LLC串联谐振全桥DCDC变换器的研究 移相全桥和LLC区别

合集下载

LLC谐振式DCDC变换器的研究

LLC谐振式DCDC变换器的研究

中图分类号:TM461 密级:公开UDC :621.3学校代码:10082 硕士学位论文LLC 谐振式DC/DC 变换器的研究论文作者:高一凡指导教师:孙鹤旭 教授企业指导教师:苏志华 高工申请学位类别:工程硕士学科、领域:电气工程所在单位:电气学院答辩日期:2019年5月Classified Index:TM461 Secrecy Rate:P ublicized UDC:621.3 University Code:10082Hebei University of Science and TechnologyDissertation for the Master DegreeThe Study of the LLC Resonant DC/DCConverterCandidate:Gao YifanSupervisor: Prof. Sun HexuAssociate Supervisor:Engi.Su ZhihuaAcademic Degree Applied for:Master of engineeringSpeciality:Electric EngineeringEmployer:School of electrical engineeringDate of Oral Examination:May, 2019河北科技大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品或成果。

本人完全意识到本声明的法律结果由本人承担。

学位论文作者签名:指导教师签名:年月日年月日----------------------------------------------------------------------------------------------------------- 河北科技大学学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电力电子技术的快速发展,DC-DC变换器在电力系统中扮演着越来越重要的角色。

其中,基于LLC(L-C-C)谐振的双向全桥DC-DC变换器因其高效率、低电压电流应力、软开关等优点,在新能源汽车、可再生能源系统、储能系统等领域得到了广泛应用。

