重组蛋白药物一般生产工艺与质量控制要点
重组蛋白生产的工艺设计
重组蛋白生产的工艺设计
重组蛋白的生产工艺设计是一个复杂的过程,需要考虑到多个因素,例如表达系统的选择、蛋白纯化的方法、工作条件以及产品质量控制等。
以下是一个常见的重组蛋白生产工艺设计的步骤:
1. 基因克隆:首先,选择一个适当的表达宿主系统,例如大肠杆菌、酵母或哺乳动物细胞。
然后,将目标蛋白的基因克隆到表达载体中,这个载体通常包含启动子、选择性抗生素标记以及其他必要元件。
2. 表达和培养:将表达载体导入宿主细胞中,并通过培养条件使其表达目标蛋白。
对于大肠杆菌或酵母表达系统,培养通常在摇瓶或发酵罐中进行;对于哺乳动物细胞表达系统,通常需要采用培养皿或生物反应器。
3. 收获和破碎:当目标蛋白在培养过程中达到一定的表达水平后,培养液被收获并通过离心或其他方法分离细胞。
然后,使用适当的方法(例如超声波、高压或化学方法)将细胞破碎,以释放目标蛋白。
4. 蛋白纯化:破碎的细胞溶液包含大量的非目标蛋白质和其他杂质,需要通过蛋白纯化步骤进行分离和纯化。
常用的蛋白纯化方法包括亲和层析、离子交换层析、凝胶过滤和透析等。
5. 产品质量控制:对于重组蛋白的生产,产品质量控制是非常重要的。
常见的
质量控制测试包括目标蛋白的纯度、活性、空载体和副产物的水平、杂质的水平以及生物活性的测试等。
这些测试可以通过各种分析方法进行,例如SDS-PAGE、Western blot、ELISA等。
总结来说,重组蛋白的生产工艺设计包括基因克隆、表达和培养、收获和破碎、蛋白纯化以及产品质量控制等环节。
这些步骤需要根据目标蛋白的特性和生产要求进行定制化设计,以达到高产和高纯度的重组蛋白产量。
生物制品的制备工艺及质量控制研究
生物制品的制备工艺及质量控制研究生物制品是一类利用生物体或其代谢产物制备的药物。
它们具有高度的特异性和活性,被广泛应用于多种临床疾病的治疗。
但是,由于其特殊的制备工艺和质量控制要求,生物制品的研制过程相对较为复杂,需要依赖先进的技术和设备。
本文将从制备工艺和质量控制两个方面来介绍生物制品的研究进展和未来发展方向。
一、生物制品的制备工艺生物制品的制备工艺主要涉及到以下几个方面。
1. 重组蛋白制备重组蛋白是一类由基因工程技术制备的生物制品。
它们包括了多种生物药物,如克隆抗体、生长因子和疫苗等。
重组蛋白的制备工艺分为四个阶段:基因克隆、融合表达、纯化和检测。
其中,融合表达是最核心的环节,要求高效率、纯度和可扩展性。
2. 蛋白质组学蛋白质组学是一种比较新的技术,用于研究组织、细胞和体液中的蛋白质组成和功能。
它主要依赖于蛋白质质谱仪和生物信息学等技术,能够在较短时间内鉴定和定量大量蛋白质。
因此,蛋白质组学被广泛应用于生物制品研发和生产中。
3. 细胞培养细胞培养是生物制品制备的关键步骤之一。
细胞培养技术能够将特定的细胞株培养到高密度和高纯度,为后续的制备和纯化提供了充足的原料。
不同的细胞分泌不同的蛋白质,因此选择合适的细胞株对于生物制品的成功制备非常重要。
4. 培养基优化培养基是细胞培养的重要组成部分。
优化培养基能够提高细胞的生长速度和分泌效率,降低生产成本。
一般来讲,培养基的优化需要考虑多个因素,包括生长因子、氨基酸、激素、维生素和糖等。
二、生物制品的质量控制生物制品的质量控制是生产过程中最关键的部分之一。
高质量的生物制品能够保证疗效和安全性。
常见的生物制品质量控制方法主要包括以下几个方面。
1. 产品检测整体产物检测是最常用的生物制品质量控制方法之一。
通过各种检测方法,如免疫印迹、酶联免疫吸附等,来确定产物的成分和纯度。
这一步骤对于检测杂质、降低批间变异性和保证生产质量都非常重要。
2. 生物反应器监控生物反应器是生物制品大规模生产的关键设备。
重组人血清白蛋白在生产中的问题
重组人血清白蛋白在生产中的问题全文共四篇示例,供读者参考第一篇示例:重组人血清白蛋白是一种由人类基因重组技术合成的蛋白质,具有与人类自身血清白蛋白相同的生物特性和功能。
在医药领域中,重组人血清白蛋白被广泛应用于治疗各种疾病,其生产过程中也面临着诸多问题和挑战。
在重组人血清白蛋白的生产过程中,最主要的问题之一是工艺优化。
生产重组蛋白需要在细胞培养基中加入适当的培养因子和生长因子,以促进细胞的生长和表达目标蛋白。
不同细胞株对培养条件的要求可能会有所不同,需要进行不断的优化和调整。
提高产量和纯度也是工艺优化的重要目标,需要通过改进细胞培养条件、提高蛋白表达水平等途径来实现。
重组人血清白蛋白的纯化过程也是生产中的一个关键环节,其中存在着许多技术难题。
由于重组蛋白和其他细胞培养基组分之间的相似性,纯化过程中可能出现蛋白质结构的损失,导致产物的纯度下降和活性丧失。
如何选择合适的纯化方法,提高产物的纯度和活性成为了生产过程中的重要问题。
重组人血清白蛋白的稳定性也是生产中需要解决的问题之一。
由于蛋白质易受热、酸碱、氧化等因素的影响,其稳定性较差,容易降解失活。
在生产过程中需要采取一系列措施,如冷冻保存、添加稳定剂、优化工艺参数等,以提高蛋白的稳定性和保存期限。
重组人血清白蛋白在生产中还存在着一些其他问题,如生产成本较高、生产周期较长、质量标准不统一等。
解决这些问题需要不断进行技术创新和工艺改进,以提高生产效率和产品质量。
重组人血清白蛋白在生产过程中面临着诸多问题和挑战,需要不断进行技术创新和工艺优化,以确保产品质量和生产效率的提高。
希望在未来的研究中,可以通过引入新的技术和方法,解决这些问题,推动重组人血清白蛋白在医药领域的应用和发展。
【2000字】第二篇示例:重组人血清白蛋白是一种在生产中备受关注的重要药物。
它是一种用于治疗众多疾病的生物药物,具有重要的生物学功能和临床应用前景。
