SPSS分析报告实例
spss的数据分析报告范例
spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。
针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。
本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。
二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。
在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。
该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。
三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。
其中包括性别、年龄、教育水平和职业等因素。
以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。
(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。
(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。
(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。
2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。
通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。
(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。
其中,产品质量、价格和售后服务被认为是受访者最关注的方面。
3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。
以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。
(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。
SPSS简单数据分析报告
精选范文、公文、论文、和其他应用文档,希望能帮助到你们!SPSS简单数据分析报告目录一、数据样本描述 (4)二、要解决的问题描述 (4)1 数据管理与软件入门部分 (4)1.1 分类汇总 (4)1.2 个案排秩 (5)1.3 连续变量变分组变量 (5)2 统计描述与统计图表部分 (5)2.1 频数分析 (5)2.2 描述统计分析 (5)3 假设检验方法部分 (5)3.1 分布类型检验 (5)3.1.1 正态分布 (5)3.1.2 二项分布 (6)3.1.3 游程检验 (6)3.2 单因素方差分析 (6)3.3 卡方检验 (6)3.4 相关与线性回归的分析方法 (6)3.4.1 相关分析(双变量相关分析&偏相关分析) (6)3.4.2 线性回归模型 (6)4 高级阶段方法部分 (6)三、具体步骤描述 (7)1 数据管理与软件入门部分 (7)1.1 分类汇总 (7)1.2 个案排秩 (8)1.3 连续变量变分组变量 (10)2 统计描述与统计图表部分 (11)2.1 频数分析 (11)2.2 描述统计分析 (14)3 假设检验方法部分 (16)3.1 分布类型检验 (16)3.1.1 正态分布 (16)3.1.2 二项分布 (17)3.1.3 游程检验 (18)3.2 单因素方差分析 (22)3.3 卡方检验 (24)3.4 相关与线性回归的分析方法 (26)3.4.1 相关分析 (26)3.4.2 线性回归模型 (28)4 高级阶段方法部分 (32)4.1 信度 (32)一、数据样本描述本次分析的数据为某公司474名职工状况统计表,其中共包含11个变量,分别是:id(职工编号),gender(性别),bdate(出生日期),edcu(受教育水平程度),jobcat(职务等级),salbegin(起始工资),salary(现工资),jobtime(本单位工作经历<月>),prevexp(以前工作经历<月>),minority(民族类型),age(年龄)。
SPSS实验分析报告四
SPSS实验分析报告四一、地区*日期*销售量(一)、提出假设原假设H0=“不同地区对销售量的平均值没有产生显著影响。
”H2=“不同日期对销售量的平均值没有产生显著影响。
”H=“不同的地区和日期对销售量没有产生了显著的交互作用。
”3(二)、两独立样本t检验结果及分析表(一)主旨間係數數值標籤N地区 1 地区一92 地区二93 地区三9日期 1 周一至周三92 周四至周五93 周末9表(一)表示各个控制变量的分组情况, 包括三个不同的地区以及三个不同日期的数据。
表(二)销售额多因素方差分析结果主体间效应的检验因變數: 销售量來源第 III 類平方和df 平均值平方 F 顯著性修正的模型61851851.852a8 7731481.481 8.350 .000截距844481481.481 1 844481481.481 912.040 .000地区2296296.296 2 1148148.148 1.240 .313日期2740740.741 2 1370370.370 1.480 .254地区 * 日56814814.815 4 14203703.704 15.340 .000 期錯誤16666666.667 18 925925.926總計923000000.000 27校正後總數78518518.519 26a.R 平方 = .788(調整的 R 平方 = .693)由表(二)可知, 第一列是对观测变量总变差分解的说明;第二列是对观测变量总变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P值。