本文旨在研究基于LLC谐振的双向全桥DC-DC变换器的工作原理、设计方法及性能分析。

二、LLC谐振的基本原理LLC谐振变换器是一种采用电感(L)、电容(C)和电容(C)谐振的DC-DC变换器。

其基本原理是利用谐振电路中的电感和电容进行能量传递,通过调节谐振频率和输入电压来实现输出电压的稳定。

在LLC谐振变换器中,全桥电路用于实现能量的双向传递。

三、双向全桥DC-DC变换器的设计3.1 拓扑结构双向全桥DC-DC变换器主要由两个全桥电路、谐振电感、谐振电容以及整流电路等部分组成。

其中,两个全桥电路分别负责能量的输入和输出,通过控制开关管的通断来实现能量的传递。

3.2 设计步骤设计双向全桥DC-DC变换器时,首先需要根据应用需求确定输入输出电压范围、功率等级等参数。

然后,根据参数选择合适的电感、电容等元件,并确定谐振频率。

接着,设计全桥电路的开关管和控制策略,以保证能量的高效传递。

最后,进行仿真和实验验证,对设计进行优化。

四、性能分析4.1 效率分析LLC谐振的双向全桥DC-DC变换器具有高效率的特点。

在谐振状态下,开关管的电压电流应力较低,损耗较小。

此外,软开关技术进一步降低了开关损耗,提高了整体效率。

4.2 稳定性分析该变换器具有较好的输入输出电压稳定性。

通过调节谐振频率和输入电压,可以实现输出电压的快速调整和稳定。

此外,双向全桥电路的设计使得能量可以在两个方向传递,提高了系统的灵活性和可靠性。

五、实验验证及结果分析为了验证基于LLC谐振的双向全桥DC-DC变换器的性能,我们搭建了实验平台并进行了一系列实验。

llc电路 全桥 半桥 移相角

llc电路 全桥 半桥 移相角

LLC电路、全桥、半桥、移相角一、LLC电路LLC电路是一种电源转换电路,它结合了电感器、电容器和半导体开关器件。

LLC电路能够实现高效、高功率密度的电能转换,广泛应用于各种电子设备和系统中,如服务器、通信设备和计算机等。

LLC电路的主要特点是能够实现宽范围的频率变化,同时保持高效率。

二、全桥电路全桥电路是一种将四个开关管或整流器连接成电桥结构的电路。

在全桥电路中,当开关管处于导通状态时,电流可以通过电桥的半边流动,从而实现整流或逆变的功能。

全桥电路的应用广泛,可以用于DC-DC转换器、电机控制器和逆变器等场合。

三、半桥电路半桥电路是一种将两个开关管或整流器连接成电桥结构的电路。

与全桥电路相比,半桥电路的结构较为简单,成本较低。

半桥电路可以用于多种场合,如逆变器、电机驱动器和LED驱动器等。

在半桥电路中,可以通过改变开关管的开关状态来调节输出电压或电流的大小。

四、移相角移相角是指在交流电路中,由于电感、电容等元件的存在,导致电压和电流之间存在的相位差。

这个相位差可以通过改变电路元件的参数或控制开关管的开关状态来调节。

在逆变器等场合中,通过调节移相角可以实现对输出电压或电流的相位和幅值的控制。

五、LLC电路与其他电路的比较1.LLC电路与全桥电路的比较:LLC电路和全桥电路都可以实现整流或逆变的功能,但LLC电路具有更高的效率和更宽的频率变化范围。

此外,LLC电路的开关频率较高,可以减小电感的体积和重量,使得整个电路更加紧凑和高效。

全桥电路则具有较高的电流容量,适用于需要大电流输出的场合。

2.LLC电路与半桥电路的比较:LLC电路和半桥电路相比,LLC电路具有更高的开关频率和更高的效率,同时具有更低的噪声和更小的体积。

半桥电路则具有较低的成本和简单的结构,适用于对效率和体积要求不高的场合。

3.LLC电路与移相角的比较:LLC电路和移相角是两种不同的技术,LLC 电路是一种电源转换电路,而移相角则是调节交流电路中电压和电流相位差的一种技术。

LLC串联谐振全桥DCDC变换器的研究移相全桥和LLC区别

LLC串联谐振全桥DCDC变换器的研究移相全桥和LLC区别

LLC串联谐振全桥DCDC变换器的研究移相全桥和LLC区别LLC串联谐振全桥DC-DC变换器是一种高效率的电力转换器,在许多应用中被广泛使用。

它可以实现高频率的电力转换,并具有快速的动态响应和低噪声特性。

与传统的移相全桥变换器相比,LLC变换器具有以下几点不同之处。

首先,移相全桥变换器是一种自振变换器,它的输出电压和输入电压之间的变换是通过改变谐振电感的相位来实现的。

这种变换方式能够提供高效率,但在高转换比时可能会出现电压换流问题。

而LLC变换器采用串联谐振网络,可以消除电压换流问题,并且提供更稳定的输出电压。

其次,移相全桥变换器的控制方式是通过改变谐振电感的频率来控制输出电压和输入电压之间的变换。

这种频率调制可以实现精确的电压调节,但需要更复杂的控制算法。

而LLC变换器采用谐振电容和谐振电感的并联谐振,能够通过改变谐振频率来实现精确的电压调节。

同时,LLC变换器的控制方式更简单,可轻松实现开环或闭环控制。

此外,LLC变换器还具有更低的开关损耗和更高的功率密度。

由于谐振网络可以在零电压或零电流点进行开关切换,因此LLC变换器的开关频率可以设置得相对较高,从而减少开关损耗。

与此同时,LLC变换器的谐振网络能够实现较高的功率密度,因为它可以有效地利用电流和电压的变化。

最后,LLC变换器还具有较低的EMI噪声和较少的谐振峰。

由于LLC变换器采用谐振网络,可以在零电压或零电流点进行开关切换,从而减少开关干扰和EMI噪声。

与此同时,LLC变换器还能够通过调节谐振频率来抑制谐振峰,从而减少谐振峰对系统的影响。

综上所述,LLC串联谐振全桥DC-DC变换器相对于传统的移相全桥变换器具有更稳定的输出电压、更简单的控制方式、更低的开关损耗和更高的功率密度。

因此,在高效率、高转换比和高功率密度的应用中,LLC变换器通常是更为理想的选择。

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电动汽车、可再生能源等领域的快速发展,DC-DC变换器作为电源系统中的关键设备,其性能的优劣直接影响到整个系统的效率与稳定性。

近年来,基于LLC(Lamp Lade & Capacitor)谐振的双向全桥DC-DC变换器因其在宽输入电压范围、高转换效率和低电磁干扰(EMI)等方面的优异表现,逐渐成为研究热点。

本文将详细探讨这一类变换器的工作原理、设计方法以及应用前景。

二、LLC谐振的双向全桥DC-DC变换器的工作原理LLC谐振的双向全桥DC-DC变换器是一种新型的电力电子变换器,其工作原理基于谐振现象。

在电路中,通过控制开关管的通断,使电路中的电感、电容和开关管等元件产生谐振,从而实现能量的高效传输。

与传统的DC-DC变换器相比,LLC谐振的双向全桥DC-DC变换器具有更高的转换效率和更低的电磁干扰。

该变换器由两个全桥电路组成,每个全桥电路包含四个开关管。

通过控制开关管的通断,可以实现能量的双向流动。

在正向传输过程中,输入侧的全桥电路将直流电转换为高频交流电,经过LLC谐振网络后,再由输出侧的全桥电路整流为直流电输出。

在反向传输过程中,则相反。

三、设计方法设计LLC谐振的双向全桥DC-DC变换器时,需要考虑多个因素,如输入电压范围、输出电压要求、转换效率等。

设计过程中主要包括以下几个步骤:1. 确定电路拓扑结构:根据应用需求选择合适的电路拓扑结构,如全桥电路、半桥电路等。

2. 确定谐振元件参数:包括谐振电感、谐振电容和谐振频率等参数的设计与选择。

3. 控制策略设计:根据应用需求设计合适的控制策略,如PWM控制、SPWM控制等。

4. 仿真验证:通过仿真软件对电路进行仿真验证,确保设计的合理性和可行性。

四、应用前景LLC谐振的双向全桥DC-DC变换器在多个领域具有广泛的应用前景。

首先,在电动汽车领域,该变换器可用于电池管理系统,实现电池的充放电管理以及能量回收等功能。

全桥LLC谐振电源的与研究理论部分

全桥LLC谐振电源的与研究理论部分

全桥LLC谐振电源的与研究理论部分毕业设计(论文)题目:全桥LLC谐振电源的设计与研究理论部分专业年级2009级电气工程及其自动化学号姓名指导教师尹斌评阅人王仲夏2013年6月中国马鞍山本科毕业设计(论文)任务书Ⅰ、毕业设计(论文)题目:全桥LLC谐振电源的设计与调试-理论部分Ⅱ、毕业设计(论文)工作内容(从专业知识的综合运用、论文框架的设计、文献资料的收集和应用、观点创新等方面详细说明):随着软开关技术和并联均流的发展,高性能的大功率高频开关电源的研究与开发已成为电力电子领域的重要研究方向,高频化,高效率,高功率密度和低损耗,低EMI噪声是DC/DC变换器的发展趋势,全桥LLC谐振变换器能够实现全负载范围下原边开关管ZVS,副边整流管ZCS,有效解决了移相全桥PWM ZVS DC/DC变换器存在的问题,使得LLC谐振拓扑结构成为电力电子技术领域研究的热点。

本课题以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较,总结二者优缺点,接着对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。