在生产过程中,重组人血清白蛋白面临着一些问题和挑战,这些问题不仅影响了其生产效率和质量,还影响着其在临床应用中的效果和安全性。
生物药物的生物制造和质量控制
生物药物的生物制造和质量控制生物药物是指利用生物体内的生理活性物质制造的药品,其生产过程中需要使用复杂的生物技术来合成和纯化。
生物药物的生物制造和质量控制是一项非常重要的生产流程,关系到药品的质量和安全性。
下面将详细介绍生物药物的生物制造和质量控制的过程。
一、生物药物的生物制造1、蛋白表达生物药物的生物制造首先需要确保蛋白表达的高效性,因为蛋白表达是整个生产过程中的核心环节。
蛋白表达技术主要包括基因克隆、转染和筛选等环节。
在基因克隆环节,需要将目标DNA 插入表达载体中,再转入宿主细胞中,使其表达。
如果表达效率较低,则需要针对宿主细胞进行基因改造,来增强表达能力。
2、发酵和培养在蛋白表达环节完成后,接下来就是进行发酵和培养。
这个过程需要涉及到细胞培养的条件设计、发酵酶的添加、以及溶液配制等环节。
通常来说,发酵的环境需要制定“最佳生长条件”,包括温度、pH、氧气含量等因素。
另外,发酵过程中还需要加入必要的营养物质和酵母菌,以及控制生长条件,确保生产出高质量的生物药物。
3、纯化和制剂经过发酵和培养过程后,需要对发酵液进行纯化,以便得到纯度较高的蛋白质。
纯化的过程通常是通过分离、过滤、分子筛分离、离子交换等技术来进行,以便高效地获得所需的蛋白质。
同时,还需要对蛋白质进行制剂加工,以便让药物更便于治疗或用于临床试验中。
二、生物药物的质量控制1、化学性质检测生物药物的质量控制需要涵盖多个方面,包括药品的化学性质、生物学活性、以及药物毒性等。
其中,化学性质检测主要针对药物的物理性质、化学稳定性、化学纯度等指标进行检测。
常用的检测方法包括荧光法、紫外光谱法、拉曼光谱法等。
2、生物学活性检测除了化学性质检测外,生物药物的质量控制还要涉及到药物的生物学活性检测。
这方面的指标包括生物活性、质量特异性、抗原性等。
同时,还需要针对生物药物的液态性质、表面特性、形态结构等方面进行检测,以确保药物的质量和稳定性。
3、毒性检测最后,生物药物的质量控制还要进行毒性检测。
如何认识蛋白质类药物纯度检测
如何认识蛋白质类药物纯度检测?
1 从蛋白质制剂中检测出少量的污染蛋白质是 很困难的。因为污染蛋白质的量可能低于很多 测定方法的检测下限。制剂中往往含有大量的 辅料。
2 当用一种方法测定蛋白质纯度时,可能有两 种或更多的蛋白质表现出相似的行为。这种类 似的行为可能会导致本来是混合物的样品也被 认为是均一物质的错误结论。
HPLC法应根据不同的纯化工艺选择不同的方法。 一般尽量采用与SDS- PAGE法原理不同的反相柱或其 他离子交换柱进行分析,而不主张用分子筛分析。在 质量标准中要说明采用的是什么性质的分析柱。如有 些产品不适合用反相柱,要说明原因。
1.3 毛细管电泳
毛细管电泳的方法简便、快速,灵敏度和 分辨率高,但价格昂贵,重现性差,尚未作为 常规检定。
与产品相关的杂质包括:
突变物、错误裂解的产品、二硫化物异构体、 二聚体和多聚体;化学修饰的形态:脱去酰氨 基的或氧化的形态、其他降解产物等。
4.1宿主细胞蛋白含量
概念: 宿主细胞蛋白质一般简称宿主蛋白,是指生产过
程中来自宿主或培养基的残留肽等杂质。基因工程 药物中的宿主蛋白含量,可用 ELISA法(enzymelinked immunosorbent assay)测定。
3 只用一种方法作为纯度试验的标准是很不 可靠的,必须选择多种测定纯度的方法。
最好的纯度标准是建立多种分析方法,从 等电点、相对分子质量、疏水性等不同的角度 来证明了蛋白质样品的均一性。
4 纯度最终取决于所用方法的类型和分辨力, 低分辨率方法检测合格的样品改用高分辨力方 法时就有可能证明它是不纯的。
3.3等电点测定 可以表征药物的理化性质和纯度 均一的重组蛋白质只有一个等电点,有时因加工 修饰等影响可出现多个等电点,但应有一定的范 围。所以等电点测定是控制重组产品生产工艺稳 定性的重要指标。
重组蛋白药物纯化与质量控制
Contents
1 2
蛋白纯化原则与方法 蛋白质量控制方法
LOGO
蛋白纯化原则
基因重组 技术
生化分离 技术
免疫检测 技术
现代生物 技术
给人类带来了抗体和药物。
LOGO
蛋白纯化原则
LOGO
蛋白纯化原则 Guidelines for Protein Purification • • • 确定目标 – purity, quantity, biological activity, economy 充分了解目的蛋白及主要杂质的理化特性 – to simplify technique selection and optimisation 确定活性测定方法 – fast detection of protein activity/recovery and critical contaminants 尽量减少纯化步骤 – extra steps reduce yield and increase time, combine steps logically
Resolutio n
Spee d Recover y
LOGO
Capacit y
纯化流程
一般生产纯化不超过4个步 骤。
LOGO
分离纯化机制
不同的大小和尺寸 带电基团 疏水基团 极性不同 相互作用
LOGO
分离纯化机制
不同层析介质的成本:离子交换,金属螯合,疏水层析,分子筛,亲和层析
LOGO
纯化总结
用酶标记抗原或抗体检测液体(血液、细胞液)
中未知抗体或抗原的方法。 优点:快速、灵敏、定性、定量、定位,是目 前应用最广泛的免疫学检测技术。
重组蛋白药物一般生产工艺与质量控制要点