可以看到: 观测变量的总变差SST为78518518.519, 它被分解为四个部分, 分别是: 由地区(x2)不同引起的变差(2296296.296), 由日期(x3)不同引起的变差(2740740.741), 由地区和日期交互作用(x2*x3)引起的变差(5.681E7), 由随机因素引起的变差(Error 1.667E7)。
SPSS分析报告(二)
SPSS实验分析报告二一、婆媳关系*住房条件检验(一)、提出原假设H0原假设: 婆媳关系的好坏程度与住房条件有关系(二)、两独立样本t检验结果及分析表(一)觀察值處理摘要觀察值有效遺漏總計N百分比N百分比N百分比婆媳关系* 住房条件600100.0%00.0%600100.0%由表(一)可知, 本次调查获得的有效样本为600份, 没有遗漏的个案。
表(二)婆媳关系*住房条件交叉列表住房条件總計差一般好婆媳关系紧张計數577860195預期計數48.868.378.0195.0婆媳关系內的%29.2%40.0%30.8%100.0%住房条件內的%38.0%37.1%25.0%32.5%佔總計的百分比9.5%13.0%10.0%32.5%殘差8.39.8-18.0一般計數458763195預期計數48.868.378.0195.0婆媳关系內的%23.1%44.6%32.3%100.0%住房条件內的%30.0%41.4%26.3%32.5%佔總計的百分比7.5%14.5%10.5%32.5%殘差-3.818.8-15.0好計數4845117210預期計數52.573.584.0210.0婆媳关系內的%22.9%21.4%55.7%100.0%住房条件內的%32.0%21.4%48.8%35.0%佔總計的百分比8.0%7.5%19.5%35.0%殘差-4.5-28.533.0總計計數150210240600預期計數150.0210.0240.0600.0婆媳关系內的%25.0%35.0%40.0%100.0%住房条件內的%100.0%100.0%100.0%100.0%佔總計的百分比25.0%35.0%40.0%100.0%由表(二)可知, 一共调查了600人, 其中婆媳关系紧张的组有195人, 占总人数的32.5%;婆媳关系一般的组有195人, 占总人数的32.5%;婆媳关系好的组有210人, 占总人数的35.0%;数据分布均匀。
spss数据分析报告(共7篇)
spss数据分析报告(共7篇):分析报告数据s pss spss数据报告怎么写spss数据分析实例说明 spss有哪些数据分析篇一:spss数据分析报告关于某班级2012年度考试成绩、获奖情况统计分析报告一、数据介绍:本次分析的数据为某班级学号排列最前的15个人在2012年度学习、获奖统计表,其中共包含七个变量,分别是:专业、学号、姓名、性别、第一学期的成绩、第二学期的成绩、考级考证数量,通过运用spss统计软件,对变量进行频数分析、描述分析、探索分析、交叉列联表分析,以了解该班级部分同学的综合状况,并分析各变量的分布特点及相互间的关系。
二、原始数据:三、数据分析1、频数分析(1)第一学期考试成绩的频数分析进行频数分析后将输出两个主要的表格,分别为样本的基本统计量与频数分析的结果1)样本的基本统计量,如图1所示。
样本中共有样本数15个,第一学期的考试成绩平均分为627.00,中位数为628.00,众数为630,标准差为32.859,最小值为568,最大值为675。
“第一学期的考试成绩”的第一四分位数是602,第二四分位数为628,第三四分位数为657。
2)“第一学期考试成绩”频数统计表如图2所示。
3) “第一学期考试成绩”Histogram图统计如图3所示。
(2)、第二个学期考试成绩的频数分析1)样本的基本统计量,如图4所示。
第二学期的考试成绩平均分为463.47,中位数为452.00,众数为419,标准差为33.588,最小值为419,最大值为522。
“第二学期的考试成绩”的第一四分位数是435,第二四分位数为452,第三四分位数为496。
3)”第二学期考试成绩”频数统计表如图5所示。
3) “第二学期考试成绩”饼图统计如图6所2、描述分析描述分析与频数分析在相当一部分中是相重的,这里采用描述分析对15位同学的考级考证情况进行分析。
输出的统计结果如图7所示。
从图中我们可以看到样本数15,最小值1,最大值4,标准差0.941等统计信息。
spss实验实例分析报告
spss实验实例分析报告实验题目:不同求职者对面试准备所投入的时间分析实验目的:研究不同求职者对面试准备所投入的时间情况,了解求职者在面试前的准备工作量,以此为基础提高面试效率。
实验方法:随机选取100名在求职过程中的应聘者,以问卷调查的方式获取其中的9个变量,在SPSS软件上进行数据处理和分析。
实验结果:1.样本情况样本人群普遍年龄在20-30岁之间,性别比例为男女各半。
他们最近一次求职的时间多集中在3个月以内。
具体样本情况如下表:| 序号 | 年龄 | 性别 | 学历 | 专业 | 最近一次求职时间 | 经验 | 面试得到的工作 | 面试准备所投入的时间 ||---|-----------|----|--------------|-------------|-------------|----------|-------------|---------------|| 1 | 28岁 | 男 | 硕士研究生学历 | 计算机科学与技术 | 两个月前| 2年工作经验 | 求职失败 | 2.5小时 || 2 | 24岁 | 女 | 本科学历 | 金融学 | 刚刚 | 毕业生 | 求职成功 | 3小时 || 3 | 22岁 | 男 | 本科学历 | 工商管理 | 一个月前 | 毕业生 | 求职成功 | 1小时 || 4 | 30岁 | 女 | 本科学历 | 人力资源管理 | 两个月前 | 4年工作经验 | 求职失败 | 4小时 || 5 | 26岁 | 男 | 专科学历 | 会计 | 两个月前 | 2年工作经验 | 求职成功 | 2小时 || … | ………… | …… | ……………… | ……………… | ……………… | …… | ……………… | ……………… |2.受访者面试准备所投入的时间根据问卷中获得的受访者面试准备所投入的时间,可以统计出以下结果:受访者对面试准备所投入的时间平均为2.5小时,标准差为1.12。