最后,搭建220V-40A 全桥LLC谐振变换器实验平台,验证理论分析的正确性和设计方法的合理性。

具体工作的步骤、内容、要求安排如下:1.绪论,介绍研究的背景。

2.以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较总结二者优缺点。

3.对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。

4.总结论文。

Ⅲ、进度安排:第1周~第2周(2周):根据毕业设计任务和要求,收集、查阅和研究学习相关的信息和资料:确定相应的技术方案和实施过程及规划;第3周~第5周(3周):撰写论文初稿,查阅相关资料进行修改;第6周~第9周(4周):设计电路图,调试硬件;第10周~第12周(3周):完成MATLAB软件设计;第13周~第14周(2周):充实论文,后期检查整改。

LLC串联谐振全桥DCDC变换器的研究 移相全桥和LLC区别

LLC串联谐振全桥DCDC变换器的研究  移相全桥和LLC区别

学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保 留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本 人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索, 可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
II
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研 究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集 体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中 以明确方式标明。本人完全意识到,本声明的法律结果由本人承担。
学位论文作者签名: 日期: 年 月 日
1
限,又可分为一象限、二象限、三象限和四象限。 (2)逆变:实现DC/AC 变换 逆变就是实现直流到交流的功率变换。如不间断电源UPS,系统平时利用充电式 电池储存电能,一旦交流电源中断,便可以把储存在电池中的直流电转换成交流电来 维持正常供电。 (3)变频:实现AC/AC(AC/DC/AC)变换 变频器电源主电路均采用交流-直流-交流方案, 工频电源通过整流器变成固定的 直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电 压、频率可变的交流输出电源,输出波形近似于正弦波,用于驱动交流异步电动机实 现无级调速。 (4)斩波:实现DC/DC(AC/DC/DC)变换 DC/DC 变换是将固定的直流电压变换成可变的直流电压。 当今软开关技术使直流 变换器发生了质的飞跃。 日本NemicLambda 公司最新推出的一种采用软开关技术的高 频开关电源模块RM系列,其开关频率为200~300kHz,功率密度已达到27w/cm3。采用 同步整流器MOSFET,代替肖特基二极管使整个电路效率提高到90%以上。 (5)静止式固态断路器:实现无触点的开关、断路器的功能,控制电能的通断。

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究LLC串联谐振全桥DC/DC变换器的工作原理是将全桥拓扑结构与LLC 谐振拓扑结构相结合。

变换器的输入端采用全桥结构,输出端采用谐振电路结构。

在输入端,通过控制两个辅助开关的开通和关闭,实现了相对零电压开关和相对零电流开关。

在输出端,谐振电路由电容、电感和电阻构成,通过控制开关管的导通和关断,实现了谐振振荡。

通过这样的工作原理,LLC串联谐振全桥DC/DC变换器可以实现高效率的功率转换。

LLC串联谐振全桥DC/DC变换器具有一系列优点。

首先,由于采用了全桥结构,输入电压范围广泛,可以适应各种不同的电源。

其次,由于采用了LLC谐振结构,能够实现高效并且低噪音的输出。

此外,该变换器还具有可调性好、响应速度快、波形质量高、设计简单等优点。

在研究LLC串联谐振全桥DC/DC变换器时,可以从以下几个方面进行深入研究:1.拓扑结构设计:根据应用需求,设计适合的LLC串联谐振全桥DC/DC变换器拓扑结构,选择合适的电阻、电容和电感等元器件。

2.开关管选择与控制:选择合适的开关管,并设计合理的开关管控制策略,实现零电流开关和零电压开关。

3.谐振电路设计:设计合适的谐振电路,包括电容、电感和电阻的参数选择,以及谐振频率和谐振频率范围的确定。

4.功率转换效率研究:研究LLC串联谐振全桥DC/DC变换器的功率转换效率,分析其与输入电压、输出电压、负载等因素的关系,优化变换器性能。

5.控制策略研究:研究合适的控制策略,实现LLC串联谐振全桥DC/DC变换器的稳定工作,提高系统动态响应性能。

除了理论研究,还可以进行仿真和实验验证。

利用软件仿真工具,如Matlab/Simulink、PSIM等,进行LLC串联谐振全桥DC/DC变换器的性能分析和优化。

并且利用实验平台,搭建LLC串联谐振全桥DC/DC变换器的实验系统,验证理论研究成果的正确性。

总结来说,LLC串联谐振全桥DC/DC变换器是一种高效率、高性能的直流-直流变换器。

《基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电力电子技术的不断发展,DC-DC变换器作为电力转换的核心设备,其性能和效率成为了研究的重点。

双向全桥DC-DC 变换器作为一种能够实现能量双向流动的变换器,在电动汽车、不间断电源、储能系统等领域有着广泛的应用。

而LLC谐振技术因其高效率、低应力等优点,被广泛应用于高频开关电源中。

因此,基于LLC谐振的双向全桥DC-DC变换器的研究具有重要的理论意义和实际应用价值。

二、LLC谐振技术概述LLC谐振技术是一种适用于DC-DC变换器的高效能量传输技术。

它利用电容、电感和谐振电路之间的耦合作用,使变换器能够在较高的频率下工作,从而实现高效率的能量传输。

LLC谐振变换器具有软开关特性,能够降低开关损耗和电磁干扰,提高系统的可靠性。

三、双向全桥DC-DC变换器的工作原理双向全桥DC-DC变换器是一种能够实现能量双向流动的变换器。

它通过控制开关管的通断,实现能量的传递和回收。

在正向工作时,能量从输入端传递到输出端;在反向工作时,能量从输出端回收并传递回输入端。

双向全桥DC-DC变换器具有高效率、高功率密度、灵活的能量管理等特点。

四、基于LLC谐振的双向全桥DC-DC变换器的设计与分析针对传统双向全桥DC-DC变换器的缺点,我们提出了基于LLC谐振的双向全桥DC-DC变换器。

该变换器利用LLC谐振技术的高效能量传输特性和软开关特性,提高了系统的效率和可靠性。

我们详细分析了该变换器的工作原理、电路结构、参数设计等方面。

首先,我们设计了基于LLC谐振的双向全桥DC-DC变换器的电路结构。

该电路由输入电源、两个全桥电路、LLC谐振电路和输出负载等部分组成。

其中,LLC谐振电路由电容、电感和开关管组成,实现了能量的高效传输和软开关特性。

其次,我们进行了参数设计。

根据应用需求和系统要求,我们确定了主要参数如输入电压、输出电压、开关频率等。

同时,我们还进行了仿真分析,验证了设计方案的可行性和正确性。

《基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电力电子技术的快速发展,DC-DC变换器在电力系统中扮演着越来越重要的角色。

