动量守恒观点分析爆炸、反冲运动和人船模型.4.理解碰撞的种类及其遵循的规律.考点一动量守恒定律的理解和基本应用1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′.系统相互作用前的总动量等于相互作用后的总动量.(2)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.1.只要系统所受合外力做功为0,系统动量就守恒.(×)2.系统的动量不变是指系统的动量大小和方向都不变.(√)3.若物体相互作用时动量守恒,则机械能一定守恒.(×)4.动量守恒定律的表达式m1v1+m2v2=m1v1′+m2v2′,一定是矢量式,应用时要规定正方向,且其中的速度必须相对同一个参考系.(√)1.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.2.动量守恒定律的五个特性矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2、…应是系统中各物体在相互作用前同一时刻的动量,p1′、p2′、…应是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统考向1系统动量守恒的判断例1(2021·全国乙卷·14)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒答案 B解析因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;对小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒,故选B.考向2动量守恒定律的基本应用例2(2023·浙江温州市模拟)如图所示,光滑平面上有一辆质量为2m的小车,车上左右两端分别站着甲、乙两人,他们的质量都是m,开始两个人和车一起以速度v0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v跳离小车,然后站在车左端的甲以相对于地面向左的速度v跳离小车.两人都离开小车后,小车的速度将是()A.v0B.2v0C.大于v0,小于2v0D.大于2v0答案 B解析两人和车所组成的系统动量守恒,初动量为4m v0,方向向右.当甲、乙两人先后以相对地面相等的速度向两个方向跳离时,甲、乙两人的动量和为零,则有4m v0=2m v车,可得v车=2v0,选项B正确.应用动量守恒定律解题的步骤考向3动量守恒定律的临界问题例3甲、乙两小孩各乘一辆小车在光滑的水平冰面上匀速相向行驶,速度大小均为v0=6 m/s,甲车上有质量为m=1 kg的小球若干个,甲和他的小车及小车上小球的总质量为M1=50 kg,乙和他的小车的总质量为M2=30 kg.为避免相撞,甲不断地将小球以相对地面为v′=16.5 m/s的水平速度抛向乙,且被乙接住,假如某一次甲将小球抛出且被乙接住后,刚好可保证两车不相撞.则甲总共抛出的小球个数是()A.12 B.13 C.14 D.15答案 D解析规定甲的速度方向为正方向,两车刚好不相撞,则两车速度相等,由动量守恒定律得M1v0-M2v0=(M1+M2)v,解得v=1.5 m/s,对甲、小车及从甲车上抛出的小球,由动量守恒定律得M1v0=(M1-n·m)v+n·m v′,解得n=15,D正确.考点二爆炸、反冲运动和人船模型1.爆炸现象的三个规律动量守恒爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加在爆炸过程中,有其他形式的能量(如化学能)转化为机械能,所以系统的机械能增加位置不变爆炸的时间极短,因而作用过程中物体产生的位移很小,可以认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动2.反冲运动的三点说明作用原理反冲运动是系统内两物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加1.发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于反冲现象.(√)2.爆炸过程中机械能增加,反冲过程中机械能减少.(×)考向1爆炸问题例4(2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s末和6 s末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s,忽略空气阻力.