重组蛋白药物一般生产工艺与质量控制要点
重组蛋白药物是通过基因重组技术在外源宿主细胞中表达的蛋白质药物。
其生产工艺和质量控制要点包括以下几个方面:
1.细胞培养和表达:选择合适的宿主细胞(如CHO细胞、
细菌、酵母等),通过转染或转化技术将目标蛋白的基因
导入细胞中,使细胞能够表达目标蛋白。
2.发酵过程优化:对细胞培养的条件进行优化,包括培养基
成分、温度、pH值、搅拌速率等,以提高目标蛋白的产
量和纯度。
3.蛋白纯化:采用一系列的离心、过滤、层析和纯化技术,
如亲和层析、离子交换层析、凝胶过滤层析等,将目标蛋
白从细胞培养物中分离和纯化出来。
4.构建和验证二级结构:通过光谱技术,如红外光谱、紫外
吸收等方法,验证目标蛋白的二级结构,确保其与自然蛋
白相似。
5.结构和活性的确认:利用质谱等分析手段对目标蛋白进行
结构分析,确保其三维结构的正确性。
同时使用生物学活
性和特定的生物学试验来确认目标蛋白的活性。
6.病原体和杂质的清除:利用一系列的技术,如超滤、凝胶
过滤、酸碱处理等,清除生产过程中可能存在的病原体、
杂质和过剩的细胞基质。
7.生产工艺的可重复性和稳定性:建立稳定可行的生产工艺,
并对每一批次的产品进行严格的质量控制,以确保产品的一致性和稳定性。
8.特殊注意事项:由于蛋白质药物的复杂性,还需要关注蛋
白聚集、丧失活性、潜在的免疫原性等问题,并通过相关实验和分析来评估和控制这些问题。
以上是重组蛋白药物生产工艺和质量控制的一般要点,实际的生产过程和质量控制要求会根据具体的药物和工艺进行调整和优化。
重组抗体药物的质量控制
抗体药物是生物工程关键技术的前沿成果,在肿瘤、自身免疫、器官移植和感染性疾病的治疗中均取得了显著疗效,在生物技术药物市场中的比重也在迅速攀升。
作为生物技术产业化领域最成功的产品之一,如何通过质量控制确保抗体药物的安全有效一直是本领域的关注热点。
文中就重组抗体药物质量控制的关键环节、进展及未来需要进一步开展的工作作一简要综述。
药品的质量源于设计,而非依赖终产品的检测,重组抗体药物也不例外。
广义的质量控制包括生产过程控制、终产品质量控制等环节。
抗体由两条重链和轻链以链间二硫键形成连接,结构复杂、相对分子质量大,采用哺乳动物细胞表达体系制备通常含有翻译后修饰,与原核体系制备的生物技术产品相比,其质量控制难度相对较大。
重组抗体药物的生产过程包括工程细胞的构建及传代扩增、细胞培养、抗体的纯化、产品分装保存等。
因此生产单位需遵循药品生产质量管理规范(GMP)的总体要求建立质量体系,并通过质量保证部门对生产过程实施全程监控才能确保终产品的安全有效。
鉴于抗体药物生产过程与其他生物技术药物类似,本文未对抗体药物生产的过程控制进行阐述(相关内容可参见国家食品药品监督法规与ICH指导原则等),而主要侧重于介绍重组抗体药物生产细胞、质控用标准物质、产品质量控制方面的研究进展。
Part1、生产细胞的质量控制重组单抗的生产细胞应来自于共同的原始细胞,具有相同的遗传和生物学特征,经全面检测无病源微生物污染,在特定的培养条件下,可以稳定持续地表达结构正确并具有生物学活性的抗体。
1工程细胞的构首先应清楚所采用细胞系的来源及培养历史等有关背景资料,包括细胞种属及地域来源、病原体检测结果、最初分离培养和建系信息、采用的方法与原材料等。
在构建中应说明构建和筛选的手段与步骤、克隆基因的序列、插入载体目的基因编码区和相关侧翼序列,说明载体引入细胞的方法及载体在细胞内的状态与拷贝数,并应提供宿主和载体结合后的遗传稳定性资料。
同时还应明确细胞的生长特征、培养条件、培养液组成、导入目的基因的表达水平等。
重组蛋白生产制药工艺
重组蛋白生产制药工艺重组蛋白药物是一种利用基因工程和蛋白质工程生产的人工蛋白药物。
随着生物医药技术的不断发展,重组蛋白药物在临床治疗中得到了广泛应用。
本文将介绍重组蛋白生产制药工艺的主要环节,包括基因工程与克隆技术、细胞培养与发酵、蛋白质纯化、质量控制、制剂与包装、临床试验与审批、商业化生产以及上市后监测与质量保证。
1.基因工程与克隆技术基因工程是重组蛋白药物生产的关键技术之一。
首先,通过基因克隆技术将目的基因导入受体细胞中,如细菌、酵母或昆虫细胞等。
通过基因工程技术对目的基因进行改造和优化,以获得高效表达和正确折叠的重组蛋白。
2.细胞培养与发酵细胞培养和发酵是重组蛋白药物生产的另一个重要环节。
通过在培养基中添加营养成分和调节pH值、温度等参数,使得受体细胞能够大量繁殖并表达目的蛋白。
在发酵过程中,需要注意控制培养条件,确保细胞的生长和蛋白质的表达。
3.蛋白质纯化蛋白质纯化是重组蛋白药物生产中最为关键的步骤之一。
通过一系列的分离纯化技术,如离子交换色谱、凝胶色谱、亲和色谱等,将目的蛋白从其他细胞成分和杂质中分离出来,获得高纯度的重组蛋白药物。
4.质量控制质量控制是重组蛋白药物生产中至关重要的一环。
在生产过程中需要进行多层次的质量控制,包括原材料的质量控制、细胞培养和发酵过程中的质量控制以及最终产品的质量控制。
质量控制还包括对产品的稳定性、有效期以及安全性等方面的评估。
5.制剂与包装制剂与包装是重组蛋白药物生产的最后环节。
根据药物的性质和用途,选择合适的剂型和包装材料对药物进行包装。
在制剂过程中需要注意药物的稳定性、安全性和有效性。
6.临床试验与审批在重组蛋白药物生产完成后,需要进行严格的临床试验以评估其疗效和安全性。
临床试验一般分为I、II、III期,分别评估药物的初步疗效、安全性和长期疗效。
只有通过临床试验并获得药品监管部门的批准,重组蛋白药物才能进入商业化生产和上市阶段。
7.商业化生产商业化生产是重组蛋白药物生产的规模化阶段。
重组蛋白质药物的生产工艺流程