其中,基于LLC(L-C-C)谐振的双向全桥DC-DC变换器因其高效率、低损耗、宽范围调压等优点,受到了广泛关注。

本文旨在深入研究基于LLC谐振的双向全桥DC-DC变换器的原理、特性和设计方法。

二、LLC谐振技术概述LLC谐振技术是一种广泛应用于DC-DC变换器的技术,其核心在于通过电感、电容和电容之间的谐振来实现高效能量传输。

LLC谐振电路由一个谐振电感、两个谐振电容和负载组成,能够实现在不同输入电压和负载条件下,输出稳定的电压和电流。

此外,LLC谐振电路具有较低的导通损耗和较高的效率,适用于高功率应用。

三、双向全桥DC-DC变换器结构基于LLC谐振的双向全桥DC-DC变换器由两个全桥电路组成,分别连接在输入和输出端。

通过控制开关管的通断,实现能量的双向传输。

该变换器具有以下特点:1. 高效率:由于采用LLC谐振技术,能量传输效率高。

2. 宽范围调压:通过调整谐振参数,可实现宽范围调压。

3. 双向性:可实现能量的双向传输,适用于电池充放电等应用。

四、工作原理与特性分析基于LLC谐振的双向全桥DC-DC变换器的工作原理主要涉及开关管的通断控制和能量的传输过程。

当开关管按照一定规律通断时,会在输入端和输出端之间形成谐振电流,从而实现能量的传输。

在分析该变换器的特性时,需考虑以下因素:1. 电压增益:通过调整开关管通断时间和谐振参数,实现不同电压增益的需求。

2. 软开关特性:LLC谐振电路具有软开关特性,可降低开关损耗。

3. 效率与损耗:分析在不同工作条件下,变换器的效率和损耗情况。

五、设计与优化方法针对基于LLC谐振的双向全桥DC-DC变换器的设计,需考虑以下因素:1. 参数设计:包括谐振电感、谐振电容和开关管的选择与计算。

2. 控制策略:根据应用需求,设计合适的开关管通断控制策略。

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电力电子技术的不断发展,DC-DC变换器作为电力转换的核心设备,其性能的优劣直接影响到整个系统的运行效率和稳定性。

近年来,基于LLC(L-C-L)谐振的双向全桥DC-DC变换器因其高效率、低损耗、宽电压范围等优点,在新能源、电动汽车、储能系统等领域得到了广泛的应用。

本文旨在研究基于LLC 谐振的双向全桥DC-DC变换器的原理、设计及优化方法,为实际应用提供理论依据。

二、LLC谐振变换器的基本原理LLC谐振变换器是一种采用谐振原理进行能量传递的DC-DC 变换器。

其基本结构包括输入电源、全桥逆变电路、谐振腔(包括L1、L2、C)和输出整流电路。

当开关管工作时,通过控制开关管的通断,使逆变电路输出高频方波电压,与谐振腔中的电感、电容发生谐振,从而实现能量的传递和转换。

三、双向全桥DC-DC变换器的设计双向全桥DC-DC变换器是在LLC谐振变换器的基础上,增加了反向能量传输的功能。

其设计主要涉及到主电路参数的设计、控制策略的制定以及驱动电路的设计等方面。

1. 主电路参数设计:主要包括输入电压范围、输出电压范围、功率等级等参数的确定,以及谐振腔中电感、电容的选取和计算。

2. 控制策略的制定:针对双向全桥DC-DC变换器的特点,制定合适的控制策略,如移相控制、PWM控制等,以实现能量的高效传输和系统的稳定运行。

3. 驱动电路的设计:为了保证开关管的正常工作,需要设计合适的驱动电路,包括驱动电源的选择、驱动电路的拓扑结构等。

四、优化方法及性能分析针对基于LLC谐振的双向全桥DC-DC变换器,可以从以下几个方面进行优化:1. 优化谐振腔的设计:通过调整电感、电容的参数,使系统在更宽的输入电压范围内实现谐振,从而提高系统的效率和稳定性。

2. 改进控制策略:根据实际需求,采用更先进的控制策略,如数字控制、智能控制等,以提高系统的动态响应速度和精度。

毕业论文——全桥LLC串联谐振DCDC变换器

毕业论文——全桥LLC串联谐振DCDC变换器

编号南京航空航天大学毕业设计全桥 LLC 串联谐振 DC/DC 题目变换器学生姓名学号学院自动化学院专业电气工程与自动化班级指导教师二〇XX年X月毕业设计(论文)报告纸全桥 LLC 串联谐振 DC/DC 变换器摘要近现代随着能源价格的增高和需求的增大,工作效率的高低成为了 DC/DC 变换器比较重要的指标之一。

为了追求 DC/DC 变换器的大功率和高效率,需要不断地改进变换器的结构和器件。

传统移相全桥软开关变换器可以有较大的功率,并且可以较好的实现 ZVS,提高效率。

但是相对的却限制了负载的范围,反向二极管的恢复也成了问题并且在输入大电压时效率很低。

为了解决这些问题,本文试着研究全桥 LLC 串联谐振变换器。

本文首先简单介绍了传统移相全桥 PWM ZVS 变换器、全桥 LC 串联谐振变换器、全桥LC 并联谐振变换器和全桥 LCC 串并联谐振变换器,并指出了其中的优缺点。