下列说法正确的是()A.两碎块的位移大小之比为1∶2B.爆炸物的爆炸点离地面高度为80 mC.爆炸后的质量大的碎块的初速度为68 m/sD.爆炸后两碎块落地点之间的水平距离为340 m答案 B解析设碎块落地的时间为t,质量大的碎块水平初速度为v,则由动量守恒定律知质量小的碎块水平初速度为2v,爆炸后的碎块做平抛运动,下落的高度相同,则在空中运动的时间相同,由水平方向x=v0t知落地水平位移之比为1∶2,碎块位移s=x2+y2,可见两碎块的位移大小之比不是1∶2,故A项错误;据题意知,v t=(5-t)×340 (m/s),又2v t=(6-t)×340 (m/s),联立解得t =4 s ,v =85 m/s ,故爆炸点离地面高度为h =12gt 2=80 m ,故B 项正确,C 项错误;两碎块落地点的水平距离为Δx =3v t =1 020 m ,故D 项错误.考向2 反冲运动例5 (2023·河南省模拟)发射导弹过程可以简化为:将静止的质量为M (含燃料)的导弹点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体,忽略喷气过程中重力和空气阻力的影响,则喷气结束时导弹获得的速度大小是( ) A.mMv 0 B.M m v 0 C.M M -m v 0 D.m M -m v 0答案 D解析 由动量守恒定律得m v 0=(M -m )v ,导弹获得的速度v =mM -m v 0,故选D.考向3 人船模型1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0 (2)两物体的位移大小满足:m x 人t -M x 船t =0,x 人+x 船=L ,得x 人=M M +m L ,x 船=mM +m L3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右;(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 人x 船=v 人v 船=M m. 例6 (多选)如图所示,绳长为l ,小球质量为m ,小车质量为M ,将小球向右拉至水平后放手,则(水平面光滑)( )A .系统的总动量守恒B .水平方向任意时刻小球与小车的动量等大反向或都为零C .小球不能向左摆到原高度D .小车向右移动的最大距离为2mlM +m答案 BD解析 系统只是在水平方向所受的合力为零,竖直方向的合力不为零,故水平方向的动量守恒,而总动量不守恒,A 错误,B 正确;根据水平方向的动量守恒及机械能守恒得,小球仍能向左摆到原高度,C 错误;小球相对于小车的最大位移为2l ,根据“人船模型”,系统水平方向动量守恒,设小球水平方向的平均速度为v m ,小车水平方向的平均速度为v M ,m v m -M v M =0,两边同时乘以运动时间t ,m v m t -M v M t =0,即mx m =Mx M ,又x m +x M =2l ,解得小车向右移动的最大距离为2mlM +m,D 正确.考点三 碰撞问题1.碰撞碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. 2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. 3.分类动量是否守恒机械能是否守恒弹性碰撞 守恒 守恒 非弹性碰撞守恒有损失完全非弹性碰撞守恒 损失最大1.碰撞前后系统的动量和机械能均守恒.( × )2.在光滑水平面上的两球相向运动,碰撞后均变为静止,则两球碰撞前的动量大小一定相同.( √ )3.两球发生非弹性碰撞时,既不满足动量守恒定律,也不满足机械能守恒定律.( × )1.弹性碰撞的重要结论以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生弹性碰撞为例,则有 m 1v 1=m 1v 1′+m 2v 2′ 12m 1v 12=12m 1v 1′2+12m 2v 2′2 联立解得:v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1讨论:①若m 1=m 2,则v 1′=0,v 2′=v 1(速度交换);②若m 1>m 2,则v 1′>0,v 2′>0(碰后两小球沿同一方向运动);当m 1≫m 2时,v 1′≈v 1,v 2′≈2v 1;③若m 1<m 2,则v 1′<0,v 2′>0(碰后两小球沿相反方向运动);当m 1≪m 2时,v 1′≈-v 1,v 2′≈0.2.