反应釜搅拌器选型指南
反应釜高效自吸式搅拌器选用说明
反应釜高效自吸式搅拌器选用说明
高效自吸式搅拌装置是由空心搅拌轴、自习室搅拌器、辅助搅拌器组成,自吸式搅拌器为空心涡轮型或空心风车型,自吸式搅拌器的下侧开有下进液孔,或者空心涡轮型自吸式搅拌器上侧开有上进液孔。
高效自吸式搅拌装置由上下两层搅拌器所组成的,下层推进式搅拌器具有分散进气和悬浮催化剂的功能,而上层自吸式搅拌器具有将液面上的气体重新吸入并有效分散于液相中的特殊功能,从而大幅度提高了气、液相的混合效果。
可有效提高加氢反应的速度与效率,并且能降低功耗,且能有效防止固相介质沉降,有利于反应速率和产物收率的提高。
高效自吸式搅拌器结构简图见图1:
图1 高效自吸式搅拌器结构简图
高效自吸式搅拌器搅拌效果示意图见图2:
图2 高效自吸式搅拌器搅拌效果示意图
高效自吸式搅拌适用于石油、化工、医药及其生物工程行业中的气-液、气-液-固非均相反应过程,例如:液相催化加氢、氧化、胺化、氟化、烷基化等。
反应釜小知识
反应釜搅拌形式的选择搅拌器是反应釜关键部件之一,根据釜内不同介质的物理学性质、容量、搅拌目的选择相应的搅拌器,对促进化学反应速度、提高生产效率能起到很大的作用。
1、平涡轮、折叶涡轮、曲叶涡轮搅拌器一般适应于气、液相混合的反应,搅拌器转数一般应选择300r/min以上。
2、推进式搅拌器一般适用于固、液相催化悬浮反应,它可以将沉淀于釜底比重较大的物料(如Ni催化剂)全部搅起,并悬浮于液体中,搅拌器直径一般取釜体直径1/3左右,搅拌线速为5-15m/s。
3、锚板式或框式搅拌器一般使用于粥状物料的搅拌,搅拌转数以60-130r/min为宜。
4、双螺旋浆带式搅拌器适用于粘度大、流动性差的物料搅拌,它可使物料上下窜动混合搅匀,搅拌转数一般不超过60r/min。
5、可用两种或两种以上搅拌器组合成得合搅拌器,如浆式加锚板式,涡轮式加推进式等,可根据实际需要进行选配。
搪瓷反应釜与搪玻璃反应釜的异同搪瓷反应釜与搪玻璃反应釜两种反应釜都是防腐型反应釜。
搪玻璃反应釜与搪瓷反应釜的工艺方法、材料成本不一样,价格有些差别。
搪瓷反应釜是烧结上一层陶瓷,起到抵抗化学腐蚀的作用,搪瓷反应釜酸、碱都能使用。
搪玻璃反应釜是在金属釜内部预先烧结上一层玻璃,搪玻璃反应釜不能用于碱性物料,因为玻璃会被碱溶解,而被腐蚀。
反应釜常见故障以及排除方法一、故障现象:壳体损坏(腐蚀、裂纹、透孔)故障原因:1、受介质辐射(点蚀、晶间腐蚀);2、热应力影响产生裂纹或碱脆;3、磨损变薄或均匀腐蚀。
处理方法:1、采用耐腐蚀材料衬里的壳体需重新修衬或局部补焊;2、焊接后要消除应力,产生裂纹要进行修补;3、超过设计最低的允许厚度,需更换本体。
二、故障现象:超温超压故障原因:1、仪表失灵,控制不严格;2、误操作;原料配比不当;产生剧烈反应;3、因传热或搅拌性能不佳,产生副反应;4、进气阀失灵进气压力过大、压力高。
处理方法:1、检查、修复自控系统,严格执行操作规程;2、根据操作法,采取紧急放压,按规定定量定时投料,严防误操作;3、增加传热面积或清除结垢,改善传热效果修复搅拌器,提高搅拌效率;4、关总汽阀,断汽修理阀门。
机械反应搅拌设备的选型步骤
机械反应搅拌设备的选型步骤
机械反应搅拌设备的选型步骤如下:
1. 确定搅拌的物料特性:包括粘度、密度、颗粒大小等,以及化学性质,如酸碱性、腐蚀性等。
这些特性将影响设备的选择。
2. 确定所需的搅拌形式:根据搅拌的目的和过程要求,确定是需要搅拌、混合、分散、加热、冷却等操作。
3. 考虑搅拌容器的尺寸和形状:根据反应物料的体积、搅拌物料的类型、反应工艺的要求,确定搅拌容器的尺寸和形状。
4. 考虑搅拌设备的类型:根据搅拌物料的特性和搅拌形式需求,选择合适的搅拌设备类型,如搅拌机、搅拌槽、搅拌桨等。
5. 考虑搅拌设备的材质:根据物料的化学性质和搅拌环境的要求,选择适合的材质,如不锈钢、聚合物、陶瓷等。
6. 考虑搅拌设备的动力:根据搅拌物料的粘度和所需的搅拌强度,确定搅拌设备的动力要求,包括电动机功率、转速等。
7. 考虑搅拌设备的控制方式:根据工艺要求,确定合适的搅拌设备控制方式,如手动控制、自动控制等。
8. 考虑搅拌设备的维护和清洁:根据设备的结构和材质,考虑设备的维护和清洁的难度,确定合适的设备。
9. 考虑搅拌设备的经济性:根据投资成本、运行成本和设备寿命等因素,综合考虑设备的经济性,选择合适的设备。
反应釜搅拌器的种类与选择
反应釜搅拌器的种类与选择1.框架搅拌器:框架搅拌器是一种常用的搅拌器,它由一个平面框架和旋转的叶片组成。
框架搅拌器操作简单且成本低廉,适用于反应物较少、粘度较低的情况。
2.锚式搅拌器:锚式搅拌器是一种结构相对复杂的搅拌器,可以提供较强的剪切力和混合效果。
锚式搅拌器适用于粘度较高的物料,如胶体、乳液等。
3.桥式搅拌器:桥式搅拌器的结构类似于一个悬在反应釜上方的桥,通过悬挂下来的叶片进行搅拌。
桥式搅拌器适用于较大容量的反应釜以及需要更大搅拌区域的情况。
4.螺旋搅拌器:螺旋搅拌器由一根螺旋形状的叶片组成,可以产生强烈的剪切力和混合效果。
螺旋搅拌器适用于粘度较高且容易结块的物料。
5.磁力搅拌器:磁力搅拌器通过磁力驱动,没有机械传动装置,避免了泄露和污染等问题。
磁力搅拌器适用于对反应物料有较高要求的场合,如制药、食品等行业。