在此基础上对比介绍了全桥 LLC 串联谐振变换器。

对 LLC 串联谐振全桥 DC/DC 变换器的工作原理进行了详细研究,利用基频分量近似法建立了变换器的数学模型,确定了主开关管实现 ZVS 的条件,推导了边界负载条件和边界频率,确定了变换器的稳态工作区域,推导了输入、输出电压和开关频率以及负载的关系。

之后又设计了一个变换器电路,计算了相关参数,并且对元器件进行了选择。

本文使用UC3861 进行开关控制,设计了它的闭环电路。

最后用 saber 软件分别进行了满载、半载、轻载和空载的仿真分析。

仿真结果证实了理论分析的正确性。

关键词:DC/DC 变换器,全桥,UC3861,LLCiFull bridge LLC series resonant DC/DC converterAbstractIn modern times with increasing energy prices and increased demand, the level of efficiency has become the important index of DC/DC converter. In order to pursue DC/DC converter with high power and high efficiency, the structure and device of converter is needed to be improved. The traditional phase shifted full bridge PWM ZVS converter has some bad place.It limits the load range. Reverse diode recovery has become a problem when the input voltage and high efficiency is very low. To solve these problems, we try to study the full bridge LLC series resonant converter.This paper introduces the circuit and the characteristics of the traditional phase shifted full bridge PWM ZVS converter, full bridge LC series resonant converter and the full bridge LC parallel resonant converter and the full bridge LCC series resonant converter. Then their shortcomings are pointed out. In this paper, LLC series resonant Full Bridge DC/DC converter is analyzed in detail. Based on the fundamental element simplification method, the mathematics model of the converter is obtained, and the conditions to achieve ZVS are given. Steady working region of LLC series resonant Full Bridge DC/DC is confirmed, the relations between input and output voltage depending on switching frequency and load conditions are given.Then, a converter circuit is designed, its parameters are calculated and the selected its components. This paper uses UC3861 for switching control and designed the closed-loop circuit. Finally uses the saber software to analyze some different situation of load.Finally, the simulation results are given, confirm the theoretical results are accurate.Key Words:DC/DC converter; Full bridge; UC3861; LLC目录摘要 (i)ii 第一章引言.............................................................................................................................- 1 -1.1 课题背景......................................................................................................................... - 1 -1.2 谐振变换器研究现状..................................................................................................... - 1 -1.2.1 移相全桥 PWM ZVS DC/DC 变换器.................................................................. - 1 -1.2.2 LC 串联谐振变换器............................................................................................. - 2 -1.2.3 LC 并联谐振变换器............................................................................................. - 3 -1.2.4 LCC 串并联谐振变换器....................................................................................... - 3 -1.3 本文的主要内容............................................................................................................. - 4 - 第二章全桥 LLC 串联谐振 DC/DC 变换器................................................................................ - 6 -2.1 引言................................................................................................................................. - 6 -2.1.1 拓扑图................................................................................................................... - 6 -2.1.2 全桥 LLC 谐振变换器的优缺点.......................................................................... - 6 -2.2 全桥 LLC 串联谐振变换器的原理................................................................................ - 6 -2.2.1 全桥 LLC 串联谐振变换器的等效电路.............................................................. - 6 -2.2.2 全桥 LLC 串联谐振变换器的工作区域............................................................ - 10 -2.3 全桥 LLC 串联谐振变换器的工作过程...................................................................... - 12 -2.3.1 开关管工作在区域 1(f m<f<f r)....................................................................... - 12 -2.3.2 开关管工作在区域 2(f>f r)............................................................................. - 14 -2.4 频率特性....................................................................................................................... - 16 -2.5 空载特性....................................................................................................................... - 17 -2.5 短路特性....................................................................................................................... - 18 -2.6 本章总结....................................................................................................................... - 19 - 第三章闭环控制电路的设计..................................................................................................... - 20 -3.1 UC3861 的简单介绍..................................................................................................... - 20 -3.2 UC3861 的工作原理..................................................................................................... - 21 -3.3 闭环电路的设计........................................................................................................... - 22 -3.4 本章总结....................................................................................................................... - 22 - 第四章参数设计及仿真结果..................................................................................................... - 24 -4.1 参数设计....................................................................................................................... - 24 -4.1.1 性能指标要求..................................................................................................... - 24 -4.1.2 主电路参数设计................................................................................................. - 24 -4.1.3 输出整流滤波电路............................................................................................. - 28 -4.1.4 fmax、fmin、死区时间设计.............................................................................. - 28 -4.2 saber 仿真结果.............................................................................................................. - 29 -4.2.1 满载..................................................................................................................... - 29 -4.2.2 半载..................................................................................................................... - 34 -4.2.3 轻载..................................................................................................................... - 38 -4.2.4 空载..................................................................................................................... - 40 -4.3 本章小结....................................................................................................................... - 42 - 第五章全文总结及展望........................................................................................................... - 43 - 参考文献................................................................................................................................. - 44 - 致谢..................................................................................................................................... - 45 -第一章引言1.1课题背景随着电力电子技术的发展与计算机技术的快速提升,有关 DC/DC 变换器的应用变得很普遍,对于这方面的研究也就多了起来。

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究首先,介绍LLC串联谐振全桥DCDC变换器的工作原理。