spss案例分析报告(精选)
spss案例分析报告(精选)本文通过分析一份 SPSS 数据,展示 SPSS 在统计分析中的应用。
数据概述本数据为一家咖啡馆的销售数据,共有 200 条记录,包括 7 个变量:日期、时间、收银员、商品名、销售价格、数量和总价。
SPSS 分析1. 描述性统计使用 SPSS 的描述性统计功能,可以获取数据的基本信息,如均值、标准偏差、最大值、最小值等。
其中,销售价格的均值为 44.71 元,标准偏差为 13.29 元,最小值为 23 元,最大值为 78 元。
数量的均值为 1.62 个,标准偏差为 0.51 个,最小值为 1 个,最大值为3 个。
总价的均值为 73.25 元,标准偏差为 21.89 元,最小值为 23 元,最大值为 156 元。
2. 单样本 t 检验假设一杯咖啡的平均售价为 50 元,我们可以使用单样本 t 检验对这个假设进行检验。
首先,我们需要用 SPSS 的数据透视表功能,计算出每杯咖啡的平均售价。
然后,使用单样本 t 检验功能,输入样本均值、假设的总体均值(50 元)、样本标准差、样本大小以及置信度水平。
在这个数据集中,单样本 t 检验得出的 t 值为 -2.36,P 值为 0.019,显著性水平为 0.05,因此我们可以拒绝原假设,认为该咖啡馆的咖啡售价不是 50 元。
4. 相关分析假设我们想要了解商品数量和销售额之间的关系,我们可以使用 SPSS 的相关分析功能来进行分析。
首先,我们需要使用数据透视表功能,计算出每个订单的总价和数量。
然后,使用相关分析功能,输入这两个变量的值,得出相关系数和显著性水平。
在这个数据集中,商品数量和销售额之间的相关系数为 0.749,P 值为 0,显著性水平非常显著。
因此,我们可以认为商品数量和销售额之间存在极强的正相关关系。
结论本文通过 SPSS 对一份咖啡馆销售数据进行分析,展示了 SPSS 在统计分析中的应用。
通过描述性统计、单样本 t 检验、双样本 t 检验和相关分析等功能,我们可以获得数据的基本信息,检验假设,分析变量之间的关系,从而帮助企业更好地决策和管理。
spss统计分析报告
Spss统计分析实验报告一.实验目的:通过统计分析检验贫血患儿在接受新药物与常规药物之后血红蛋白增加量的情况,得出两者疗效是否存在差异,并且可以判断那种药物疗效好。
二.实验步骤例题:某医院用某种新药与常规药物治疗婴幼儿贫血,将20名贫血患儿随机等分为2 组,分别接受两种药物治疗,测得血红蛋白增加量(g/L)如下,问新药与常规药物的疗效有别差别?新药24 36 25 14 26 34 23 20 15 19 组常规14 18 20 15 22 24 21 25 27 23 药物组解题:1)根据题意,我们采用独立样本T检验的方法进行统计分析。
提出:无效假设H0:新药物与常规药物的疗效没有差别。
备择假设HA:新药物与常规药物的疗效有差别。
2)在spss中的“变量视图”中定义变量“药组”,“血红蛋白增加量”,之后在数据视图中输入数据,其中新药组定义为组1,常规药物组定义为组 2. 保存数据。
3)在spss软件上操作分析过程如下:分析——比较变量——独立样本T检验——将“血红蛋白增加量变量”导入“检验变量”,——将“药组变量”导入“分组变量”——定义组1为新药组,组2为常规药物组——单击选项将置信度区间设为95%,输出分析数据如下:表1:组统计量药组N 均值标准差均值的标准误血红蛋白增加量新药组10 23.6000 7.22957 2.28619常规药组10 20.9000 4.22821 1.33708表2:独立样本检验方差方程的 Levene 检验均值方程的 t 检验F Sig. t df Sig.(双侧) 均值差值标准误血红蛋白增加量假设方差相等 1.697 .209 1.019 18 .321 2.70000 2假设方差不相等 1.019 14.512 .325 2.70000 24)输出结果分析由上述输出表格分析知:接受新药物组和常规药物组的均值分别为23.6000,20.900,接受新药物增加的血红蛋白量的均值大于接受常规药物的,所以说新药物的疗效可能比常规药物好。
SPSS数据分析报告金典模板三篇
SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。
spss数据分析报告案例
SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。
通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。
2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。
下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。
•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。
•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。
最小值为5小时,最大值为10小时。
•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。
最早就寝时间为22:00,最晚就寝时间为01:00。
•健康问题:共有45%的大学生存在健康问题。
3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。
利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。