重组蛋白质药物的生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!重组蛋白质药物的生产工艺流程可以分为以下几个步骤:1. 目的基因的获取与克隆:首先,需要从生物体的基因中获取目标蛋白质的编码序列。
第26章重组药物
三、纯化工艺过程的质量控制
在纯化工艺过程的质量控制上,要考虑到尽量 去除污染病毒、核酸、宿主细胞杂蛋白、糖及其它 杂质,并避免在纯化过程带入的有害物质。如用柱 层析技术应提供所用填料的质量认证证明,并证实 从柱上不会掉下有害物质。上样前应清洗除去热源 等。纯化工艺的每一步均应测定纯度,计算提纯倍 数、收率等。纯化工艺过程中应尽量不加入对人体 有害的物质,若不得不加时,应设法除净,并在最 终产品中检测残余量,应远远低于有害剂量,同时 还要考虑到多次使用的积蓄作用。
3、组成工艺的各技术、步骤之间及设备间要能相 互适应和协调,且高效,收率高,易操作,对设 备条件要求低,能耗低,并尽可能少用试剂,以 免增加分离纯化步骤或干扰产品质量。
第四节 重组药物的质量控制
重组药物与其它传统方法生产的药品有许多不同 之处,它利用活细胞作为表达系统,并具有复杂的分子 结构。
它的生产涉及到生物材料和生物学过程,如:发 酵、细胞培养、分离纯化目的产物,这些过程有其固有 的易变性。同时由于重组技术所获得的蛋白质产品往往 在极微量下就可产生显著效应,任何药物性质或剂量上 的偏差,都可能贻误病情甚至造成严重危害。
第26章 重组药物
本章目录
第一节 重组药物概述 第二节 重组药物的通用制造方法与技术 第三节 重组药物的分离纯化技术关键 第四节 重组药物的质量控制 第五节 典型重组药物制造技术及工艺
第一节 重组药物概述
20世纪70年代建立的DNA重组技术带来了生物技术 新的变革,促进了以基因工程技术为核心的现代生物技术的 诞生和发展,被认为是20世纪人类的一项最伟大的贡献。
3. 分离单元之间的衔接
考虑到工业生产成本,一般 早期尽可能采用高效的分离手段, 如通常先用非特异、低分辨的操 作单元方法,以尽快缩小样品体 积,提高产物浓度,去除最主要 的杂质;然后采用高分辨率的操 作方法,而将凝胶排阻色谱这类 分离规模小、分离速度慢的操作 单元放在最后,以提高分离效果。
细胞培养法重组蛋白生产上下游工艺流程__概述及解释说明
细胞培养法重组蛋白生产上下游工艺流程概述及解释说明1. 引言1.1 概述细胞培养法重组蛋白生产是一种常用的生物技术手段,可以通过调控细胞代谢过程来大规模制造特定蛋白质。
这种技术在医药、农业、工业等领域都有广泛应用,为我们提供了丰富的蛋白质资源。
然而,在实际应用过程中,要保证高产量和纯度的蛋白质产出并不容易,因此需要建立完善的上下游工艺流程以及有效的控制策略。
1.2 文章结构本文将从引言开始,逐步深入介绍细胞培养法重组蛋白生产的上下游工艺流程及其相关要点。
首先,在第二节中,我们会详细讨论细胞培养步骤以及蛋白表达和分泌过程。
然后,在第三节中,我们会重点关注收获和破碎细胞的步骤以及蛋白纯化和精制过程。
接着,在第四节中,我们将讨论实施中可能遇到的挑战并提出解决方案。
最后,在第五节中,我们将总结重要观点、结果和发现,并给出未来的展望和建议。
1.3 目的本文的目的是为读者提供一份详尽且清晰的细胞培养法重组蛋白生产上下游工艺流程的概述以及相关解释说明。
通过深入了解每个步骤的原理和关键要点,读者将能够更好地理解这种生产方法,并在实际操作中拥有更高的成功率。
我们希望该文可以为相关领域的研究人员、工程师和学生提供有价值的参考,从而推动细胞培养法重组蛋白生产技术在各个领域的进一步应用和发展。
2. 细胞培养法重组蛋白生产上下游工艺流程2.1 细胞培养步骤:在细胞培养法中,重组蛋白的生产需要经历一系列的步骤。
首先,需要选择适合的宿主细胞进行培养。
常用的宿主细胞包括大肠杆菌(E. coli)、哺乳动物细胞等。
然后,将目标基因导入宿主细胞中,并通过合适的启动子和调控元件来实现基因的表达。
接下来是对宿主细胞进行预处理,包括建立种子库、优化培养基和培养条件等。
种子库是为了确保有足够数量和活力的宿主细胞可供后续扩展使用。
针对不同类型的宿主细胞,对培养基成分和配方进行优化可以提高蛋白表达效率和产量。
在进入正式培养阶段之前还需要进行预培养步骤,以使得宿主细胞适应新的环境并增加生长速度。
蛋白质、多肽类药物质量控制
可能导致产品质量存在差异,需要加强批次间一致性的控制。
03
稳定性差
蛋白质、多肽类药物容易受到温度、湿度、光照等因素的影响,导致其
稳定性较差,需要加强存储和使用过程中的保护措施。
未来发展方向
加强创新研究
加强国际合作与交流
通过加强创新研究,开发更加精准、 高效的质量控制技术和方法,提高蛋 白质、多肽类药物的质量控制水平。
可以揭示蛋白质的三维结构,对于理解蛋白质功能和药物设计具有重要意义。
纯度测定
总结词
纯度测定是评估蛋白质、多肽类药物质量的重要指标,主要通过色谱技术、电泳技术和质谱技术等方法进行。
详细描述
纯度测定是评估蛋白质、多肽类药物中目标成分的纯度和杂质的含量。色谱技术如凝胶电泳、高效液相色谱等可 以根据分子大小、电荷和疏水性等性质将目标成分与杂质分离。电泳技术则根据蛋白质、多肽的电荷和大小进行 分离。质谱技术可以用于鉴定和定量目标成分和杂质,具有高灵敏度和高分辨率的特点。
蛋白质、多肽类药物 质量控制
目录
CONTENTS
• 蛋白质、多肽类药物概述 • 蛋白质、多肽类药物质量控制标准 • 蛋白质、多肽类药物质量控制方法 • 蛋白质、多肽类药物质量控制现状与挑
战 • 新技术与新方法在蛋白质、多肽类药物概述
定义与分类
定义
蛋白质和多肽类药物是指通过基 因工程技术或化学合成方法制备 的,具有特定生物学活性的大分 子药物。