LLC谐振全桥DCDC变换器由LLC谐振反馈电路和全桥拓扑结构组成。

谐振电路由电容、电感和谐振电阻组成,能够实现谐振振荡。

而全桥拓扑结构则由四个开关管组成,其中两个开关管属于谐振臂,另外两个开关管属于全桥臂。

通过控制开关管的开关时间,实现对输入电压的变换。

LLC谐振全桥DCDC变换器具有高效率、高稳定性和低失真等特点,因此在电力电子领域得到广泛应用。

其次,分析LLC串联谐振全桥DCDC变换器的特点。

LLC谐振全桥DCDC变换器具有以下几个特点:首先,谐振拓扑结构使得该变换器具有高效率。

由于LLC谐振电路能够实现零电压和零电流开关,减小了开关损耗,提高了能量传输效率。

其次,LLC谐振全桥DCDC变换器能够实现高电压转换。

通过串联谐振电路,该变换器能够实现输入电压的放大和变换,使其适用于高电压转换应用。

再次,LLC谐振全桥DCDC变换器具有高稳定性。

谐振电路的振荡频率稳定,能够减小输出电压的波动,保证系统的稳定性。

然后,探讨LLC串联谐振全桥DCDC变换器的应用。

目前,LLC谐振全桥DCDC变换器在可再生能源和电动汽车领域得到广泛应用。

在可再生能源领域,由于太阳能和风能等能源的输出电压具有波动性,需要通过DCDC变换器进行能量转换和调节。

而LLC谐振全桥DCDC变换器具有高效率和高稳定性的特点,能够满足可再生能源转换的需求。

在电动汽车领域,LLC谐振全桥DCDC变换器能够实现车载电池的充电和高压至低压的能量转换,提高了电动汽车的能量利用效率。

最后,介绍LLC串联谐振全桥DCDC变换器的研究进展。

目前,对LLC串联谐振全桥DCDC变换器的研究主要集中在提高转换效率和减小器件损耗等方面。

例如,通过优化LLC谐振电路的参数和拓扑结构,提高谐振振荡效率;利用软开关技术,降低开关损耗,减小谐振电路的功耗。

此外,还有研究关注LLC串联谐振全桥DCDC变换器的控制策略和电磁兼容性等问题,提高变换器的稳定性和可靠性。

高效LLC谐振式DCDC变换器的研究

高效LLC谐振式DCDC变换器的研究

⾼效LLC谐振式DCDC变换器的研究⾼效LLC谐振式DCDC变换器的研究浙江⼤学硕⼠学位论⽂摘要摘要本⽂介绍了传统开关电源的DC/DC变换器的概况,指出当变换器要考虑维持时间(hold up time)时(即宽输⼊电压范围),PWM(脉宽调制)变换器以及SRC (串联谐振)、PRC(并联谐振)和SPRC《串并联谐振)等谐振变换器不能在额定输⼊电压下优化参数。

本⽂研究的LLC谐振式变换器是在传统SRC变换器的基础上增加了⼀并联电感,它的引⼊改变了SRC的增益曲线,在低于谐振频率fr处增加了--boost区域,使得变换器能够在额定输⼊电压下实现最优化。

本⽂详细分析了LLC谐振式变换器在连续⼯作模式下的⼯作状态,分析了谐振⽹络输⼊阻抗、电压增益等参数对电路性能的影响,并给出了⼀般的设计步骤。

最后设计了⼀台1500W的LLC谐振式变换器样机,通过⽐较理论值、仿真值与实验数据,验证了变换器的优点。

关键词:DC/DC变换器,LLC,零电压,零电流,效率II浙江⼤学硕上学位论⽂AbstractAbstractAfter reviewing the states of PWM DC/DC converteL and comparing with other resonant topologies,hi曲efficiency LLC resonant topology is proposed.The LLC topology is developed from traditional SRC resonant topology through adding only one inductor.The ncw LLC topology Can boost the input voltage when its operation frequency is lower than the resonant frequency.So it can get higher efficiency thanother topology when it operation at rated input voltage.LLC operation principles,parameter design and design process ale presented in the paper.At the end of the paper,1 500W LLC DC/DC converter was designed,The test result verified the good performance of this topology.Key word:DC—DC converter,Resonant,ZVS,ZCS,EfficiencyIII致谢本⽂是在导师马皓教授的悉⼼指导下完成的。

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究

LLC串联谐振全桥DCDC变换器的研究LLC串联谐振全桥DC-DC变换器是一种在直流-直流能量转换中应用广泛的拓扑结构,具有高效率、高功率密度和较低的电磁干扰等优点。