选择合适的反应釜搅拌器1.反应物料的特性:包括物料的粘度、密度、粒径等。
对于粘度较低的物料,可以选择框架搅拌器;对于粘度较高的物料,可以选择锚式搅拌器或螺旋搅拌器。
2.反应速率和混合效果:不同种类的搅拌器对反应速率和混合效果的影响不同。
一般来说,锚式搅拌器和螺旋搅拌器可以提供较好的反应速率和混合效果。
3.反应釜尺寸和形状:反应釜尺寸和形状对搅拌器的选择有一定影响。
对于较大容量的反应釜,可以选择桥式搅拌器;对于封闭较小的反应釜,可以选择磁力搅拌器。
4.工艺要求和操作方式:根据不同的工艺要求和操作方式,选择合适的搅拌器。
例如,对于有洁净要求的场合,可以选择磁力搅拌器避免泄露和污染等问题。
综上所述,反应釜搅拌器的种类繁多,选择合适的搅拌器需要考虑反应物料的特性、反应速率和混合效果、反应釜尺寸和形状以及工艺要求等因素。
通过合理选择和设计搅拌器,可以提高反应釜的效率和产品质量。
反应釜搅拌器选型指南
搅拌器的选型搅拌器是反应釜的重要组成部分,是一种广泛应用的操作单元,它的复杂性在于它的原理要涉及流体力学、传热、传质和化学反应等多种过程。
一、搅拌器在化工生产中的用途化工生产的各种工艺过程涉及到各种不同特性的物料,各种不同的搅拌目的,所选的搅拌器不同,工艺过程种类多,搅拌的用途也多。
1、液体的互溶两种或多种液体的互溶、混合,但是均相液体的搅拌又应区分均相液体混合物中是否发生化学反应,对于没有化学反应的情况,通常称为互溶液体的调和或调匀。
对于两种或数种互溶液体间存在化学反应的情形,为了加速反应或使反应完全,也应进行搅拌。
2、互不相容液体的分散这种操作目的是互不相溶的液体相互接触,相互充分分散,以有利于传质或换学反应,或制备悬浊液和乳化液。
搅拌的作用是使液滴细化,增大相对接触面积。
3、气液相的接触这种搅拌使气体成为细微气泡,在液相中均匀分散,形成稳定的分散质,或增强液体吸收气体,或加快气液相发展化学反应等。
4、固液相的分散顾叶祥的搅拌用途较广,有时是制备均匀悬浮液,有时是固体的溶解,有时是固液相间发生化学反应,有时是固相在液体中洗涤,有时是从饱和液体中析出晶体等。
5、加强传热有些液体反应的时候需要加热或者冷却,通过搅拌提高液体的传热速度或者使液体的温度更均匀。
二、搅拌器的形式搅拌过程对搅拌器的要求各有不同,搅拌过程的情况千差万别,使搅拌器的形式也多种多样,下面是几种常用的搅拌器:1、推进式搅拌器推进式搅拌器常用整体铸造,加工方便,结构类似于轮船的螺旋推进器,常有三片桨叶组成。
推进式搅拌器直径取反应釜内经的1/4~1/3,切向线速度可达5~15m/s,转速为300~600rpm,最高转速可达1750rpm。
一般说小直径取高转速,大直径取低转速。
搅拌时能使物料在反应釜内循环流动,所起的作用以容积循环为主,剪切作用小,上下翻腾效果好,但采用挡板或者导流筒则轴向循环更强。
2、桨式搅拌器桨式搅拌器是一种结构和加工都非常简单的搅拌器,共两片桨叶,桨叶安装形式可分为平直叶和折叶两种,平直叶就是叶面与旋转方向互相垂直,折叶则是叶面与旋转方向呈一定的倾斜角度。
反应釜搅拌器选型指南
反应釜搅拌器选型指南反应釜搅拌器是一种常见的工业设备,广泛应用于化工、制药、食品等行业中的反应过程。
正确选择和使用搅拌器对于反应釜的操作效果和产品质量至关重要。
本文将介绍反应釜搅拌器的选型指南,以帮助用户正确选择搅拌器,提高生产效率和产品质量。
1.材质选择反应釜搅拌器的材质选择应根据反应介质的性质和工艺要求来确定。
常用的材料有不锈钢、碳钢、钛合金等。
不锈钢通常用于一般化工反应,碳钢可用于中等温度和压力下的反应,而钛合金适用于腐蚀性介质的反应。
对于一些特殊工艺要求,也可选择陶瓷材料或涂层材料。
2.搅拌形式选择反应釜搅拌器的搅拌形式有桨式搅拌、框式搅拌、绞龙搅拌、喷射搅拌等。
选择搅拌形式应根据反应介质的性质、反应过程的要求以及反应釜的结构来确定。
一般来说,桨式搅拌器适用于搅拌均质的反应体系,框式搅拌器适用于粘稠或易结垢的反应体系,绞龙搅拌器适用于高粘度的反应体系,喷射搅拌则适用于溶解气体等需要气液两相互作用的反应体系。
3.功率选择搅拌器的功率选择应根据反应体系的粘度、比重、液相浓度、反应速率等参数来确定。
一般来说,反应体系越粘稠,搅拌器所需的功率越大;反应釜体积越大,搅拌器所需的功率也越大。
4.转速选择搅拌器的转速选择应根据反应体系的搅拌要求来确定。
一般来说,选择合适的转速可以提高混合效果、缩短反应时间,并保证反应体系的混合均匀性。
转速过高可能导致产物质量下降,转速过低可能导致反应不充分。
5.搅拌器结构选择搅拌器的结构选择应根据反应釜的结构和工艺要求来确定。
常见的搅拌器结构有桨叶式、框架式、锚式、螺旋桨式等。
桨叶式适用于小型反应釜和中等粘度的反应体系,框架式适用于大型反应釜,锚式适用于高粘度和易结垢的反应体系,螺旋桨式适用于大容量反应体系。
6.配件选择7.耐腐蚀性选择对于需反应的腐蚀介质,建议选择耐腐蚀性能良好的搅拌器。
一些特殊介质可能需要特殊材质的搅拌器或特殊的涂层材料来抵抗腐蚀。
在选择耐腐蚀材料时,还要考虑材料的成本和可行性。
搅拌设备的基本结构与选型
2.1 搅拌器
搅拌器又被称作叶轮或桨叶,它是搅拌设备的核心部件。根据搅拌器的搅拌釜内产生的流型,搅拌器基本上可以分为轴向流和径向流两种。例如,推进式叶轮、新型翼型叶轮等属于轴向流搅拌器,而各种直叶、弯叶涡轮叶轮则属于径向流搅拌器。