04 蛋白质、多肽类药物质量 控制现状与挑战
质量控制现状
蛋白质、多肽类药物质量控制标准不断完善
随着蛋白质、多肽类药物的广泛应用,各国药典和国际组织不断完善相关质量控制标准, 以确保药物的安全性和有效性。
质量控制技术不断进步
重组蛋白药物一般生产工艺与质量控制要点
重组蛋白药物质控要点
原液:紫外光谱扫描检测 这是基因工程药物的一个重要物理常数,对于一个蛋白质来说, 它的最大吸收波长是固定的。对某一重组蛋白质来说,其最大吸 收波长是固定的;在生产过程中每批产品的紫外吸收光谱应当是 一致的。测定时以生理盐水为对照,在200~350 nm范围内对待 检样品溶液进行扫描,每批制品紫外吸收图谱应与对照品一致且 在280nm附近最大吸收波长应与理论值相符。
5
重组蛋白药物一般生产工艺
第一步:工程菌构
6
重组蛋白药物一般生产工艺
目标产物鉴定
基因序列测定 表达产物结构确证 特异性鉴别实验 N末端氨基酸序列分析 氨基酸组成分析 C末端氨基酸序列分析 激光解析飞行时间质谱分析 X射线晶体衍射分析
7
重组蛋白药物一般生产工艺
28
重组蛋白药物质控要点
原液:分子量检测
分子量是蛋白质理化性质之一。一般采用还原型SDS-PAGE法测定 ,蛋白质在SDS和B-巯基乙醇存在下沸水浴5min,形成表面带大 量负电荷的杆状分子,降低了分子形态和电荷的影响,在电泳过 程中蛋白迁移率基本只与其分子量相关,目前广泛用于蛋白分子 量的测定。该法具有简便,快速,直观等特点,目前作为基因工 程药物原液检定的常规方法。该法可将蛋白质按分子量大小进行 分离,因此,可用于蛋白质纯度分析,同时还能对聚合体进行分 析。
30
重组蛋白药物质控要点
原液:肽图检测
肽图分析是DNA产品质控的重要手段之一。通过肽图分析,可从 一级结构研究重组产品与天然品的同质性。重组产品与天然产品 具有相同的指纹图谱,它们具有相同的一级结构。进一步验证了 它们的同质性。
大多基因工程产品都将肽图分析作为控制其一致性的重要常规指 标之一,而采用的方法中.又以HPLC肽图分析最为多见。肽图谱 对每一种蛋白质来说是特征和专一的。因此可用于检查各批产品 蛋白质一级结构的一致性在肤图分析中的应用基因重组药物的肽 图分析是评价基因重组制品和天然蛋白质的同一性以及不同批制 品间同一性的重要手段,也是证明细胞遗传稳定性的有效手段之 一。
基因工程药物蛋白的分离纯化与质量控制
应首先选择能除去含量最多杂质的方法
应尽量选择高效的分离方法
应将最费时、成本最高的分离纯化方法安 排在最后阶段
合适分离纯化介质的选择
常用的蛋白质分离纯化介质有Sephadex和 Sepharose。理想的分离纯化介质应具有下列性质:
对目标蛋白具有较高的分离效率 对目标蛋白不会造成变性 化学性能和机械性能稳定,重复性好 价格低廉
(3) 目的产物的稳定性差,具有生物活性的物质对
pH、温度、金属离子、 有机溶剂、剪切力、表
面张力等十分敏感,容易是其失活、变性;
(4) 种类繁多,包括大、中、小分子、结构简单或
(5)
复杂的有机化合物,以及结构复杂又性质各
异
(6)
的生物活性物质;
(5) 应用面广,对其质量、纯度要求高,甚至要求
(6)
(2)原材料和培养基的来源及其质量;
(3)生产工艺和条件:包括灭菌方式和条件,生产方式 (连续、批式、半连续),生产周期,生产能力,工 艺控制条件因素几方式等;
(4)初始物料的物理、化学和生物学特性:包括产物浓 度、主要杂质种类和浓度、盐的种类和浓度、溶解 度、pH、黏度、流体力学性质和热力学性质。
发酵液 细胞分离
胞内产 物 细胞破碎 固液分离
包涵体 变性 复性
细胞碎片分离
胞外产 物
浓 缩 初步分离 高度纯化 制 剂
产品
基因工程药物分离纯化的一般流程
A 重组基因工程药物分离纯化方法选择 的基因原则
针对不同的产物表达形式采取不同的策略 针对不同性质的重组蛋白选择不同的层析类型 多种分离纯化技术的联合运用 合适分离纯化介质的选择 分离纯化过程的规模化
(2)病毒的去除:成品中必须检查是否含有病毒。 病毒最大的来源是由宿主细胞带入。经过色谱分离, 一般能将病毒除去,必要时也可以用紫外线照射使 病毒失活,或用过滤法将病毒去除。
第26章重组药物
3、组成工艺的各技术、步骤之间及设备间要能相 互适应和协调,且高效,收率高,易操作,对设 备条件要求低,能耗低,并尽可能少用试剂,以 免增加分离纯化步骤或干扰产品质量。
第四节 重组药物的质量控制
重组药物与其它传统方法生产的药品有许多不同 之处,它利用活细胞作为表达系统,并具有复杂的分子 结构。
它的生产涉及到生物材料和生物学过程,如:发 酵、细胞培养、分离纯化目的产物,这些过程有其固有 的易变性。同时由于重组技术所获得的蛋白质产品往往 在极微量下就可产生显著效应,任何药物性质或剂量上 的偏差,都可能贻误病情甚至造成严重危害。
在培养过程的质量控制上,要求种子克隆纯而 且稳定,在培养过程中工程菌不应出现突变或质粒 丢失现象。生产重组药物应有种子批系统,并证明 种子批不含致癌因子,无细菌、病毒、真菌和支原 体等污染,并由原始种子批建立生产用工作细胞库。 原始种子批需确证克隆基因DNA序列,详细叙述种 子批来源、方式、保存及预计使用期,保存与复苏 时宿主载体表达系统的稳定性。对菌种最高允许的
对其生物活性需采用国际或国家参考品,或经过 国家鉴定机构认可的参比品,以体内或细胞法测定制 品的生物学活性,并标明其活性单位;在安全性上需 按照“中国生物制品规程”进行无菌试验、热原试验、 毒性和安全试验。
由于蛋白质结构十分复杂,可能同时存在多种降 解途径,因此须在实际条件下长期观测稳定性,对产 品一致性、纯度、分子特征和生物效价等多方面的 变化情况加以综合评价,确定产品的贮藏条件和使用 期限等。