本文将对LLC串联谐振全桥DC-DC变换器进行研究,并深入探讨其工作原理、技术特点和应用。

LLC串联谐振全桥DC-DC变换器的核心是串联谐振电路,由电感L、电容C和电阻R组成,通过调节谐振频率实现谐振运行。

全桥拓扑结构则是用于控制开关管的通断,通过切换开关管来实现能量的转换。

LLC谐振拓扑和全桥拓扑的结合,使得这种变换器能够在不同负载条件下实现高效的功率转换。

LLC谐振电路的工作原理是利用电感和电容构成谐振回路,在一定的开关周期内实现电能存储和释放。

在开关管导通和关闭的过程中,电容和电感之间的电流和电压会发生周期性的变化,并通过合适的控制电路实现能量的传输。

通过谐振频率的调节,可以实现高效的能量转换,同时还能减小开关管上的开关损耗。

1.高效率:通过LLC谐振拓扑的应用,可以减小开关损耗,并提高能量转换的效率。

相比于传统的硬开关拓扑结构,LLC串联谐振全桥DC-DC变换器的效率更高。

2.高功率密度:由于LLC谐振拓扑减小了开关损耗,同时全桥拓扑结构能够实现高频开关,因此LLC串联谐振全桥DC-DC变换器的功率密度更高,适用于高功率应用场景。

3.低电磁干扰:通过谐振频率的选择和合适的滤波设计,LLC串联谐振全桥DC-DC变换器能够有效地抑制电磁干扰,保证系统的稳定性和可靠性。

LLC串联谐振全桥DC-DC变换器在电力电子领域有着广泛的应用。

例如,在电动汽车中,LLC串联谐振全桥DC-DC变换器可以将电池的直流电压转换为驱动电机所需的直流电压。

在太阳能发电系统中,LLC串联谐振全桥DC-DC变换器可以将太阳能电池板输出的直流电压转换为交流电网所需的电压。

总之,LLC串联谐振全桥DC-DC变换器是一种高效、高功率密度和低电磁干扰的变换器拓扑结构,具有广泛的应用前景。

移相全桥和LLC技术在电推进PPU上的应用对比

移相全桥和LLC技术在电推进PPU上的应用对比

移相全桥和L L C技术在电推进PPU上的应用对比陈昶文,武桐,冯玮玮,张保平(兰州空间技术物理研宄所,甘肃兰州73_)摘要:分别采用移相全桥和全桥LLC设计了离子电推进电源处理单元(PPU)屏栅电源模块。

针对恒流启动、打 火保护、负载调整率等特性开展了设计和实验验证。

得出移相全桥变换器应用在P PU设计显著提高了效率,但 整流二极管和变压器绕组的电压应力较髙,限制了单模块能够输出的最大电压;全桥LLC变换器消除了输出端滤波电感和箝位电路,降低了绝缘设计的难度和体积重量,劣势在于在输入电压范围变宽时效率下降明显。

关键词:电源处理单元;电推进;移相全桥中图分类号:V423.4+4 文献标识码:A 文章编号:1000-100X(2021)05-0053-04Comparison of Phase-shifted Full Bridge and LLC Technology inElectric Propulsion PPUCHEN Chang-wen,W U Tong,FENG Wei-wei,ZHANG Bao-ping(Lanzhou Institute of Space Technology Physics, Lanzhou73C X X X), China)Abstract : The grid power module of power processing unit (PPU) is designed by using phase-shifted full bridge and full bridge LLC respectively.The constant current start-up, ignition protection and load regulation are designed and verified by experiments.lt is concluded that the phase-shifting full bridge converter can significantly improve the effi­ciency of PPU, but the voltage stress of rectifier diode and transformer winding is high, which limits the maximum output voltage of a single module, the full bridge LLC converter eliminates the filter inductance and clamp circuit at the output end,reduces the difficulty and volume weight of the insulation design,but the disadvantage is that the effi­ciency decreases when the input voltage range is widened obviously.Keywords : power processing unit; electric propulsion; phase-shifting full bridgel引言屏栅电源及阳极电源分别是离子电推进和霍 尔电推进PPU中的核心模块,处理了对应P P U 80% 以上的功率屏栅和阳极电源输出电压高、处 理功率大,高效率变换是其热设计和可靠性设计的 关键。

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《2024年基于LLC谐振的双向全桥DC-DC变换器的研究》范文

《基于LLC谐振的双向全桥DC-DC变换器的研究》篇一一、引言随着电力电子技术的发展,DC-DC变换器作为直流电源转换的关键设备,其在现代电子设备中得到了广泛应用。

近年来,LLC谐振技术在DC-DC变换器中受到了越来越多的关注,因为其能够提供高效、低损耗和优异的电压调整能力。

本文将重点研究基于LLC谐振的双向全桥DC-DC变换器,探讨其工作原理、性能特点以及应用前景。

二、LLC谐振技术概述LLC谐振技术是一种基于电容、电感和谐振二极管的谐振电路,用于提高DC-DC变换器的效率。

它具有较高的电压转换比、低损耗和较小的电流纹波等优点。

LLC谐振变换器主要包括一个原边侧和副边侧的谐振电路,以及控制开关的工作周期。

通过控制开关的开通和关断,实现能量的传输和转换。

三、双向全桥DC-DC变换器结构与工作原理双向全桥DC-DC变换器采用全桥拓扑结构,结合LLC谐振技术,实现能量的双向传输和转换。

该变换器由四个开关管组成原边侧全桥电路,以及一个对应的副边侧全桥电路。

原边侧全桥电路中的开关管控制着能量的传输方向和传输速度。

在正向传输时,原边侧的开关管交替开通和关断,使能量从输入端传输到输出端。

在反向传输时,通过控制开关管的导通顺序和占空比,实现能量的回馈。

四、性能特点与优势分析基于LLC谐振的双向全桥DC-DC变换器具有以下优点:1. 高效率:LLC谐振技术降低了开关损耗和磁化损耗,提高了变换器的效率。

2. 宽范围电压调整:通过调整开关管的占空比和导通顺序,实现宽范围的电压调整。

3. 双向传输:实现能量的正向传输和反向回馈,提高了能源利用率。

4. 软开关技术:减小了开关过程中的电流和电压峰值,降低了电磁干扰(EMI)。

五、应用领域与前景展望基于LLC谐振的双向全桥DC-DC变换器在多个领域具有广泛的应用前景。

例如,在新能源汽车中,可用于电池组之间的能量管理;在太阳能光伏发电系统中,可用于实现最大功率点跟踪(MPPT)和能量回馈;在电力储能系统中,可用于提高能量的利用率和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