搅拌器通常自搅拌釜顶部中心垂直插入釜内,有时也采用侧面插入,底部伸入或侧面伸入方式,应依据不同的搅拌要求选择不同的安装方式。
4.2填料密封
是搅拌设备较早采用的一种转轴密封结构,具有结构简单、制造要
求低、维护保养方便等优点。但其填料易磨损,密封可靠性较差,一般只适用于常压或低压低转速、非腐蚀性和弱腐蚀性介质,并允许定期维护的搅拌设备。
搅拌设备的基本结构与选型
1.搅拌容器
搅拌容器常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。
釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作是容器装液高径比以及装料系数大小而定。而容器的装液高径比又视容器内物料的性质、搅拌特征和搅拌器层数而异,一般取1~1.3,最大时可达6。釜底形状有平底、椭圆底、锥形底等有时亦可用方形釜。同时,根据工艺的传热要求,釜体外可加夹套,并通以蒸气、冷却水等载热介质;当传热面积不足时,还可在釜体内部设置盘管等。
在搅拌容器内,流体可沿各个方向流向搅拌器,流体的行程长短不一,在需要控制回流的速度和方向,用于确定某一流况时可使用导流筒。导流筒是上下开口的圆筒,安装在容器内,在搅拌混合中起导流作用,既可提高容器内流体的搅拌程度,加强搅拌器对流体的直接剪切作用,又造成一定的循环流,使容器内流体均可通过导流筒内强烈混合区,提高混合效率。安装导流筒后,限定了循环路径,减少了流体短路的机会。导流筒主要用于推进式、螺杆式以及涡轮式搅拌器的导流。
关于反应釜的分类和搅拌器的选型,你想知道的全在这里了!
关于反应釜的分类和搅拌器的选型,你想知道的全在这里了!反应釜是化工生产中非常重要的反应设备。
在化工生产过程中,为化学反应提供反应空间和反应条件的装置。
反应釜的分类有哪些?搅拌器的选型怎么选择?作为化工人,这些都是必须知道的!今天就来说说这里面的门道!反应釜的分类按结构型式分类,可分为釜式反应器、管式反应器、塔式反应器、固定床反应器、流化床反应器等。
1、釜式反应器釜式反应器也称槽式、锅式反应器。
用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。
操作时温度、浓度容易控制,产品质量均一。
在化工生产中,既可适用于间歇操作过程,又可用于连续操作过程;可单釜操作,也可多釜串联使用;但若应用在需要较高转化率的工艺要求时,有需要较大容积的缺点。
通常在操作条件比较缓和的情况下,如常压、温度较低且低于物料沸点时,釜式反应器的应用最为普遍。
2、管式反应器管式反应器主要用于气相、液相、气—液相连续反应过程,由单根(直管或盘管)连续或多根平行排列的管子组成,一般设有套管或壳管式换热装置。
管式反应器的特点:换热面积大,适用于热效应较大的反应;反应速度快,流速快,所以它的生产率高;结构简单紧凑,强度高,抗腐蚀强,抗冲击性能好,使用寿命长,便于检修。
3、塔式反应器塔式反应器一般有填料塔、板式塔、降膜反应器,、喷雾反应器、鼓泡塔等。
填料塔---快速和瞬间反应过程,特别适合与低压和介质具有腐蚀性的操作。
板式塔---中速和快速反应过程。
大多采用加压操作,适用于传质过程控制的加压反应过程。
喷雾塔---瞬间反应过程,适合于有污泥,沉淀和生成固体产物的体系,气膜控制的反应系统,气液两相返混严重。
鼓泡塔---储液量大,适合于速度慢和热效应大的反应,但液相返混严重。
适合于采用间歇操作方式。
4、固定床反应器固定床板反应器是指流体通过静止不动的固体物料所形成的床层而进行化学反应的设备。
以气-固反应的固定床反应器最常见。
固定床反应器床层薄,流速低,床层内的流体轴向流动可看作是理想置换流动,因而化学反应速率较快,完成同样的生产任务所需的催化剂用量和反应器体积较小,流体停留时间可严格控制,温度分布可适当调节,有利于提高化学反应的转化率和选择性;固定床中催化剂不易磨损,可在高温高压下操作。
[说明]搅拌形式和类型
化工生产——反应釜搅拌选型对照根据物料的性质选择搅拌器:直叶桨式此类型为最基本的一种桨型,低速时为水平环流型,平流区操作;高速时为径流型。
有挡板时,功率准数值:Np明显上升,为上下循环流,湍流加强,适用于低粘度液体的混合、分散、固液悬浮、传热等液相反应过程。
斜叶桨式此类搅拌器可制成30°、45°、或60°倾角,有轴向和径向分流,流型比平直叶桨式复杂,排出性能比平直叶桨高,综合效果更好,因此使用频率比平直叶桨式高。
复合折叶桨式这是一种轴向流叶轮,它在主叶片上再增加了一个辅助叶片,该辅叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减少:同时在叶端能产生交叉的垂直分流,提高了搅拌效果,适用于中、低粘度的混合、固液悬浮、传热等液相反应过程。
双折叶桨式多段逆流型搅拌器,在运行时,可促进液体形成较大的轴向循环,可比传统的折叶搅拌器减少30%的混合时间。
特别适用于过渡流型下的混合、固液悬浮、溶解、传热等液相反应过程。
椭圆叶桨式本类搅拌器是直叶桨式的一种变型,桨底旋转面接近容器的椭圆面,兼起刮板的作用,多为低速运行,可在过渡流或层流区操作。