T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。
3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。
使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。
F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。
3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。
利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。
spss案例大数据分析报告
spss案例大数据分析报告SPSS 案例大数据分析报告在当今数字化时代,数据已成为企业和组织决策的重要依据。
通过对大量数据的分析,可以揭示隐藏在其中的规律和趋势,为决策提供有力支持。
本报告将以一个具体的案例为例,展示如何使用 SPSS 进行大数据分析。
一、案例背景本次分析的对象是一家电商企业的销售数据。
该企业在过去一年中积累了大量的销售记录,包括商品信息、客户信息、订单金额、购买时间等。
企业希望通过对这些数据的分析,了解客户的购买行为和偏好,优化商品推荐和营销策略,提高销售业绩。
二、数据收集与整理首先,从企业的数据库中提取了相关数据,并进行了初步的清理和整理。
删除了重复记录和缺失值较多的字段,对数据进行了标准化处理,使其具有统一的格式和单位。
在整理数据的过程中,发现了一些问题。
例如,部分客户的地址信息不完整,部分商品的分类存在错误。
通过与相关部门沟通和核实,对这些问题进行了修正和补充。
三、数据分析方法本次分析主要采用了以下几种方法:1、描述性统计分析计算了数据的均值、中位数、标准差、最大值、最小值等统计指标,以了解数据的集中趋势和离散程度。
2、相关性分析分析了不同变量之间的相关性,例如商品价格与销量之间的关系,客户年龄与购买金额之间的关系。
3、聚类分析将客户按照购买行为和偏好进行聚类,以便更好地了解客户群体的特征。
4、因子分析提取了影响客户购买行为的主要因素,为进一步的分析和建模提供基础。
四、数据分析结果1、描述性统计分析结果商品的平均价格为_____元,中位数为_____元,标准差为_____元。
销量的最大值为_____件,最小值为_____件,均值为_____件。
客户的平均年龄为_____岁,中位数为_____岁,标准差为_____岁。
购买金额的最大值为_____元,最小值为_____元,均值为_____元。
2、相关性分析结果商品价格与销量之间呈现负相关关系,相关系数为_____。
这表明价格越高,销量越低。
spss案例分析报告精选文档
s p s s案例分析报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-S p s s分析身高与体重的相互影响一、案例介绍:这是某幼儿园学生的身高体重数据,数据中主要包括编号,学生姓名,性别,学生年龄,每个学生的体重以及身高数值。
主要是看下幼儿园学生体重与身高的相互关系。
二、研究案例的目的:分析幼儿园学生身高体重的相互关系和影响。
三、下面是数据来源:四、研究的方法:主要是使用spss中的描述统计分析和线性回归分析;在描述统计分析中主要是分析出身高体重的最大值和最小值、均值,在图表中可以看出身高的最大值;在线性回归分析中主要是采用身高为自变量,体重为因变量来进行分析的。
五、研究的结果:1)描述分析:打开文件“某班23名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择体重和身高,求最大值最小值和均值,得到如下结果:从结果看出,该班学生样本数为23,体重最小值为13.7kg,最大值为23kg,平均体重为17.7167kg。
身高最小值为105cm,最大值为116cm,平均身高为108.85cm。
以身高为例子,选择描述中的频率选项可以得出分布,在频率对话框的图形选项中,选择条形图,即可用图形直观看到结果。
从图形中可以很直观的看出不同身高段的人数分布情况,其中108cm左右的人数最多。
从表格中则可以清楚地看到具体数目。
2)线性回归分析:选择分析——回归——线性,在弹出的对话框中,以身高作为自变量,体重作为因变量,结果如下:从表中可以得出。
R=0.223,即两者具有弱相关性。
从图表中,可以看出它们之间的线性关系大概可以表示为y=-0.139x+2.617 六、研究结论:从描述分析和回归分析可以身高和体重的相关性是相对比较弱的,也就是弱相关性。
spss的数据分析报告范文
spss的数据分析报告范文1. 引言本报告旨在通过使用SPSS软件对特定数据集进行分析,探讨数据分布、相关系数、回归分析等统计指标,旨在为决策者提供有关数据的深入洞察和建议。
本报告将按照如下顺序进行数据分析并给出相应结论:数据描述、相关性分析、回归分析和结论。
2. 数据描述本节将对所分析的数据进行描述性统计。
数据集包含了学生的年龄、性别、成绩等多个变量。
以下是给定数据集的一些核心统计指标:- 年龄(Age):样本人数:100平均年龄:20.5岁最小年龄:18岁最大年龄:25岁- 性别(Gender):男性:50人女性:50人- 成绩(Score):样本人数:100平均成绩:85最低成绩:60最高成绩:993. 相关性分析本节将探讨不同变量之间的相关性。
我们将使用Pearson相关系数来测量变量之间的线性相关性。
以下是所分析变量之间的相关系数:- 年龄与成绩:r = -0.25,p < 0.05结论:年龄与成绩之间存在轻微的负相关。
年龄增长时,学生成绩略有下降。
- 性别与成绩:无显著相关性结论:性别和成绩之间没有明显的相关性。
- 年龄与性别:无显著相关性结论:年龄和性别之间没有明显的相关性。
4. 回归分析本节将进行线性回归分析,以探讨年龄对成绩的预测能力。