II
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研 究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集 体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中 以明确方式标明。本人完全意识到,本声明的法律结果
直流-直流变换器
软开关
串联谐振
小信号模型
I
Abstract
In DC/DC converter applications, high frequency, high power density and high efficiency is the development trend. Traditional hard-switched converters restrict the development of DC/DC converter.Phase-shift Full Bridge PWM ZVS DC/DC converter has been widely used owing to its ZVS condition of main switches. But it still has some disadvantages, for example: lagging-arm switches is hard to achieve ZVS in light load conditions; rectifier diode have unavoidable recovery problems and they not only cause great secondary loss, but also increase the voltage stress of the rectifier diodes; converter can achieve high efficiency in low input DC voltage conditions but low efficiency in high input DC voltage conditions, this kind of efficiency characteristic restricts its applications on high input DC voltage occasions and high-quality converters which have hold-up time requirements.Fortunately, as one focus in DC/DC converters research fields nowadays, LLC series resonant Full Bridge DC/DC converter can solve these problems successfully. But owing to its complexity caused by multi-resonant process, it’s hard to analyze, design and control. So LLC series resonant Full Bridge DC/DC converter has biggish research value. In this paper, LLC series resonant Full Bridge DC/DC converter is analyzed in detail. Based on the fundermental element simplification method, the mathematics model of the converter is obtained, the conditions to achieve ZVS are given. Steady working region of LLC series resonant Full Bridge DC/DC is confirmed, the relations between input and output voltage depending on switching frequency and load conditions are given. Simulation results prove the correctness of the theory. In order to design controller, small-signal model of the converter must be given. In this paper, the small-signal model of LLC series resonant Full Bridge DC/DC converters is deduced using Extended Desicribing Function Method. Also, stability of the converter is analysed and controller is designed to meet the requirments of dynamic process. Simulation results prove the correctness of theory. Based on theory analysis, a 500w prototype circuit is designed, and the design steps is given. The experimental results prove the efficiency of the converter. Keywords: DC/DC converter Soft-switching Series-resonant Small-signal model
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保 留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本 人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索, 可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
1
限,又可分为一象限、二象限、三象限和四象限。 (2)逆变:实现DC/AC 变换 逆变就是实现直流到交流的功率变换。如不间断电源UPS,系统平时利用充电式 电池储存电能,一旦交流电源中断,便可以把储存在电池中的直流电转换成交流电来 维持正常供电。 (3)变频:实现AC/AC(AC/DC/AC)变换 变频器电源主电路均采用交流-直流-交流方案, 工频电源通过整流器变成固定的 直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电 压、频率可变的交流输出电源,输出波形近似于正弦波,用于驱动交流异步电动机实 现无级调速。 (4)斩波:实现DC/DC(AC/DC/DC)变换 DC/DC 变换是将固定的直流电压变换成可变的直流电压。 当今软开关技术使直流 变换器发生了质的飞跃。 日本NemicLambda 公司最新推出的一种采用软开关技术的高 频开关电源模块RM系列,其开关频率为200~300kHz,功率密度已达到27w/cm3。采用 同步整流器MOSFET,代替肖特基二极管使整个电路效率提高到90%以上。 (5)静止式固态断路器:实现无触点的开关、断路器的功能,控制电能的通断。
华中科技大学 硕士学位论文 LLC串联谐振全桥DC/DC变换器的研究 姓名:宫力 申请学位级别:硕士 专业:电力电子与电力传动 指导教师:李晓帆 20060428


高频化、高功率密度和高效率,是 DC/DC 变换器的发展趋势。传统的硬开关变 换器限制了开关频率和功率密度的提高。移相全桥 PWM ZVS DC/DC 变换器可以实现主 开关管的 ZVS, 但滞后桥臂实现 ZVS 的负载范围较小; 整流二极管存在反向恢复问题, 不利于效率的提高;输入电压较高时,变换器效率较低,不适合输入电压高和有掉电 维持时间限制的高性能开关电源。LLC 串联谐振 DC/DC 变换器是直流变换器研究领域 的热点,可以较好的解决移相全桥 PWM ZVS DC/DC 变换器存在的缺点。但该变换器工 作过程较为复杂,难于设计和控制,目前尚处于研究阶段。本文以 LLC 串联谐振全桥 DC/DC 变换器作为研究内容。以下是本文的主要研究工作: 对 LLC 串联谐振全桥 DC/DC 变换器的工作原理进行了详细研究, 利用基频分量近 似法建立了变换器的数学模型,确定了主开关管实现 ZVS 的条件,推导了边界负载条 件和边界频率,确定了变换器的稳态工作区域,推导了输入,输出电压和开关频率以 及负载的关系。仿真结果证明了理论分析的正确性。 采用扩展描述函数法建立了变换器在开关频率变化时的小信号模型, 在小信号模 型的基础上分析了系统的稳定性,根据动态性能的要求设计了控制器。仿真结果证明 了理论分析的正确性。 讨论了一台 500w 实验样机的主电路和控制电路设计问题,给出了设计步骤,可 以给实际装置的设计提供参考。最后给出了实验波形和实验数据。实验结果验证了理 论分析的正确性。
1.2 开关电源和 DC/DC 变换器的发展趋势
从技术上看,几十年来推动电力电子技术水平不断提高的主要标志是[3][4][5][6][7]: (1) 高频化 新型高频功率半导体器件如功率 MOSFET 和 IGBT 的开发,使实现开关电源高频 化有了可能。从而使中小型开关电源工作频率可达到 400kHz(AC/DC)和 1MHz(DC/DC) 的水平。超快恢复功率二极管、MOSFET 同步整流技术的开发也为高效、低电压输出 (3V 以下)开关电源的研制有了可能。现正探索研制耐高温的高性能碳化硅功率半导 体器件。 (2) 软开关 软开关技术使高效率、高频开关变换器的实现有了可能。传统 PWM 开关电源按 硬开关模式工作,开关损耗大。开关电源高频化可以缩小体积重量,但开关损耗却更 大。为此必须研究开关电压/ 电流波形不交叠的技术,即所谓零电压/ 零电流开关技 术,或称软开关技术。小功率软开关电源效率可提高到 80-85% 。70 年代谐振开关电
相关文档
最新文档