静止物体被撞后的速度范围物体A 与静止的物体B 发生碰撞,当发生完全非弹性碰撞时损失的机械能最多,物体B 的速度最小,v B =m A m A +m B v 0,当发生弹性碰撞时,物体B 速度最大,v B =2m Am A +m B v 0.则碰后物体B的速度范围为:m A m A +m B v 0≤v B ≤2m Am A +m B v 0.考向1 碰撞的可能性例7 A 、B 两球在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s ,当A 追上B 并发生碰撞后,A 、B 两球速度的可能值是( ) A .v A ′=5 m/s ,v B ′=2.5 m/s B .v A ′=2 m/s ,v B ′=4 m/sC.v A′=-4 m/s,v B′=7 m/sD.v A′=7 m/s,v B′=1.5 m/s答案 B解析虽然题给四个选项均满足动量守恒定律,但A、D两项中,碰后A的速度v A′大于B 的速度v B′,不符合实际,即A、D项错误;C项中,两球碰后的总动能E k后=122m A v A′+12=57 J,大于碰前的总动能E k前=12m A v A2+12m B v B2=22 J,违背了能量守恒定律,2m B v B′所以C项错误;而B项既符合实际情况,也不违背能量守恒定律,所以B项正确.碰撞问题遵守的三条原则(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥E k1′+E k2′.(3)速度要符合实际情况①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.②碰前两物体相向运动,碰后两物体的运动方向至少有一个改变.考向2弹性碰撞例8(2023·浙江省杭州二中月考)如图所示,B、C、D、E、F五个小球并排放置在光滑的水平面上,B、C、D、E四个球质量相等,而F球质量小于B球质量,A球质量等于F球质量.A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动答案 A解析A、B质量不等,m A<m B,A、B相碰后,A向左运动,B向右运动;B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止;E、F质量不等,m E >m F ,则碰后E 、F 都向右运动,所以B 、C 、D 静止,A 向左运动,E 、F 向右运动,故A 正确.考向3 非弹性碰撞例9 (2023·浙江嘉兴市模拟)如图所示,小球A 和小球B 质量相同,小球B 置于光滑水平面上,小球A 从高为h 处由静止摆下,到达最低点恰好与B 相撞,并粘合在一起继续摆动,若不计空气阻力,两球均可视为质点,则它们能上升的最大高度是( )A .h B.12h C.14h D.18h答案 C解析 小球A 由释放到摆到最低点的过程,由机械能守恒定律得m A gh =12m A v 12,则v 1=2gh .A 、B 的碰撞过程满足动量守恒定律,则m A v 1=(m A +m B )v 2,又m A =m B ,得v 2=2gh 2,对A 、B 粘在一起共同上摆的过程应用机械能守恒定律得12(m A +m B )v 22=(m A +m B )gh ′,则h ′=h4,故C 正确. 课时精练1.北京冬奥会2 000米短道速滑接力赛上,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出,完成“交接棒”.忽略地面的摩擦力,在这个过程中( )A .两运动员的总动量守恒B.甲、乙运动员的动量变化量相同C.两运动员的总机械能守恒D.甲的动能增加量一定等于乙的动能减少量答案 A解析两运动员组成的系统所受合外力矢量和为0,系统动量守恒,A正确;系统动量守恒,两运动员的动量变化量等大反向,变化量不相同,B错误;在光滑冰面上“交接棒”时,后方运动员用力推前方运动员,导致机械能增加,C错误;在乙推甲的过程中,消耗体内的化学能转化为系统的动能,根据能量守恒定律可知,甲的动能增加量不等于乙的动能减小量,D错误.2.如图所示,小木块m与长木板M之间光滑,M置于光滑水平面上,一轻质弹簧左端固定在M的左端,右端与m连接,开始时m和M都静止,弹簧处于自然状态.现同时对m、M施加等大反向的水平恒力F1、F2,两物体开始运动后,对m、M、弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)()A.整个运动过程中,系统机械能守恒,动量守恒B.