六直叶开启涡轮桨本类搅拌器流型为径向流,在有挡板时可自桨叶为界形成上下两个循环流,具有高剪切力和较大的循环能力,其中直叶开启涡轮式剪切力最大,弯叶开启涡轮式剪切力最小,斜叶开启涡轮居中。
所以直叶开启涡更适合分散操作过程。
弯叶排出性能好,桨叶不易磨损,更适合于固液悬浮。
对于固体溶解也很适合。
四斜叶开启涡轮本类搅拌器技术性能同六叶开启涡轮式对应,相同运行条件下,功率消耗、搅拌能力都次于六叶搅拌器。
在相对精度高,运转速度大的条件下比六叶更优、搅拌器重量更轻。
多叶开启涡轮桨轴流型搅拌器,有较好对流循环能力,并有一定的湍流扩散能力,比较适合应用于混合分散、微粒结晶、反应、溶解、固液悬浮、传热等操作。
通常用于低速分散搅拌物料。
六后弯叶开启涡轮桨本类搅拌器流型为径向流,在有挡板时可自桨叶为界形成上下两个循环流,剪切力和循环能力较直叶型性能稍差。
反应釜搅拌器选型方法规范
反应釜搅拌器选型方法规范反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。
由于液体的粘度对搅拌状态有很大的影响,所以根据反应釜内搅拌介质粘度大小来选型是一种基本的方法。
几种典型的搅拌器都随粘度的高低而有不同的使用范围。
随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。
这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。
而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。
根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。
由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。
推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。
选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。
其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。
提出的选型表也是根据反应釜搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。
比较上述表可以看到,选型的根据和结果还是比较一致的。
下面对其中几个主要的过程再作些说明。
低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。
由于推进式的循环能力强且消耗动力少,所以是最合用的。
而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。
对分散操作过程,涡轮式因具有高剪切力和较大循环能力,所以最为合用,特别是平直叶涡轮的剪力作用比折叶和弯叶的剪力作用大,就更为合适。
化学反应过程与设备 搅拌装置的选择
• 搅拌反应釜传动装置的设计内容主要包括电动机、减速器和联轴 器的选用。 • 搅拌反应釜用的电动机绝大部分与减速器配套使用,只应,设计时可根据选定的减速器选用配套的电动机。 选用电动机主要是确定电动机系列、功率、转速以及安装形式和 防爆要求等。搅拌反应釜常用的电动机系列有Y系列三相异步电 动机、YB系列隔爆型三相异步电动机、Y-F系列防腐型三相异步 电动机、YXJ系列摆线针轮减速异步电动机等。电动机的功率主 要根据搅拌所需的功率及传动装置的传动效率等而定。 • 常用减速器的类型有齿轮减速器、蜗轮减速器、三角皮带减速器、 摆线针齿行星减速器、谐波减速器等。选用减速器时应考虑其使 用特性,如减速比范围、输出轴转速范围、功率范围以及效率等 参数。选用标准减速器时与其相配的电动机、联轴器、机座等均 为标准型号,配套供应。
桨叶式搅拌器
齿片式搅拌器
外缘呈锯齿形,高速旋 转下剪切性能很高,循环 能力相对弱,分散、粉碎、 剥离作用强烈,两相物性 差异大的分散混合很适用, 如涂料的分散过程。平齿 形为一层水平的锯齿,翻 齿形和贴齿形为上下两向 立式锯齿,前者为齿和圆 盘一体冲成上下翻出,齿 粗疏,后者为两边锯齿条 焊于圆盘外缘,齿细密。
框、锚式搅拌器
螺带螺杆式搅拌器
此类搅拌器为慢速型搅拌器,在层流区 操作,适用于中高粘度液的混和和传热等过 程,螺杆式搅拌直径小,轴向推力大,螺杆 带上导流筒,轴向流动加强,在导流筒内外 形成向下向上的循环。螺带式搅拌器的螺带 外廓接近于搅拌槽内壁,搅拌直径大,强化 了近罐壁的液体的上下循环,高粘度液体的 传热过程很适用。 螺带螺杆组合式,同时具有螺杆和螺带的特 性,强化了液体内外围的循环,特别对非牛 顿型拟塑性及粘弹性液体有效。 锥底螺带型,锥底螺带螺杆型,其特点是底 形可和锥形釜底相配,可按要求设计。
釜式反应器的结构、分类以及选型
釜式反应器的结构、分类以及选型釜式反应器在有机化工生产和精细化工生产中应用十分广泛。
不但用于酯化反应、皂化反应这样的均相反应,而且也广泛用于除气相反应以外的几乎所有的反应,如液相、液液相、液固相、气液固相反应等。
01 釜式反应器结构釜式反应器也称反应釜,它主要由搅拌器、罐体、夹套、压出管、人孔、轴封、传动装置和支座等部分构成。