我们将使用成绩作为因变量,年龄作为自变量。
以下是回归分析的结果:- 回归方程:成绩 = 87.5 - 1.2 * 年龄- 表达式解读:年龄每增加1岁,成绩平均下降1.2分。
5. 结论通过对数据的分析,我们得出以下结论:- 年龄与成绩呈现轻微的负相关,随着年龄增长,学生成绩略有下降。
- 性别与成绩之间没有明显的相关性。
- 年龄和性别之间没有明显的相关性。
- 我们建立了一个回归方程,成绩= 87.5 - 1.2 * 年龄,该方程可以用于预测学生的成绩。
本报告的分析结果仅限于给定的数据集,并不能推广到整个人群。
希望本报告的分析结果对您的决策和研究有所帮助。
SPSS分析报告(一)
SPSS实验分析报告一表(一)性别统计表次數百分比有效的百分比累積百分比有效 1 12 75.0 75.0 75.02 4 25.0 25.0 100.0總計16 100.0 100.0图(一)由表一得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,性别的分布状况是:男性人数较女性人数多,有12人,有效百分比是75%;女性人数为4人,有效百分比是25%。
表一是按照频数降序组织的,这种输出方式较为清晰。
此外,由于性别是定类型变量,它的累计百分比通常没有意义,所以可删除本表的最后一列。
图为表一的相应性别分布条形图。
表(二)文化程度统计表次數百分比有效的百分比累積百分比有效 1.00 4 25.0 25.0 25.02.00 4 25.0 25.0 50.03.00 5 31.3 31.3 81.34.00 3 18.8 18.8 100.0總計16 100.0 100.0图(二)由表二得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,按照不同的文化程度分为四类分别以数字1234表示文化程度等级。
文化程度的分布状况是:人数最多是第3等级,有5人,有效百分比是31.3%,其次是第1等级和第2等级,都是4人,有效百分比是25%,其中第4等级人数有3人,有效百分比是18.8%。
其次,由图和表表明:在文化程度方面相对较均匀。
表(三)职称统计表次數百分比有效的百分比累積百分比有效 1 3 18.8 18.8 18.82 4 25.0 25.0 43.83 6 37.5 37.5 81.34 3 18.8 18.8 100.0總計16 100.0 100.0图(三)由表三得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,按照不同的职称分为四类分别以数字1234表示职称等级。
职称等级的分布状况是:人数最多是第3等级,有6人,有效百分比是37.5%,其次是第2等级,有4人,有效百分比是25%,其中第1等级和第4等级人数都是3人,有效百分比是18.8%。
spss案例分析报告
spss案例分析报告一、引言在本次报告中,将使用SPSS软件进行案例分析,对某一具体问题进行统计分析和数据可视化,以便对问题进行深入的了解和解释。
二、问题描述本次案例分析的问题是研究一个新产品在市场上的受欢迎程度与其价格、广告投入和消费者年龄之间的关系。
希望通过统计分析找出这些变量之间的关联,以便制定更好的市场策略。
三、数据收集与准备1. 数据收集从市场调研公司获取了500个有效问卷,并收集了新产品的价格、广告投入以及消费者的年龄等相关数据。
2. 数据清洗对数据进行了清洗和整理,包括去除缺失值、异常值的处理,使得数据集可用于后续的分析。
四、数据分析1. 描述性统计分析通过SPSS软件进行了描述性统计分析,包括对新产品价格、广告投入和消费者年龄的平均值、标准差、最小值和最大值等指标的计算。
2. 相关性分析利用SPSS软件进行了相关性分析,研究新产品受欢迎程度与价格、广告投入以及消费者年龄之间的关系。
结果显示价格与受欢迎程度之间存在较强的负相关,广告投入与受欢迎程度之间存在较强的正相关,而消费者年龄与受欢迎程度之间则没有明显的相关性。
3. 回归分析为了进一步探讨价格和广告投入对受欢迎程度的影响程度,进行了回归分析。
通过SPSS软件计算出了价格和广告投入对受欢迎程度的回归方程,并利用F检验和t检验对该方程的显著性进行了验证。
五、结果与讨论1. 描述性统计分析结果显示,新产品的平均价格为XXX元,标准差为XXX元,对消费者而言具有一定的价格竞争力。
广告投入的平均值为XXX万元,标准差为XXX万元,表明公司在产品推广方面投入了相对较高的资源。
而消费者的年龄平均值为XXX岁,标准差为XXX岁,消费者整体上比较年轻。
2. 相关性分析结果显示,新产品的价格与受欢迎程度之间存在较强的负相关,即价格越高,受欢迎程度越低;广告投入与受欢迎程度之间存在较强的正相关,即广告投入越高,受欢迎程度越高。
这表明在制定市场策略时,应考虑价格和广告投入对受欢迎程度的影响。
SPSS数据分析报告金典模板三篇
SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。
(完整版)SPSS分析报告实例
SPSS与数据统计分析期末论文影响学生对学校服务满意程度的因素分析一、数据来源本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。
我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。
二、频数分析可靠性统计克隆巴赫 Alpha项数.98562对全体数值进行可信度分析本次数据共计724条,首先从可靠性统计来看,alpha值为0。
985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。
其中,按年级来看,绝大多数为大二学生填写(占了总人数的67。
13%),之后分别依次为大二(23.76%)、大四(4。
14%)、大一(4。
97%)。