整个运动过程中,当木块速度为零时,系统机械能一定最大C.M、m分别向左、右运行过程中,均一直做加速度逐渐增大的加速直线运动D.M、m分别向左、右运行过程中,当弹簧弹力与F1、F2的大小相等时,系统动能最大答案 D解析由于F1与F2等大反向,系统所受的合外力为零,则系统的动量守恒.由于水平恒力F1、F2对系统做功代数和不为零,则系统的机械能不守恒,故A错误;从开始到弹簧伸长到最长的过程,F1与F2分别对m、M做正功,弹簧伸长最长时,m、M的速度为零,之后弹簧收缩,F1与F2分别对m、M做负功,系统的机械能减小,因此,当弹簧有最大伸长量时,m、M的速度为零,系统机械能最大;当弹簧收缩到最短时,m、M的速度为零,系统机械能最小,故B错误;在水平方向上,M、m受到水平恒力和弹簧的弹力作用,水平恒力先大于弹力,后小于弹力,随着弹力增大,两个物体的合力先逐渐减小,后反向增大,则加速度先减小后反向增大,则M、m先做加速度逐渐减小的加速运动,后做加速度逐渐增大的减速运动,当弹簧弹力的大小与拉力F1、F2的大小相等时,m、M的速度最大,系统动能最大,故C错误,D正确.3.如图所示,气球下面有一根长绳,一个质量为m 1=50 kg 的人抓在气球下方,气球和长绳的总质量为m 2=20 kg ,长绳的下端刚好和水平面接触,当静止时人离地面的高度为h =5 m .如果这个人开始沿绳向下滑,当滑到绳下端时,他离地面的高度约为(可以把人看成质点)( )A .5 mB .3.6 mC .2.6 mD .8 m答案 B解析 当人滑到下端时,设人相对地面下滑的位移大小为h 1,气球相对地面上升的位移大小为h 2,由动量守恒定律,得m 1h 1t =m 2h 2t,且h 1+h 2=h ,解得h 2≈3.6 m ,所以他离地面的高度约为3.6 m ,故选项B 正确.4.(多选)(2023·浙江丽水市模拟)质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量之比M m可能为( ) A .2 B .3 C .4 D .5答案 AB解析 根据动量守恒定律和能量守恒定律,设碰撞后两者的动量都为p ,则总动量为2p ,根据动量和动能的关系有:p 2=2mE k ,根据能量的关系,由于动能不增加,则有:4p 22M ≥p 22m +p 22M ,解得M m≤3,故A 、B 正确,C 、D 错误. 5.冰壶运动深受观众喜爱,在某次投掷中,冰壶甲运动一段时间后与静止的冰壶乙发生正碰,如图所示.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是选项图中的哪幅图( )答案 B解析 两冰壶碰撞过程中动量守恒,两冰壶发生正碰,由动量守恒定律可知,碰撞前后系统动量不变,两冰壶的动量方向即速度方向,不会偏离甲原来的方向,可知,A 图情况是不可能的,故A 错误;如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,最终两冰壶的位置可能如选项B 所示,故B 正确;两冰壶碰撞后,乙在前,甲在后,选项C 所示是不可能的,故C 错误;碰撞过程机械能不可能增大,两冰壶质量相等,碰撞后甲的速度不可能大于乙的速度,碰撞后甲的位移不可能大于乙的位移,故D 错误.6.如图所示,在光滑的水平面上有三个完全相同的小球,它们排成一条直线,小球2、3静止,并靠在一起,球1以速度v 0撞向它们,设碰撞过程中不损失机械能,则碰后三个小球的速度分别为( )A .v 1=v 2=v 3=33v 0B .v 1=0,v 2=v 3=22v 0 C .v 1=0,v 2=v 3=12v 0 D .v 1=v 2=0,v 3=v 0答案 D解析 由题设条件,三球在碰撞过程中总动量和总动能守恒.设三球质量均为m ,则碰撞前系统总动量为m v 0,总动能为12m v 02.选项A 、B 中的数据都违反了动量守恒定律,故不可能.对选项C ,碰后总动量为m v 0,但总动能为14m v 02,这显然违反了机械能守恒定律,故不可能.对选项D ,既满足动量守恒定律,也满足机械能守恒定律,故选D.7.(2023·北京市第五中学检测)A 、B 物块沿光滑水平面在同一直线上运动并发生正碰,如图为两物块碰撞前后的位移-时间图像,其中a 、b 分别为A 、B 两物块碰前的位移-时间图像,c 为碰撞后两物块共同运动的位移-时间图像,若A 物块质量m =2 kg ,则由图判断,下列结论错误的是( )A .碰撞前后A 的动量变化量的大小为4 kg·m/sB .B 物块的质量为0.75 kgC .碰撞过程A 对B 所施冲量大小为4 N·sD .