1—搅拌器、2—罐体、3—夹套、4—搅拌轴、5—压出管、6—支座、7—人孔、8—轴封、9—传动装置02 装填系数1)装填系数一般取0.6-0.85;2)如物料在反应过程中呈泡沫或沸腾状态,取0.6-0.7;3)如物料在反应过程中比较平稳,取0.8-0.85。
03 搅拌器的作用和分类1)混合:体系中的不同物质混合均匀。
2)搅动:物料强烈流动,提高传热、传质速率。
3)悬浮:细小颗粒在液体中均匀悬浮,防止沉降、加速溶解等。
4)分散:气体或液体充分分散成细小气泡或液滴,促进传质和反应,控制粒度。
反应釜搅拌类型根据不同的搅拌方式和搅拌结构可以分为多种类型。
以下是一些常见的反应釜搅拌类型:按搅拌方式分:1)锚式搅拌:通过在反应釜内壁上固定锚形或刮板形的搅拌器,使反应物料在反应釜内壁上形成循环流动,从而实现搅拌效果。
2)桨叶式搅拌:通过安装在反应釜顶部或底部的桨叶形搅拌器,使反应物料在釜内形成强烈的涡流和对流,从而实现搅拌混合效果。
3)框架式搅拌:通过安装在反应釜壁上的框架形搅拌器,使反应物料在框架内形成循环流动,从而实现搅拌效果。
4)螺带式搅拌:螺旋叶片通过旋转将物料向上提升,然后再自由落下,从而实现了充分混合和均匀分布。
5)螺旋式搅拌:通过在反应釜内部安装螺旋形搅拌器,使反应物料在螺旋叶片的推动下实现循环流动和搅拌混合。
按加热/冷却方式分类1)水加热反应釜当对温度要求不高时,可采用这种加热方式。
其加热系统有敞开式和密闭式两种。
敞开式较简单,它由循环泵、水槽、管道及控制阀门的调节器组成。
常用搅拌器类型及适用范围
常用搅拌器类型及适用范围搅拌器是反应釜的关键部件之一,根据釜内不同介质的物理学性质、容量、搅拌目的等选择相应的搅拌器,对促进化学反应速度、提高生产效率能起到很大的作用。
掌握搅拌器的分类及适用场合有助于选择合适的搅拌器,达到更好的反应效果。
一、反应釜搅拌器工作原理反应釜搅拌器主要的组成部分是叶轮,它随旋转轴运动将机械能施加给液体,并促使液体运动。
搅拌器旋转时把机械能传递给流体,在搅拌器附近形成高湍动的充分混合区,并产生一股高速射流推动液体在搅拌容器内循环流动。
二、反应釜搅拌器的分类及适用场合1高、中Re区域/轴向流搅拌器1.1.推进式搅拌器●特点:排出液体的能力强,叶片曲率变化大,剪切力很弱;●适用范围:它主要用于液-液体系的混合、使温度均一化、在低浓度固-液体系中防止淤浆沉降等。
不适用于要求较高剪切力的各种分散和反应等操作。
1.2.三窄叶旋桨●特点:搅拌器前端为曲率叶形,剪切力小,轴向流强,循环量大,能耗低;●适用范围:适合中低黏度流体的混合、传热、循环、粒子悬浮、溶解等,可在大型搅拌槽中使用,中低运行转速。
1.3. 四宽叶旋桨/三宽叶旋桨●特点:其剪切速率适应多种粘度范围,螺旋型的桨叶曲面,使搅拌器有较好的轴向流动,大面积的叶片也能与盘式涡轮中的圆盘一样,阻止气体从叶轮穿过,延长气液接触时间;●适用范围:可适用于气-液体系的搅拌,同时适用于较高粘度混合、传热、溶解、反应、固体颗粒悬浮等操作。
1.4. 二叶弧桨●特点:二叶弧桨为强轴流型,其剪切速率适应多种粘度范围,叶端到桨叶根部均为弧形曲面,剪切力小,轴向循环强,叶端截面小,根部截面大,整个搅拌器区域排量均衡,使搅拌器有非常好的轴向流动;●适用范围:适用于中低粘度液-液混合、传热、溶解、反应、固体颗粒悬浮等操作。
在湿法冶金上有比较广泛的应用。
1.5. 四叶弧桨●特点:四叶弧桨为强轴流型,其剪切速率适应多种粘度范围,叶端到桨叶根部均为弧形曲面,剪切力小,轴向循环强,叶端截面小,根部截面大,整个搅拌器区域排量均衡,使搅拌器有非常好的轴向流动;●适用范围:适用于中低粘度液-液混合、传热、溶解、反应、固体颗粒悬浮等操作。
搅拌釜式反应器搅拌釜式反应器
空气进入桨叶被吸到液体中,使其密度减小, 混
合效果降低。
c.一部分叶轮在空气中运转→使流体对搅拌器振动 阻尼作用↓→搅拌器振动↑
作用—a.将切向流→变为
挡板形式—纵向挡板 挡板 宽度w—容器直径的1/12~1/10
数量z —一般在容器内壁面均匀安装4块挡板
挡板
全挡板条件—当再增加挡板数和挡板宽度,而功率消耗不再 增加时,称为全挡板条件。 全挡板条件与挡板数量和宽度有关。 永田冶进提出了全挡板条件:
NRe100~1000,处于过渡流,桨叶周围流体为湍流状态, 上下循环仍然为滞流,雷诺数增大,湍动程度增大;
NRe>1000,整个釜内上下循环流动都处于湍动状态, 无挡板时会引起漩涡,当D(桨叶直径)/T(釜径)<0.1时, 釜内流体虽为湍流,但上下循环流不会遍及整个釜 内,易出现死角。
功率准数 排出流量数 混合时间数
d
D
对称布置的几组 竖式蛇管:
传热 挡板作用
d
竖式蛇管
(Vertical Snake Pipe)
各种碳钢夹套的适用温度和压力范围
夹套型式 整体夹套 U型
圆筒型 型钢夹套 蜂窝夹套 短管支撑式
折边锥体式 半圆管夹套
最高温度/℃ 最高压力/MPa
350
0.6
300
1.6
200
2.5
200
2.5
250
容积:
Volume
几种搅拌设备筒体的高径比
种类
一般搅拌罐 聚合釜 发酵罐类
罐内物料类型
液-固相、液-液相 气-液相
悬浮液、乳化液 发酵液
高径比
1~1.3 1~2 2.08~3.85 1.7~2.5