外源蛋白的复性是利用包涵体获得外源蛋白 最关键也是最复杂的一步。重组蛋白的复性操作 主要有两种方法:一种是将溶液稀释,导致变性 剂的浓度降低,促进蛋白质复性。 如果蛋白质以胞内可溶表达形式存在,则收集菌 体后破壁,离心取上清液,然后用亲和层析或离 子交换法进行纯化。在纯化过程中还常采取适当 的保护措施,如低温、加入保护剂、尽量缩短纯 化工艺及时间等措施来防止产物的降解和破坏。
重组蛋白在生物制造业中的应用及其质量控制
重组蛋白在生物制造业中的应用及其质量控制随着生物科技的不断发展,重组蛋白在生物制造业中的应用越来越广泛。
重组蛋白是由基因工程技术合成的人造蛋白质,具有与自然蛋白同样的生物学功能。
其应用领域包括医疗、食品、农业和工业等多个领域。
本文将着重探讨重组蛋白在生物制造业中的应用及其质量控制。
一、重组蛋白在生物制造业中的应用1. 医疗领域重组蛋白在医疗领域中的应用主要涉及制造各种治疗性蛋白药物,例如人类胰岛素、白细胞介素等。
这些药物可以用于治疗糖尿病、心血管疾病、肿瘤等多种疾病。
由于生产工艺的不断改进,重组蛋白的制造成本越来越低,从而使得这些药物的价格越来越实惠,让更多需要治疗的患者受益。
2. 食品领域在食品领域中,重组蛋白被用来制造各种添加剂,如酶、酸味剂、甜味剂等。
这些添加剂可以改善食品的口感、品质和保质期等,极大地方便了人们的生活。
3. 农业领域重组蛋白在农业领域中的应用主要涉及转基因技术。
利用重组 DNA 技术,可以将具有某种特定功能的基因导入某一植物或动物的基因组中,从而使其具有这种功能。
例如,转基因作物可以耐受农药,增加产量,改良营养成分等。
同时,重组蛋白还可以用于生产各种动物疫苗,以提高免疫系统的抗病能力。
4. 工业领域在工业领域中,重组蛋白被广泛应用于生产各种生物降解物质、治理污染等。
例如,利用重组蛋白制造出的酶可以被用来降解工业废物,减少环境污染。
二、重组蛋白的质量控制由于重组蛋白的应用范围非常广泛,因此对其质量进行有效的控制显得格外重要。
1. 清洁度检查在制造重组蛋白的过程中,可能会出现很多杂质,这些杂质对人体可能产生不良影响。
因此,在制造重组蛋白的过程中,必须对其进行清洁度检查,以确保其达到相关的卫生标准。
2. 纯度检查纯度是重组蛋白的一个重要指标,可以影响其功能和安全性。
因此,必须对重组蛋白进行相关的纯度检查,以确保其达到要求的纯度标准。
纯度检查的方法包括高效液相色谱、毛细管电泳、光谱等。
浅析在设计重组蛋白分离纯化工艺中需要注意的事项
浅析在设计重组蛋白分离纯化工艺中需要注意的事项目的重组蛋白的分离纯化是基因工程制备蛋白质药物的主要环节,一些公司提供的蛋白分离服务旨在从复杂的混合物中分离出单种类型的蛋白。
根据重组蛋白的性质选择合适的生化分离手段,以合理的效率、速度、收率和纯度从细胞或菌体中全部组分,特别是杂蛋白中分离纯化出产物,是表达产物分离纯化的目的。
在设计重组蛋白分离纯化工艺中需要注意以下事项:1、减少重组蛋白纯化步骤利用基因重组技术得到的重组蛋白药物,具有产物浓度低、环境组分复杂(含有细胞、细胞碎片、蛋白质、核酸、脂类、糖类和无机盐等)、性质不稳定等特点。
而且在蛋白分离过程中重组蛋白药物容易受PH和温度影响、蛋白水解酶的作用而失活。
因此在重组蛋白分离和蛋白纯化过程中,应尽量减少纯化工序,缩短分离纯化时间,避免目的产物与环境的接触。
2、根据蛋白质的理化性质选择蛋白分离和蛋白纯化技术不同蛋白质的理化性质有很大区别,这是能从复杂的混合物中纯化出目的蛋白的依据,应尽可能地利用蛋白质的不同物理化学性质选择所用的分离纯化技术,而不是利用相同的技术进行多次重化。
蛋白质的理化性质主要有:(1)蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质;(2)蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。
蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂;(3)蛋白质溶水具有胶体的性质;(4)加入电解质可以产生盐析作用,利用这个性质,采取分段盐析方法可以分离提纯蛋白质;(5)在热、酸、碱、重金属盐、紫外线等作作用下,蛋白质会发生性质上的改变而凝结起来。
这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质,蛋白质的这种变化叫做变性。
(6)蛋白质可以跟许多试剂发生颜色反应,例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色。
美迪西提供重组蛋白表达服务,其拥有多种蛋白表达系统,包括原核蛋白表达系统、酵母蛋白表达系统、昆虫细胞蛋白表达系统(杆状病毒)和哺乳动物细胞蛋白表达系统,具备多种融合技术,可以为客户在蛋白表达与纯化方面提供多种选择。
玻色因的生产工艺
玻色因的生产工艺玻色因是一种应用广泛的生物工程药物,主要用于治疗风湿性关节炎、肿瘤、心肌梗塞和艾滋病等疾病。
其生产工艺是一项复杂而系统的过程,要求严格的生产条件、有效的质量控制和高效的技术手段。
本文将详细介绍玻色因的生产工艺,包括玻色因的来源、发酵工艺、纯化工艺和质量控制等方面。
一、玻色因的来源玻色因是一种重组蛋白质,其由大肠杆菌等微生物表达系统中的重组DNA合成。
重组DNA是通过分子生物学手段将人体的DNA分离出来,然后通过转染、转化等技术导入到微生物细胞中,使其表达人体的蛋白质。
通过这种方式,生产出的玻色因可以拥有和人体细胞分泌的玻色因完全相同的结构和功能。
二、发酵工艺玻色因的生产工艺主要包括两个步骤:发酵和纯化。