碰撞过程A 、B 两物块组成的系统损失的动能为10 J答案 B解析 以A 的初速度方向为正方向,由图像可知碰撞前A 的速度为v A =10-42m/s =3 m/s ,碰撞后A 、B 的共同速度为v AB =4-22m/s =1 m/s ,则碰撞前A 的动量为m v A =2×3 kg·m/s =6 kg·m/s ,碰撞后A 的动量为m v AB =2 kg·m/s ,碰撞前后A 的动量变化量的大小为4 kg·m/s ,A 正确,不符合题意;碰撞前B 的速度为v B =-42m/s =-2 m/s ,由动量守恒定律得m v A +m B v B =(m +m B )v AB ,解得m B =43 kg ,B 错误,符合题意;由动量定理得I =m B v AB -m B v B =43×1 kg·m/s -43×(-2) kg·m/s =4 N·s ,即碰撞过程A 对B 所施冲量大小为4 N·s ,C 正确,不符合题意;碰撞过程A 、B 两物块组成的系统损失的动能为ΔE k =12m v A 2+12m B v B 2-12(m +m B )v AB 2=12×2×32 J +12×43×(-2)2 J -12×(2+43)×12 J =10 J ,D 正确,不符合题意. 8.(2023·浙江宁波市月考)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露.有一个质量为3m 的爆竹从地面斜向上抛出,上升h 后到达最高点,此时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东;重力加速度为g .则( )A .爆竹在最高点爆炸过程中,整体的动量守恒B .质量为m 的一块,其速度为3v 0-2vC .质量为m 的一块,其速度为2v -3v 0D.质量为m的一块,在落地过程中重力冲量的大小为mg 2hg,方向水平向西答案 B解析爆竹在最高点爆炸过程中,整体水平方向上不受外力,水平方向上动量守恒,故A错误;规定向东为正方向,根据动量守恒得3m v0=2m v+m v′,解得质量为m的一块的速度v′=3v0-2v,故B正确,C错误;质量为m的一块爆炸后,做平抛运动,由h=12gt2,得运动的时间t=2hg ,则在落地过程中重力冲量的大小为mg2hg,方向竖直向下,故D错误.9.在发射地球卫星时需要运载火箭多次点火,以提高最终的发射速度.某次地球近地卫星发射的过程中,火箭喷气发动机每次喷出质量为m=800 g的气体,气体离开发动机时的对地速度v=1 000 m/s,假设火箭(含燃料在内)的总质量为M=600 kg,发动机每秒喷气20次,忽略地球引力的影响,则()A.第三次气体喷出后火箭的速度大小约为4 m/sB.地球卫星要能成功发射,速度大小至少达到11.2 km/sC.要使火箭能成功发射至少要喷气500次D.要使火箭能成功发射至少要持续喷气17 s答案 A解析设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-3m)v3-3m v=0,解得:v3≈4 m/s,故A正确;地球卫星要能成功发射,喷气n次后至少要达到第一宇宙速度,即:v n=7.9 km/s,故B错误;以火箭和喷出的n次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-nm)v n -nm v=0,代入数据解得:n≈666,故C错误;至少持续喷气时间为:t=n20=33.3 s,故D 错误.10.(2023·浙江绍兴市调研)如图为“子母球”表演的示意图,弹性小球A和B叠放在一起,从距地面高度为h处自由落下,h远大于两小球直径,小球B的质量是A质量的3倍,假设所有的碰撞都是弹性碰撞,且都发生在下落的竖直方向上,不考虑空气阻力.则()A.下落过程中两个小球之间有相互挤压B.A与B第一次碰后小球B的速度不为零C.A与B第一次碰后小球A弹起的最大高度是2hD.A与B第一次碰后小球A弹起的最大高度是4h答案 D解析不考虑空气阻力,下落过程是自由落体运动,处于完全失重状态,则两个小球之间没有力的作用,A错误;下降过程为自由落体运动,由匀变速直线运动的速度位移公式得v2=2gh,解得小球B触地时两球速度相同,为v=2gh,小球B碰撞地之后,速度瞬间反向,大小相等,选小球A与小球B碰撞过程为研究过程,碰撞前后动量守恒,设碰后小球A、小球B速度大小分别为v1、v2,选向上为正方向,由动量守恒定律得m B v-m A v=m A v1+m B v2,由能量守恒定律得12=12m A v12+12m B v22,解得v2=0,v1=2v,B错误;碰后小球A 2(m A+m B)v弹起的最大高度H=(2v)2=4h,C错误,D正确.2g11.