反应釜是依据什么选型的呢 反应釜如何操作
反应釜是依据什么选型的呢反应釜如何操作反应釜其实就是有物理或化学反应的不锈钢容器,依据不同的工艺条件需求进行容器的结构设计与参数配置,设计条件、过程、检验及制造、验收需依据相关技术标准,以实反应釜其实就是有物理或化学反应的不锈钢容器,依据不同的工艺条件需求进行容器的结构设计与参数配置,设计条件、过程、检验及制造、验收需依据相关技术标准,以实现工艺要求的加热、蒸发、冷却及低高速的混配反应功能。
企业或者个人购买反应釜的时候,要做到选择的正确性,下面就反应釜的选型简单介绍一下:1、反应釜的容积:不锈钢反应釜容积可依据客户需要,设计成50,100,300,500,1000,2000L.等容积;2、反应釜所需要达到的反应压力:客户如只是供常压条件反应使用,可选购常规不锈钢反应釜,如需在高压条件下使用,则须选购高压不锈钢反应釜;3、反应达到的温度;4、客户所生产物料的粘稠度及酸碱度:生产物料的粘稠度与反应釜搅拌器存在直接关系,假如生产物料的粘稠度高,所需的反应釜搅拌器的搅拌扭矩就大,反之则小。
生产物料的酸碱度则与反应釜的材质有直接的关系,选用不同的材质,存在不同的耐酸碱程度;5、加热方式:反应釜加热方式有电加热,蒸汽,导热油等加热方式。
在选择加热方式时,应依据生产物料的要求而定,不同的加热方式所能够达到的温度各有不同。
为了让大家在选购不锈钢反应釜的时候能更明白清楚,下面我们对反应釜搅拌器的选用再侧重介绍一下。
1、依据被搅拌液体容积的大小选用搅拌器的型式;2、依据被搅拌液体的黏度大小选用;3、依据工艺要求的搅拌速度选用,快速搅拌实现液体混合搅拌或形成稳定固体颗粒悬浮液搅拌时应选用涡轮式搅拌器或螺旋桨式搅拌器为宜;4、反应釜容积大于500m3时,接受侧入式,叶轮以螺旋桨式搅拌器为佳;5、依据传热方式考虑,夹套给热以锚式搅拌器为宜;槽内设盘管的给热结构应选用螺旋桨式搅拌器或涡轮式搅拌器。
反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品等生产型用户和各种科研试验项目的讨论,用来完成水解、中和、结晶、蒸馏、蒸发、储存、氢化、烃化、聚合、缩合、加热混配、恒温反应等工艺过程的容器.反应釜属于非标产品,客户要求不一样,参数也会不一样,因此在采购过程中要首先确认反应釜的参数(反应过程中的压力、温度、材质、加热方式、密封形式等)其中决议价格的紧要部分是材质和、压力,压力越高板厚就会加添,材质紧要与反应釜内的反应介质有关。
1-2-1搅拌器的选择
成高湍动的充分混合区,并产生一股高速射流推动液 体在搅拌容器内循环流动。 流型 流体循环流动的途径。 5
一、流型
流型与搅拌的关系
流型与搅拌效果、搅拌功 率的关系十分密切。搅拌 器的改进和新型搅拌器的 开发往往从流型着手。
搅拌目的
搅拌器选型一般从三个方面考虑
物料粘度
搅拌容器容积的大小
选用时除满足工艺要求外,还应考虑功耗低、操作 费用省,以及制造、维护和检修方便等因素。
44
常用的搅拌器选用方法:
一、按搅拌目的选型 仅考虑搅拌目的时搅拌器的选型见表5。
45
表5 搅拌目的与推荐的搅拌器形式
搅拌目的
互溶液体的混合及 在其中进行化学反 应
4.锚式搅拌器
结构简单。 适用于粘度在100Pa·s 以下的流体搅拌,当流 体粘度在10~100Pa·s 时,可在锚式桨中间加 一横桨叶,即为框式搅 拌器,以增加容器中部 的混合。
40 图11 锚式搅拌器
锚式搅拌器
41
应用
锚式或框式桨叶的混合效果并不理想,只适用于对混合 要求不太高的场合。
由于锚式搅拌器在容器壁附近流速比其它搅拌器 大,能得到大的表面传热系数,故常用于传热、 晶析操作。 常用于搅拌高浓度淤浆和沉降性淤浆。 当搅拌粘度大于100Pa·s 的流体时,应采用螺带 式或螺杆式。
折叶和后弯 径向流型。 600r/min
叶小于
在有挡板 圆盘上下
10Pa·s
时以桨叶 液体的混
为界形成 合不如开
上下两个 式涡轮
循环流。
n=10~ 300r/min v=4~ 10m/s 折叶式 v=2~ 6m/s
釜式反应器结构选型
轴封免微量泄露。 机械密封结构较为复杂,但密封效果甚佳。
因此,轴封可选用机械密封。
换热装置
换热装置是用来加热或冷却反应物料,使其符合工艺要 求的温度条件的设备。结构类型主要由夹套式、蛇管式、 列管式、外部循环式等。 由于反应温度要求不高,因而夹套式即可满足要求。夹 套是最常用的传热结构,由圆柱形壳体和底封头组成。 夹套上设有蒸汽、冷却水或其他加热、冷却介质的进出 口。当加热介质是蒸汽时,进口管应靠近夹套上端,冷 凝液从底部排出;当加热(冷却)介质是液体时,则进 口管应设在底部,使液体下进上出,有利于排出气体和 充满液体。
壳体材料
最常用铸铁和钢板,也有采用合金钢或复合钢板。 当用来处理有腐蚀性介质时,则需用耐腐蚀材料 制造,或将反应釜内衬内表搪瓷、衬瓷板或橡胶。
釜底形状
常用形状有平面形、蝶形、椭圆形和球形。 • 平面结构简单,容易制造,一般适用于釜体直径 小、常压或压力不大的条件。 • 椭圆形或碟形应用较多 (注:当反应后物料需用分层法 • 球形多用于高压反应器 使其分离时可用锥形底。)
综述:
壳体材料选用铸铁,釜内衬内表搪瓷,上盖 与筒体法兰连接,釜底采用椭圆形;轴封选 用机械密封;换热装置采用夹套式。
谢谢!