其中,发酵是指将含有重组细胞的发酵液进行培养,通过微生物发酵来产生玻色因。
大肠杆菌是目前生产玻色因最广泛的菌种,其发酵周期通常在24-48小时之间,发酵产量可达到10-30g/L。
发酵的关键是合适的培养条件,包括培养基组成、温度、pH、气体流速和压力等参数的调节。
通常,培养基需要含有碳、氮、磷和微量元素等营养物质,以满足细胞的生长和代谢需要。
同时,必须控制培养温度、pH、氧气气流速等参数,以保证微生物能够正常生长和产生玻色因。
三、纯化工艺玻色因的纯化是指将发酵液中的杂质去除,提取出纯玻色因的过程。
这通常需要经过多个步骤的分离、纯化和精制。
这些步骤包括细胞打碎、固相萃取、膜过滤、离子交换层析、凝胶过滤层析、亲和层析和超滤等。
这些技术的使用取决于玻色因的特性和结构,以及杂质的种类和含量。
四、质量控制在玻色因生产的过程中,质量控制是至关重要的。
这些控制程序包括生产过程监测、细胞培养检测、产品纯度检查和稳定性评估。
其中,产品纯度的检查包括高效液相层析(HPLC)、电泳、核磁共振谱(NMR)、质谱(MS)等多种分析技术,以保证玻色因达到高纯度的要求。
此外,还需要对生产设备和操作程序进行验证和验证,确保操作过程能够满足卫生标准和生产要求。
重组蛋白工艺
重组蛋白工艺
重组蛋白工艺是一种应用重组DNA或重组RNA技术获得蛋白质的方法,其主要包括以下步骤:
1.目标基因的扩增:通过PCR等技术扩增目标基因。
2.插入克隆载体:将目标基因插入到克隆载体中。
3.亚克隆到表达载体中:将含有目标基因的克隆载体亚克隆到表达载体中。
4.转化到蛋白表达宿主:将表达载体转化到合适的蛋白表达宿主中,如大肠杆菌、酵母、哺乳动物细胞或昆虫细胞等。
5.重组蛋白的鉴定试验:通过Western Blot或荧光等方法鉴定重组蛋白的表达情况。
6.大规模生产:在大型发酵罐中进行重组蛋白的大规模生产。
7.分离和纯化:通过蛋白纯化技术分离和纯化重组蛋白,获得高纯度的目标蛋白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宿主细胞DNA只作为一种细胞污染因素而不作为一种危险因素。 目前均采用DNA杂交实验,用固相斑点杂交法,以地高辛标记检 测试剂盒或者用同位素标记DNA探针进行测定,必须提供相应宿 主细胞DNA标准品。由于设备和消耗试剂昂贵,一定程度限制了 该方法的普及。 由于基因工程药物的生产过程中所使用的各种表达系统中都含有 大量的DNA。因此世界各国的药品管理机构都对基因工程药物中 所允许的DNA残余量严加限定。WHO和FDA将此限量定在100pg /剂量。参照药典三部附录IX B外源性DNA残留量测定法每1次人 用剂量应不高于10ng。
文件编号: T09-SS10 生效日期: 年 版本号:01
月
日
重组蛋白药物一般生产工艺与质 量控制要点
起草人/日期: . 审核人/日期: .
批准人/日期:
.
1
培训目的及范围
培训目的 1、熟悉生物制品一般生产工艺及质量控制要点。 2、了解检验项目设置缘由及控制标准。 培训范围 1、QC部 2、QA部
11 12
24
重组蛋白药物质控要点
原液:生物学活性检测
生物学活性测定是保证基因工程药物产品有效性的重要手段。参 照中国药典标准中的规定及注册质量研究资料,采用脱E受体法或 MTT比色法检出本品,专属性强、方法可靠。
25
重组蛋白药物质控要点
原液:蛋白含量检测
在质量标准中设定此项目主要用于原液比活性计算和成品规格的 控制。目前实际应用最多的是(Lowry)法,也称之为福林一酚试剂 法,其灵敏度比双缩脲法高约100倍,比紫外吸收法高约10~2O 倍,是蛋白质量化的较可靠方法,具体操作可按照《中国药典》 2010年版三部(附录Ⅵ第二法)的规定。参照中国药典三部的标准 的规定及本品质量研究资料,此方法能够检出本品,专属性强、 方法可靠,能够控制本品含量。如不适用此类方法则采用液相法 。
2
基本知识
蛋白质的基本性质
1、蛋白质大小(一般5-10nm) 2、蛋白质形状 3、蛋白质核电性 4、蛋白质等电点(一般4.0-10.0) 5、蛋白质疏水性 6、蛋白质溶解度 7、蛋白质密度(一般1.3-1.4g/cm3) 8、蛋白质与配体结合能力(酶,抗体) 9、蛋白质与金属螯合能力(CU2+、ZN2+、CA2+、NI2+) 10、蛋白质其它特殊性质(抗热性、抗蛋白酶)
5
重组蛋白药物一般生产工艺
第一步:工程菌构
6
重组蛋白药物一般生产工艺
目标产物鉴定
基因序列测定 表达产物结构确证 特异性鉴别实验 N末端氨基酸序列分析 氨基酸组成分析 C末端氨基酸序列分析 激光解析飞行时间质谱分析 X射线晶体衍射分析
7
重组蛋白药物一般生产工艺
35
重组蛋白药物质控要点
原液:圆二色谱分析
对R和L两种圆偏振光吸收程度不同的现象,这种吸收程度的不同 与波长的关系称圆二色谱,是测定分子不对称结构的光谱法。 用于测定蛋白质的立体结构,核酸和多糖的立体结构。 在蛋白质分子中,肽链可形成α-螺旋、β-折叠、β-转角等特定的 立体结构。这些立体结构都是不对称的。
22
重组蛋白药物质控要点
发酵液:一般检测项目
现质量标准 中间体名称 检测项目 表达量 质粒丢失率检查 合格标准 ≥25% 符合规定
发酵菌体
23
重组蛋白药物质控要点
原液:一般检测项目
1 3 5 7 9 生物学活性(有效项目) 比活测定(有效项目) 分子量(鉴别项目) 肽图(鉴别项目) N-末端氨基酸序列测定(鉴别项目) 宿主菌蛋白残留量(安全项目) 细菌内毒素(安全项目) 2 4 6 8 10 12 蛋白含量(有效项目) 纯度测定(有效项目) 紫外吸收光谱(鉴别项目) 等电点(鉴别项目) 外源性DNA含量(安全项目) 圆二色谱分析(鉴别项目)