(多选)(2023·浙江宁波市高三检测)如图所示,某超市两辆相同的购物车质量均为m,相距L沿直线排列,静置于水平地面上.为节省收纳空间,工人猛推一下第一辆车并立即松手,第一辆车运动距离L后与第二辆车相碰并相互嵌套结为一体,两辆车一起运动了L距离后恰好停靠在墙边.若购物车运动时受到的摩擦力恒为车重力的k倍,重力加速度为g,则()A.两购物车在整个过程中克服摩擦力做功之和为2kmgLB.两购物车碰撞后瞬间的速度大小为gLC.两购物车碰撞时的能量损失为2kmgLD.工人给第一辆购物车的水平冲量大小为m10kgL答案CD解析由题意可知,两购物车在整个过程中克服摩擦力做功之和为W克f=kmgL+2kmgL=3kmgL ,A 错误;工人猛推一下第一辆车并立即松手,设此时第一辆车的速度为v 0,运动L距离后速度为v 1,由动能定理可得-kmgL =12m v 12-12m v 02,得v 1=v 02-2kgL ,设与第二辆车碰后瞬间的共同速度为v ,取第一辆车的初速度为正方向,由动量守恒定律可得m v 1=2m v ,得v =12v 1,由能量守恒定律可得3kmgL +ΔE =12m v 02,两购物车在碰撞中系统减少的能量ΔE =12m v 12-12×2m v 2=12m v 12-12×2m (12v 1)2=14m v 12=14m (v 02-2kgL ),联立解得v 0=10kgL ,ΔE =2kmgL ,v =12v 1=12v 02-2kgL =2kgL ,B 错误,C 正确;由动量定理可知,工人给第一辆购物车的水平冲量大小为I =m v 0-0=m 10kgL ,D 正确.12.(2023·浙江台州市模拟)如图所示,光滑导轨的末端放有一个质量为m 1=1 kg 的小球A ,导轨的末端与竖直墙上的O 点等高,导轨末端到竖直墙壁的水平距离为d =0.3 m .一个质量为m 2的小球B 沿导轨从距导轨末端高h =0.2 m 处由静止释放,在末端与小球A 碰撞后,两球直接从轨道末端飞出,A 、B 两球分别击中竖直墙壁上的P 、Q 两点.已知P 到O 的距离h 1=0.05 m ,Q 到O 的距离h 2=0.45 m ,小球可视为质点,重力加速度g =10 m/s 2,不计空气阻力.(1)求A 、B 两球从轨道末端飞出时的速度大小v 1、v 2;(2)求小球B 的质量m 2,并通过计算分析碰撞是否为弹性碰撞;(3)在A 、B 发生弹性碰撞的条件下,能否选择一个合适的小球B ,质量为m 2,使得两球碰后即以共同速度做抛体运动?如果能,求出m 2;若不能,请说明理由.答案 见解析解析 (1)小球在空中做平抛运动,有d =v 1t 1,h 1=12gt 12,d =v 2t 2,h 2=12gt 22, 解得v 1=3 m/s ,v 2=1 m/s(2)设B 运动到轨道末端的速度为v 0,由机械能守恒得m 2gh =12m 2v 02, 解得v 0=2 m/s在A、B碰撞前后,两球的动量守恒,以v0的方向为正方向,有m2v0=m2v2+m1v1,解得m2=3 kg碰前总动能E k=12m2v02=6 J,碰后两球总动能E k′=12m2v22+12m1v12=6 J即该碰撞为弹性碰撞.(3)不能.假设此情形下的m2存在,则由动量守恒得m2v0=(m1+m2)v求得v=m2v0m1+m2碰前总动能E k=12m2v02,碰后两球总动能E k′=12(m1+m2)v2=m22v022(m1+m2)<E k这说明碰撞前后有能量损失,与题设矛盾,故这样的m2不存在.13.(多选)(2020·全国卷Ⅱ·21)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为()A.48 kg B.53 kg C.58 kg D.63 kg答案BC解析设运动员的质量为M,第一次推物块后,运动员速度大小为v1,第二次推物块后,运动员速度大小为v2……第八次推物块后,运动员速度大小为v8,第一次推物块后,由动量守恒定律知:M v1=m v0;第二次推物块后由动量守恒定律知:M(v2-v1)=m[v0-(-v0)]=2m v0,……,第n次推物块后,由动量守恒定律知:M(v n-v n-1)=2m v0,各式相加可得v n=(2n-1)m v0M,则v7=260 kg·m/sM,v8=300 kg·m/sM.由题意知,v7<5 m/s,则M>52 kg,又知v8>5 m/s,则M<60 kg,故选B、C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
老师:请大家书写这个过程的方程。
实战高考题
理综卷35题解题过程
1、是否动量守恒?哪种模型?