化学反应过程与设备
釜式反应器结构选型
概述
装有搅拌器的釜式设备是化学生产工业中广泛采用 的反应器之一,它可以用来进行液液均相反应,也 可用于非均相反应。广泛应用于工业生产中。 而之所以应用范围如此广泛,是因为这类反应器结 构简单、加工方便,传质效率高、温度分布均匀, 操作条件的可控范围较广,操作灵活性大,便于更 换品种,能适应多样化生产。
壳体选型
根据乙酸乙酯工艺条件:釜式反应器上盖和筒体选用法 兰连接,以满足装拆清洗需要。此外,反应釜传动装置 大多直接承于上盖,故上盖需要足够的强度和刚度。可 选用椭圆形盖。壳体材料大多采用铸铁,因硫酸具有酸 性和腐蚀性,故将釜内衬内表搪瓷。釜底形状选用椭圆 形即可满足要求。
化工反应釜搅拌罐减速机选型说明
化工反应釜搅拌罐减速机选型说明目前种分罐(∮3500*7000mm(搅拌叶片∮2700,三组叶片,每组3片,正常液位高度6100,底部叶片距离釜底500,顶部叶片距离高液位1000;搅拌轴转速29rpm,搅拌轴直径∮150,)拌采用M10蜗杆减速器(配置7.5kw-6级电机)传动带到搅拌轴搅拌,存在减速器发热、振动大、故障率高、电机电流过载等问题。
在目前每罐加8吨晶种的条件下还可基本保持正常运行,若按教授改进意见,每罐晶种加入量提高到18吨(提高125%),将大幅度提高罐内料液粘稠度,增大搅拌时料液内部摩擦阻力和功率消耗,目前配套的M10减速器和7.5kw6级电机将远不能满足加18吨晶种搅拌要求,需要加大搅拌减速器和电机。
氧化铝种分罐有一台从铬铁酸洗搅拌池拆卸的M12减速器(配置7.5kw电机),相对比其他灌上M10减速器的温度低、故障少,可以满足目前加8吨晶种搅拌的需要,但满负荷搅拌时电机电流也达到13安左右。
若继续采用M12减速器配置7.5kw电机在加18吨晶种的搅拌罐上搅拌,其承载能力和有效传递功率也将达到极限(M12蜗杆减速器配置电机功率为7.5-11kw,因其传动效率低,有效传递功率5.5-9kw),因此,不建议配置M12和摆线针轮减速器,建议配置承载功率达到11kw的锥齿轮减速器(氯化铬搪瓷反应釜即配置7.5kw锥齿轮减速器)。
齿轮减速器、摆线针轮减速器、蜗杆减速器减速器能耗比较。
齿轮减速器因良好的滚动啮合,其传动效率可以达到95-98%,而蜗杆减速器由于自身滑动摩擦传动的结构,传动摩擦力大,决定了其传动效率只能达到70-82%,摆线针轮减速器由于传动主要为滚动摩擦,传动效率也可达到95-97%。
齿轮减速器比蜗杆减速器节能16-40%,对长期连续运转的搅拌罐来说,节能量(节电量)还是很可观的。
以一台配置7.5kw电机的蜗杆减速器,每年按300天工作日,每天按平均16小时运转,电机满载率按60%计算,年消耗电21600kwh,若更换为可满足需要的齿轮减速器,平均按20%节电率可节约4320kwh,因此有必要逐步选用传动效率更高、可靠度更好的新型釜用锥齿轮减速机代替部分蜗杆减速机和摆线针轮减速机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
搅拌器的选型
搅拌器是反应釜的重要组成部分,是一种广泛应用的操作单元,它的复杂性在于它的原理要涉及流体力学、传热、传质和化学反应等多种过程。
一、搅拌器在化工生产中的用途
化工生产的各种工艺过程涉及到各种不同特性的物料,各种不同的搅拌目的,所选的搅拌器不同,工艺过程种类多,搅拌的用途也多。
1、液体的互溶
两种或多种液体的互溶、混合,但是均相液体的搅拌又应区分均相液体混合物中是否发生化学反应,对于没有化学反应的情况,通常称为互溶液体的调和或调匀。
对于两种或数种互溶液体间存在化学反应的情形,为了加速反应或使反应完全,也应进行搅拌。
2、互不相容液体的分散
这种操作目的是互不相溶的液体相互接触,相互充分分散,以有利于传质或换学反应,或制备悬浊液和乳化液。
搅拌的作用是使液滴细化,增大相对接触面积。
3、气液相的接触
这种搅拌使气体成为细微气泡,在液相中均匀分散,形成稳定的分散质,或增强液体吸收气体,或加快气液相发展化学反应等。
4、固液相的分散
顾叶祥的搅拌用途较广,有时是制备均匀悬浮液,有时是固体的溶解,有时是固液相间发生化学反应,有时是固相在液体中洗涤,有时是从饱和液体中析出晶体等。
5、加强传热
有些液体反应的时候需要加热或者冷却,通过搅拌提高液体的传热速度或者使液体的温度更均匀。
二、搅拌器的形式
搅拌过程对搅拌器的要求各有不同,搅拌过程的情况千差万别,使搅拌器的形式也多种多样,下面是几种常用的搅拌器:
1、推进式搅拌器
推进式搅拌器常用整体铸造,加工方便,
结构类似于轮船的螺旋推进器,常有三片桨叶
组成。
推进式搅拌器直径取反应釜内经的1/4~
1/3,切向线速度可达5~15m/s,转速为300~
600rpm,最高转速可达1750rpm。
一般说小直
径取高转速,大直径取低转速。
搅拌时能使物
料在反应釜内循环流动,所起的作用以容积循
环为主,剪切作用小,上下翻腾效果好,但采
用挡板或者导流筒则轴向循环更强。
2、桨式搅拌器
桨式搅拌器是一种结构和加工都非常简单的搅拌器,共两片桨叶,桨叶安装形式可分为平直叶和折叶两种,平直叶就是叶面与旋转方向互相垂直,折叶则是叶面与旋转方向呈一定的倾斜角度。