而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。
三、数据预处理拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生的经济情况的,因此对于确实的部分数据,升高、体重、近视度数、感兴趣的事等无关项我们均不需要进行缺失值的处理,而我们可能重点关注的每月家里给的钱、每月收入以及每月支出,由于其具有较强主观性,如果强行处理缺失值反而会破坏数据的完整性,因此我们筛去未填写的数据,将剩余数据当作新的样本进行分析.而对于一些关键的数据,我们需要做一些必要的预处理,例如一些调查项,我们希望得到数值型变量,但是填写时是字符型变量,我们就应该新建一个数字型变量并将数据复制,以便后续分析。
同时一些与我们分析相关的缺省值,一些明显可以看出的虚假信息,我们都需要先进行处理。
而具体预处理需要怎么做,这将会在其后具体分析时具体给出。
四、相关分析通过这份数据,我们可以直观地看到,最终同学给出了对学校总体的评价,而到底是什么影响了同学们的评价呢?我们小组打算从同学们的总体评价入手,分析同学们的家庭经济情况、学习成绩以及学校的各类资源完备程度是否会对同学们的评价造成影响。
spss的数据分析报告范例
spss的数据分析报告范例SPSS数据分析报告范例一、引言数据分析是现代科学研究的重要环节,在统计学中,SPSS作为一种广泛应用的数据分析软件,为研究人员提供了丰富的功能和工具。
本报告旨在使用SPSS对某项研究的数据进行分析,并整理并呈现结果,以帮助读者深入了解数据的含义,并得出有关数据的结论。
二、研究背景与目的在这一部分,我们将简要介绍研究的背景和目的。
本次研究旨在调查大学生的学习焦虑水平与其学业成绩之间的关系。
通过收集相关数据并使用SPSS进行分析,我们希望能够揭示大学生学习焦虑对学业成绩的影响程度,并为教育管理者和辅导员提供数据支持。
三、研究设计与方法在这一部分,我们将介绍研究的设计和采用的方法。
本研究采用问卷调查的形式,使用了由专家设计的学习焦虑量表和学业成绩评估表。
我们在某大学的三个院系中选取了500名大学生作为样本,并通过邮件方式发送问卷,并以匿名方式收集数据。
四、数据分析与结果本节将展示SPSS分析后的数据结果。
首先,我们将进行数据清洗和描述性统计分析。
然后,我们将使用相关性分析和回归分析来探究学习焦虑与学业成绩之间的关系。
1.数据清洗和描述性统计针对收集到的数据,我们进行了数据清洗,包括去除不完整或无效数据。
然后,我们进行了描述性统计分析,包括计算样本量、均值、标准差和分布情况。
2.相关性分析为了探究学习焦虑与学业成绩之间的关系,我们进行了相关性分析。
根据SPSS的输出结果,我们发现学习焦虑与学业成绩之间存在显著的负相关关系(r=-0.35, p<0.05),表明学习焦虑水平越高,学业成绩越低。
3.回归分析为了更深入地了解学习焦虑对学业成绩的影响程度,我们进行了回归分析。
回归分析结果显示,学习焦虑是预测学业成绩的显著因素(β=-0.25, p<0.05)。
这表明学习焦虑对学业成绩有着一定的负向影响。
五、讨论与结论根据数据分析的结果,我们得出以下结论:1.学习焦虑与学业成绩之间存在显著的负相关关系,即学习焦虑水平越高,学业成绩越低。
spss案例大数据分析报告
spss案例大数据分析报告目录1. 内容概要 (2)1.1 案例背景 (2)1.2 研究目的和重要性 (4)1.3 报告结构 (5)2. 数据分析方法 (5)2.1 数据收集与处理 (7)2.2 分析工具介绍 (8)2.3 变量定义和描述性统计分析 (9)3. 数据集概述 (11)3.1 数据来源 (11)3.2 数据特征描述 (12)3.3 数据清洗与处理 (13)4. 数据分析结果 (15)4.1 描述性统计分析结果 (16)4.2 推断性统计分析结果 (18)4.3 回归分析结果 (19)4.4 多变量分析结果 (20)5. 案例分析 (21)5.1 问题识别 (22)5.2 数据揭示的趋势和模式 (23)5.3 具体案例分析 (24)5.3.1 案例一 (26)5.3.2 案例二 (28)5.3.3 案例三 (29)6. 结论和建议 (30)6.1 数据分析总结 (31)6.2 战略和操作建议 (33)6.3 研究的局限性 (33)1. 内容概要本次SPSS案例大数据分析报告旨在通过对某一特定领域的大规模数据集进行深入分析和挖掘,揭示数据背后的规律、趋势以及潜在价值。
报告首先介绍了研究背景和研究目的,阐述了在当前时代背景下大数据的重要性和价值。
概述了数据来源、数据规模以及数据预处理过程,包括数据清洗、数据整合和数据转换等步骤。
报告重点介绍了运用SPSS软件进行数据分析的方法和过程,包括数据描述性分析、相关性分析、回归分析、聚类分析等多种统计分析方法的运用。
通过一系列严谨的统计分析,报告揭示了数据中的模式、关联以及预测趋势。
报告总结了分析结果,并指出了分析结果对于决策制定、业务发展以及学术研究等方面的重要性和意义。
报告内容全面深入,具有针对性和实用性,为企业决策者、研究人员和学者提供了重要参考依据。
1.1 案例背景本报告旨在通过对大数据技术的应用,为特定行业中的决策者提供深入的分析见解。
在当前数据驱动的时代,企业可以参考这一解析来优化其战略方向、业务流程及终极客户体验。
SPSS分析实例
[例1]一个品牌的方便面面饼的标称重量是80克,标准差应该小于2克。
现从生产线包装前的传送带上随机抽取部分面饼,称重数据记录在数据文件data中。
问这批面饼重量是否符(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:[例2]为评价两个培训中心的教学质量,对两个培训中心学员进行了一次标准化考试,分析(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:[例3]某康体中心的减肥班学员入班时的体重数据和减肥训练一个月后的体重数据记录在数据文件data中,试分析一个月的训练是否有效。