2、分析好运动过程、明确初末状态
3、列动量方程(需不需要计算能量的损失)
4、再列动量方程(注意能量转化,作用力)
5、求解
注意事项:
1、方程要规范(正方向,在何种情况下书写方程)
2、物理量要明确(几个v,几个m)
3、复习基本模型
(一)碰撞模型
(二)三种基本模型
1、子弹物块模型
2、人船模型
3、叠加模型
四、复习重要的三种模型
(1)弹簧体模型
(2)斜面题模型
(3)摆模型
五、巩固练习:
六、小结
老师:首先复习基本知识,看看大家忘没忘?
学生回答并回忆相关知识
老师:大家已经经过两次模拟考试,动量在考试中的出题形式肯定也都知道?我找一名同学说一下,动量在考试哪里出题?又是怎样出题的呢?
课题
动量--三种模型
执教者
刘鑫
学校
哈尔滨六十四中学
课型
高三复习课
班级
高三、三班
时间
2014年3月18日
三维目标
知识与技能:
1.掌握动量的基本知识和碰撞的三种情况及三种基本模型。
2.熟悉高考35题的出题规律,清楚掌握动量守恒定律的条件。
3.明白高考增加的动量定理和相应的知识。
过程与方法:
根据三年高考和近期模拟,学会理综35题答题策略,掌握动量加能量的观点。
教师:留作业(只留本节课相关内容)
加强学生回忆
宏观分析
鼓励学生
复习最基本内容
规范学生书写
理解三种基本模型是深入学习复杂模型的基础
总动量为零
“高端、大气、上档次”
的三种模型(几年高考反复出现的模型)
推敲答题过程
训练应战能力
提高复习效率
板书设计:二轮复习动量---三种模型
一、基本知识先写:部分解题过程
二、碰撞:1、弹性2、非弹性小结总结解题过程
老师:每一种是什么意思呢?
学生进行解释
老师:相对应的方程又如何书写呢?
学生在小卷上书写
教师利用摄像头展示学生的书写,纠正错误的地方
老师:谁还记得老师曾经领大家复习过的三种基本模型了?忘记的同学师现在有这样的一个题目,需要大家回答一下,首先动量守不守恒呢?
学生:理综卷35题,计算题。
老师:看来大家对考试内容已经很熟悉,但是老师要强调一点,今年考纲在3-5是有变化的,具体体系在。
展示ppt。
老师:当然针对这样的变化大家不要过分担心,整体的高考难度是不会变的。针对今年的考纲和近些年高考题和模拟题,老师总结出一些规律与大家一起探究。
老师:碰撞分析几种呢?
学生:三种,弹性、非弹性和完全非弹性。
3、完全非弹性
三、三种基本模型:1、子弹与物块
2、人船模型
3、叠加模型
四、重要三种模型:1、弹簧体模型
2、斜面体模型
3、摆模型
情感态度价值观:
培养学生在答题时学会发现技巧,总结规律的能力。
重点
熟练掌握基本三种模型:子弹和物块、人船模型、叠加模型。
熟练在考试答题中运动重要的三种模型答题,分别是弹簧体模型、斜面模型和摆模型。
难点
分析主要三种模型里面的能量关系。
教学过程
教师调控及学生活动
设计意图
一、复习基本知识
二、分析动量在高考中的地位和高考考纲的相应变化
学会:是
老师:和哪种碰撞模型很像?
老师:如何子弹射入的深度是d,阻力怎么求解?
老师:怎么计算人走的位移?
老师:如何计算B板的距离。
老师:上面学习的模型感觉有low啊,考察的都是一个过程,一个动量一个能量,两个公式就把问题解决了,所以我们应该来一些“高端大气上档次”的。第一就是弹簧题模型,我们可以先看看哪年考了?
老师:
1.动量守不守恒?机械能守不守恒?
2.谁和谁动量是守恒的?需要需要考虑机械能损失?
3.就一个过程吗?
4.谁和谁动量是守恒的?需要需要考虑机械能损失?
基本上两次动量守恒就可以把问题解决了。
老师:需要判断的核心知识是最高点是共速的。
老师:和斜面模型和类似,但是需要注意区别,摆模型在摆动的过程中是机械能守恒的。
相关文档
最新文档