桨式搅拌器直径取反应釜内经的1/3~4/5,一般取1/2,不宜采用太长的桨叶,因为搅拌器消耗的功率与桨叶直径的五次方成正比。
桨式搅拌器的运转速度较慢,转速一般为20~80rpm,圆周速度在1.5~3m/s 范围内比较合适。
平直叶搅拌器其低速时以水平环向流为主,速度高时为径流型;有挡板时为上下循环流;折叶搅拌器有轴向分流、径向分流和环向分流,一般在层流、过度流状态时操作。
在料液层比较高的情况下,装有几层桨叶,相邻两层桨叶常交叉成90°角安装。
在一般情况下,几层桨叶安装位置如下:
一层安装在下封头对接环焊缝高度处;
二层的话,一层安装在下封头对接环焊缝高度处;另一层安装在下封头对接环焊缝与液面的中间的二分之一处或者稍高处;
三层的话,一层安装在下封头对接环焊缝高度处,另一层安装在液面下约200mm处,中间再安装一层。
3、涡轮式搅拌器
涡轮式搅拌器有开启式的和带圆盘
式的,桨叶分为平直叶和弯叶两种。
搅拌
叶一般和圆盘焊接或者用螺栓连接,也有
铸造而成的。
蜗轮式搅拌器直径取反应釜
内经的1/5~1/2,一般取1/3,桨叶一般
为6片,其切向线速度为4~10m/s,转
速为10~300rpm,最高转速可达600rpm。
涡轮式搅拌器使流体均匀的由垂直方向
运动改变为水平方向运动,自涡轮流出的
高速液流沿圆周运动的切线方向散开,使
在整个液体内得到激烈的搅拌,当采用挡
板时带圆盘涡轮式搅拌器的流体以桨叶
为界限形成上下两个循环流,折叶的有轴
向分流。
圆盘上下的液体混合不如开启涡
轮式。
4、框式和锚式搅拌器
框式搅拌器可以视为桨式搅拌器的变形,水平
的桨叶与垂直的桨叶连成一体成为刚性的框架,结
构比较坚固,当这种搅拌器底部形状和反应釜下封
头形状相似时,常称为锚式搅拌器。
搅拌器一般用
扁钢或者角钢弯制。
框式或锚式搅拌器的框架或锚架直径往往较
大,通常其直径取反应釜内经的2/3~9/10,其切
向线速度为0.5~1.5m/s,转速为30~80rpm,最高
转速可达100rpm左右。
一般为层流状态操作。
又
是为了增大搅拌范围,在桨上增加立叶和横梁。
5、螺带式搅拌器
螺带式搅拌器专用于高粘度液体的搅拌。
搅拌
器是由钢带按一定螺距旋形绕成,钢带的外沿常做成几乎贴近釜内壁,与釜内壁的间隙很小,故搅拌时能不断将粘于釜壁的沉积物料刮掉。
一般转速较低,约0.5~50rpm,其线速度小
于2m/s。
运转时,液体成轴流型,一般是液体沿釜壁螺旋上升再沿桨轴而下,属层流状态操作。
6、其他形式搅拌
除上述五种搅拌外,还有很多种搅拌器。
例如:螺杆式、布尔马金式、三叶后掠式、圆筒式、行星式搅拌器等。
螺杆式搅拌器一般直径不大,只有反应釜内经的2/5~1/2,转速为0.5~50rpm,流动状态与螺带式搅拌器相同,不同处是螺杆式搅拌器可以偏心放在反应釜内。
三、搅拌器的选型
反应釜搅拌器一个好的选型方法最好具备两个条件:一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。
由于液体的粘度对搅拌状态有很大的影响,所以根据反应釜内搅拌介质粘度大小来选型是一种基本的方法。
几种典型的搅拌器都随粘度的高低而有不同的使用范围。
随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。
这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的,而蜗轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。
根据搅拌过程的目的与搅器适成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。
推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。
选用时根据搅拌目的与流动状态来决定桨型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。
下面对其中几个主要的过程进一步做些说明:
1、低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。
由于推进式的循环能力强且消耗动力少,所以是最合适的。
2、对分散操作过程,涡轮式因具有高剪切力和较大循环能力,所以最为适用。
特别是平直叶涡轮的剪力作用比折叶和弯叶的剪力作用大,就更为合适。
推进式和桨式由于其剪切力比平直叶涡轮的小,所以只能在液体分散量较小的情况下可用,而其中桨式很少用于分散操作。
分散操作都有挡板来加强剪切效果。
3、固体悬浮操作以涡轮式的使用范围最大,其中以开启涡轮式为最好。
它没有中间的圆盘部分,不致阻碍桨叶上下的液相混合,而且弯叶开启涡轮的优点更突出,它的排出性好、桨叶不易磨损,所以用于固体悬浮操作更合适。
推进式的使用范围较窄,固液比重差大或固液比在50%以上时不适用。
使用挡板时,要注意防止固体颗粒在挡板角落上的堆积。
一般固液比较低时,才用挡板,而折叶开启涡轮、推进式都有轴向流,所以也可以不用挡板。
4、气体吸收过程以圆盘式轮最合运,它的剪切力强,而且圆盘的下面可以存住一些气体,使气体的分散更稳定,而开式涡轮就没有这个优。
桨式及推进式对气体吸收过程基本上不合用,只有在少量以吸收的气体要求分散度不高时还能应用。