(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:(4)可以绘制_________图,直观显示前后体重的变化趋势。
[例4]为了解非计算机专业对计算机课程教学的意见,在金融系和统计系本科生中进行了一次抽样调查,得到了390名学生的调查数据。
试据此推断两系本科生对计算机课程教学的意见是否一致。
(1)检验方法:(2)原假设和备择假设:(3)通过上面两个表格中数据分析所得出的结论:(4)可以通过_________图直观地比较不同系别的满意度。
[例5]为了试验某种减肥药物的性能,测量11个人在服用该药以前以及服用该药1个月后、2个月后、3个月后的体重。
那么请问在这4个时期,11个人的体重有无发生显著的变化?(1)通过上面输出结果表格,可判断使用的检验方法:(2)原假设和备择假设:(3)结论:[例6]数据文件“Employee data.sav”记录了474名职工的基本信息(1)绘制复式条形图来表示不同性别的雇佣类别情况;(2)对起始薪金绘制茎叶图,说明图中信息;(3)通过箱图描绘不同雇佣类别的职工当前薪金情况,得出结论;(4)分析起始薪金的确定与什么因素有关,说明下面两表分别用的分析方法,并比较两表的结果。
控制变量起始薪金教育水平(年)雇佣类别 & 经验(以月计)起始薪金相关性 1.000 .461显著性(双侧). .000df 0 470 教育水平(年)相关性.461 1.000显著性(双侧).000 .df 470 0[例7]考察数码相机成像元器件像素数是否会对产品销量产生显著影响(设显著性水平α=0.05)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS与数据统计分析期末论文影响学生对学校服务满意程度的因素分析一、数据来源本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。
我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。
二、频数分析可靠性统计克隆巴赫 Alpha 项数.985 62对全体数值进行可信度分析本次数据共计724条,首先从可靠性统计来看,alpha值为0.985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。
其中,按年级来看,绝大多数为大二学生填写(占了总人数的67.13%),之后分别依次为大二(23.76%)、大四(4.14%)、大一(4.97%)。
而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。
三、数据预处理拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生的经济情况的,因此对于确实的部分数据,升高、体重、近视度数、感兴趣的事等无关项我们均不需要进行缺失值的处理,而我们可能重点关注的每月家里给的钱、每月收入以及每月支出,由于其具有较强主观性,如果强行处理缺失值反而会破坏数据的完整性,因此我们筛去未填写的数据,将剩余数据当作新的样本进行分析。
而对于一些关键的数据,我们需要做一些必要的预处理,例如一些调查项,我们希望得到数值型变量,但是填写时是字符型变量,我们就应该新建一个数字型变量并将数据复制,以便后续分析。
同时一些与我们分析相关的缺省值,一些明显可以看出的虚假信息,我们都需要先进行处理。
而具体预处理需要怎么做,这将会在其后具体分析时具体给出。
四、相关分析通过这份数据,我们可以直观地看到,最终同学给出了对学校总体的评价,而到底是什么影响了同学们的评价呢?我们小组打算从同学们的总体评价入手,分析同学们的家庭经济情况、学习成绩以及学校的各类资源完备程度是否会对同学们的评价造成影响。
1.探讨经济因素对于同学们评价的影响首先对我们所得到的全体数据进行初步分析,可以由“平均每月家里给多少钱”大致判断得出同学们的家庭经济情况。
但是进一步进行统计,可以得出有很多同学并未填写该项调查,如果将未填写的数据均作为“0”进行处理,无疑将会对结果造成很大的影响,在这里,我们先利用筛选中的过滤变量,排除掉变量中的缺省值(初步筛选后得到的结果如左图所示)。
在排除了缺省值的干扰之后,我们可以得到一份同学们填写的原始数据,但是粗略浏览不难发现,其中月生活费会有人填写“10000”或者“1”这类明显不符合事实的数据,因此我们还需进行二次筛选以增加最后结论的可信度。
考虑到一般人在北京的月消费,我们将有效数据中,月生活费在500~4000区间的数据再一次进行筛选,得到了我们的最终数据。
得到了样本之后,我们需要先对样本进行初步的描述性统计,了解样本数据的大体特征,之后再进行正态分布检验,根据特征将每月生活费进行人为分类,用以检验家庭经济因素是否会对同学对学校各方面的评价造成影响。
选中有效数据之后进行描述性统计,得到有效案例一共512个(总案例为724个),其中最小值为500,最大值为4000,平均值为1465.56,标准差为553.566。
描述统计个案数最小值最大值平均值标准差平均每月家里给多少钱512 500 4000 1465.56 553.566 (元)?有效个案数(成列)512进一步绘制出有效数据的频数分布直方图。
根据该分布直方图,我们计划将月生活费低于1000,月生活费介于1000与2000之间的与生活费高于2000的共三组,分别对应着经济条件较差、经济条件中等与经济条件较好三种情况。
将分完组的三份数据再一次做描述性统计,统计结果分别如下表所示。
描述统计个案数最小值最大值平均值标准差平均每月家里给多少钱(元)?170 500 1000904.51158.605有效个案数(成列)170经济较差家庭描述统计描述统计个案数最小值最大值平均值标准差平均每月家里给多少钱(元)?315 1200 20001639.68276.776有效个案数(成列)315经济中等家庭描述统计分别将经济条件为较差、中等与较好的家庭分为1、2、3组,先对1、2组做对学校服务满意程度(5为最满意,1为最不满意)的T检验,得到的结论参见下表。