36
重组蛋白药物质控要点
原液:圆二色谱检测
蛋白质的肽键在紫外185~240纳米处有光吸收,因此它在这一波 长范围内有圆二色性。几种不同的蛋白质立体结构所表现的椭圆 值波长的变化曲线──圆二色谱是不同的。α-螺旋的谱是双负峰形 的,β-折叠是单负峰形的,无规卷曲在波长很短的地方出单峰。 蛋白质的圆二色谱是它们所含各种立体结构组分的圆二色谱的代 数加和曲线。因此用这一波长范围的圆二色谱可研究蛋白质中各 种立体结构的含量。蛋白质含酪氨酸、色氨酸和苯丙氨酸,它们在 240~350纳米处有光吸收,当它们处于分子不对称环境中时也表现 出圆二色性。这一范围的圆二色性反映出在蛋白质分子中上述氨 基酸残基环境的性质。
34
重组蛋白药物质控要点
原液:宿主菌蛋白残留量检测
如在临床使用中需要反复多次注射的药品,则需要做残余菌体蛋 白含量测定,所用方法以双抗体夹心ELISA为宜,尽量不用点免疫 。因为用点免疫测菌体蛋白含量,实验结果不客观,主要是因为 检品和菌体蛋白标准难以在同等条件下进行直接点膜,当检品浓 度较高时,在硝酸纤维膜上形成一定厚度的样品模块,影响了菌 体蛋白与膜的结合,导致测定结果偏低。 不同表达体系对菌体蛋白含量标准不同,如来自大肠杆菌的产品 为不大于0.1% ;来自CHO细胞表达产品为不大于0.05%。本 检品中宿主蛋白含量应不高于总蛋白的0.1%。
26
重组蛋白药物质控要点
原液:比活测定检测
比活性是指单位重量蛋白的活性,反应单位蛋白活性的高低。是 活性生物制品的重要指标和检测依据。
27
重组蛋白药物质控要点
原液:纯度检测 根据《人用重组DNA产品质量控制技术指导原则》有关要求,应 用至少两种不同原理的方法进行纯度分析,且纯度均不得低于 95.0%,才能判为合格。因胸腺肽a1与白介素-2(125Ser)在临 床上使用剂量在毫克级,故纯度要求应较严格。
32
重组蛋白药物质控要点
原液: N-末端氨基酸序列测定
可以确证表达产物的编码准确性。对蛋白质的全氨基酸序列分析 ,难度大,耗时长,从统计学观点只要测定N-末端15个氨基酸便 可保证其顺序的正确性。故N-末端15个氨基酸序列分析可作为重 组蛋白质的重要鉴别指标。
33
重组蛋白药物质控要点
原液:外源性DNA含量检测
重组蛋白药物一般生产工艺
第三步:目标蛋白分离与破碎
11
重组蛋白药物一般生产工艺
第三步:目标蛋 白纯化
12
重组蛋白药物一般生产工艺
第三步:目标蛋白纯化(反相与超滤)
13
重组蛋白药物一般生产工艺
蛋白纯化方法
分离方法 沉淀法 硫酸铵 丙酮 聚乙烯亚胺 等电点 双水相法 电泳法 凝胶电泳 等点聚焦电泳 离心法 超律法 电荷、大小、形状 等电点 大小、形状、密度 大小、形状 溶解度 溶解度 电荷、大小 溶解度、等电点 溶解度 蛋白质性质基础 分离方法 层析法 离心交换层析 疏水作用层析 反相层析 亲和层析 外源凝集素亲和 层析 金属亲和层析 免疫亲和层析 层析聚焦 凝胶过滤层析 电荷及分布 疏水性 疏水性、大小 配体结合 糖基内容与种类 金属螯合能力 特异抗原位点 等电点 大小、形状 蛋白质性质基础
30
重组蛋白药物质控要点
原液:肽图检测
肽图分析是DNA产品质控的重要手段之一。通过肽图分析,可从 一级结构研究重组产品与天然品的同质性。重组产品与天然产品 具有相同的指纹图谱,它们具有相同的一级结构。进一步验证了 它们的同质性。 大多基因工程产品都将肽图分析作为控制其一致性的重要常规指 标之一,而采用的方法中.又以HPLC肽图分析最为多见。肽图谱 对每一种蛋白质来说是特征和专一的。因此可用于检查各批产品 蛋白质一级结构的一致性在肤图分析中的应用基因重组药物的肽 图分析是评价基因重组制品和天然蛋白质的同一性以及不同批制 品间同一性的重要手段,也是证明细胞遗传稳定性的有效手段之 一。
31
重组蛋白药物质控要点
原液:等电点检测
不同蛋白质由于某些带电氨基酸带负电荷的Glu,Asp和带正电荷 的Lys,Arg,His等的存在,其净电荷各不相同,即等电点各不相同 。均一的蛋白质只有一个等电点,有时因加工修饰等影响可出现 多个等电点,但应有一定的范围。所以等电点测定是控制重组产 品生产工艺稳定性的重要指标。
3
培训内容
第一部分:重组蛋白药物一般生产工艺 第二部分:重组蛋白药物质控要点 第三部分: 注射用重组人胸腺肽α1与注射用重组白 介素-2(125SER)生产工艺 第四部分:注射用重组人胸腺肽α1与注射用重组人白 介素-2(125SER)质量控制标准
4
第一部分:重组蛋白药物一般生产工艺
第一步:工程菌构建 第二步:菌体发酵与诱导表达 第三步:目标蛋白提取与纯化 第四步:配液与冻干
29
重组蛋白药物质控要点
原液:紫外光谱扫描检测
这是基因工程药物的一个重要物理常数,对于一个蛋白质来说, 它的最大吸收波长是固定的。对某一重组蛋白质来说,其最大吸 收波长是固定的;在生产过程中每批产品的紫外吸收光谱应当是 一致的。测定时以生理盐水为对照,在200~350 nm范围内对待 检样品溶液进行扫描,每批制品紫外吸收图谱应与对照品一致且 在280nm附近最大吸收波长应与理论值相符。
高效液相法——本检测采用protein C18反相色谱柱,可精确地测 定产品的纯度,及对空间构相作初步分析。一般尽量采用与SDS— PAGE法原理不同的RP—HPLC或其它离子交换HPLC法进行分析, 而不采用SEC—HPLC进行分析。 电泳法——用SDS—PAGE法分析,可将不同分子量的蛋白质分开 ,从而测定蛋白质的纯度,通过凝胶扫描仪扫描进行纯度分析。 样品在凝胶电泳上显现出条区带,说明样品在该电泳条件分子量 是一致的,为分析是否存在相同分子量的杂蛋白,还应选择另一 种方法进行纯度分析。