较低收入家庭与中等收入家庭的学生对学校服务的T 检验首先查看莱文方差等同性检验一栏,F 值后面的显著性值为0.802,大于0.05,说明接受原假设,即方差相等,在这个假设成立的情况下,在观察后面的平均值等同性t 检验,假定方差相等情况下,t 后面的显著性为0.207>0.05,即接受原假设,均值相等,也就是说,较低收入家庭和中等收入家庭的学生对于学校提供服务的满意程度评价并没有显著的关系。
再将1、3组做对学校服务满意程度的T 检验,得到新的结论:注:Q36即问题“总体上,您对本大学所提供的服务是否满意?”接着按照上述步骤判断,可得F 后的显著性大于0.05,即假定方差相等,此时t 的显著性差异为0.345>0.05,可以接着得到较低收入家庭和较高收入家庭的学生对于学校提供服务的满意程度评价也没有显著的关系。
比较了上述两组数据,我们有理由相信,中等收入家庭的学生对于学校提供服务的满意程度,应该与较高收入家庭的学生的满意程度没有特别明显的区别,鉴于此我们可以初步获得结论:同学们对于学校提供服务的满意程度,与其家庭的经济条件并无明显关系。
方差 不假定等方差-1.290 367.917 .198 -.096 .075 -.244 .051相关性平均每月家里给多少钱(元)?总体上,您对本大学所提供的服务是否满意?平均每月家里给多少钱(元)?皮尔逊相关性 1 .079 显著性(双尾).074 个案数512 512总体上,您对本大学所提供的服务是否满意?皮尔逊相关性.079 1 显著性(双尾).074个案数512 512家庭经济条件与学生对学校服务评价的相关性分析为了验证我们的结论,我们又对每月的生活费与同学对学校的服务与提供设施的满意程度进行了相关性分析,然而相关性分析表格中我们可以通过平均每月家庭补给数与满意程度的显著性为0.074大于0.05得出,并没有显著性意义,即同学们的满意程度与经济条件无关。
到此为止,我们已经可以对现阶段的分析下一个阶段性的结论:同学们对学校提供服务的满意程度与其家庭经济情况无显著关系2.探讨学习成绩对于同学们评价的影响根据同学们填写的调查报告,我们将所有人的专业学习成绩与对大学提供服务的满意程度绘制了一份均值图,从图像中我们可以直观地感受到,无论专业成绩排名考前或者靠后,评分的平均值均稳定在3~4之间,没有特别大的差距,直觉上来说,我们可以认为学习成绩并不是影响同学们填写对学校总评的因素。
那么,我们的直觉到底有没有错呢?我们还是需要对学习成绩与满意程度进行一次相关性分析。
相关性总体上,您对本大学所提供的服务是否满意?您在专业学习成绩排名总体上,您对本大学所提供的服务是否满意?皮尔逊相关性 1 -.049 显著性(双尾).272个案数512 512 您在专业学习成绩排名皮尔逊相关性-.049 1显著性(双尾).272个案数512 512从相关性分析表格中我们又可以通过专业学习成绩排名与满意程度的显著性为0.272大于0.05得出,并没有显著性关联,即同学们的满意程度与学习成绩无关。
两次检验均证明了我们的猜想,那么可以证明的是,同学们对学校提供服务的满意程度与其学习成绩情况无显著关系那么还有什么会影响到同学们的评价呢?我们还需要往其他方向探讨。
参考到一般学生会或者班级干部应该都是由成绩较好的同学担任的,我们还需要探寻满意程度的评价是否与有无学生干部经验有关。
相关性总体上,您对本大学所提供的服务是否满意?学生干部经验:总体上,您对本大学所提供的服务是否满意?皮尔逊相关性 1 -.046 显著性(双尾).299 个案数512 512学生干部经验:皮尔逊相关性-.046 1显著性(双尾).299个案数512512但是从直方分布图和相关性中显著性数值为0.299>0.05来看,学生对于学校的评价还是与是否有过学生干部经验没有关系。
结合上述已经考虑过的两点,我们能够得出的结论是同学们对于学校提供服务的满意程度,与学习的成绩也毫无关系。
那么除了学习与经济之外,还有什么能够影响到同学们的评价呢?我们还需要对其他被我们忽视的项目进行一次分析。
3.探讨其他因素对于同学们评价的影响除了上述两个因素可能对同学们的评价造成影响外,一定还存在其他因素,能够影响着同学对学校提供服务的评价,在最后,我们对同学们对课程与教学、学习资源、休闲资源、综合管理服务、资助与收费、学业咨询、校园文化、学生和个人发展这八个方面的评价进行了分析并作出了相关的多元性回归预测,希望能够找到不同评价对最后综合评价的影响。
首先,由于课程与教学、学习资源、休闲资源、综合管理服务、资助与收费、学业咨询、校园文化、学生和个人发展这八方面的调查其下有分许多小项,为了之后计算的简便,这里将每一个大项求和之后求平均值,作为该项的一个代表数据,将求得的平均值在最后新增列,分别记为Q27~Q34.将上述资源建立线性预测模型,可以得到因变量b关于预测变量a的模型:b = a1*Q27+a2*Q28+a3*Q29+a4*Q30+a5*Q31+a6*Q32+a7*Q33+a8*Q34其中,Q27~Q34如上述分别代表学生们对课程与教学、学习资源、休闲资源、综合管理服务、资助与收费、学业咨询、校园文化、学生和个人发展这八个方面的综合评价,因变量b 则为同学对大学中提供的服务的总评价。
模型中的R 值为0.567,表示模型拟合度,说明56.7%的预测可用该模型实现预测。
当其大于50%时,表示该拟合大致程度上能够描述自变量与因变量的关系。
ANOVA a模型平方和自由度均方 F 显著性1 回归107.266 8 13.408 29.867 .000b残差225.810 503 .449总计333.076 511a. 因变量:总体上,您对本大学所提供的服务是否满意?b. 预测变量:(常量), Q34, Q29, Q31, Q28, Q27, Q30, Q33, Q32接上一步的后续操作,对模型进行显著性分析,茶籽料可得,当显著性sig小于0.005时即可保证模型成立。