移相全桥ZVZCSDCDC变换器综述

合集下载

ZVZCS PWM DC/DC全桥变换器的简述和发展

ZVZCS PWM DC/DC全桥变换器的简述和发展

中图分类 号 -M4 T 6
文 献标识 码 : B
文章编 号 :29 2 1(07 0— 0 90 0 1— 73 20 )4 05 — 6
0 引言
在 DCD /C变换 器 中 , 桥变 换 器 一般 用 在 中 全
目前 , 中大 功 率 D /C变换 器 中 , 在 CD 应用 最
Z Z SP CD V C WM D / C全桥变换器 的 简述和发展
杜 少武 , 丁
( i_& : , 安徽 合) r k学 6- 摘

合肥 20 0 ) 3 09
要 :随着 D /C变换 器对 功率 密度提 出了更 高的要 求 ,G T代 替 MO F T成 为主 要 的功 率 CD IB SE
c mmo o oo isa l a h i a v na e n rw a k r ic se n n lzd o ntp lge swel ster d a tgsa d da b c saedsu sd a da aye .
Ke wo d : e — ot g e - u r n — wi hn ; / C c n e tr f l b d e y r s z r — l e z r c re t s t i g DC D o v r ; u l r g o v a o — c e i
( ee U i ri f e h ooy H f A h i 2 0 0 , C i ) H f nv syO c n l , ee n u 3 0 9 hn i e t T g i a
Ab t a t s r c :Wi h n r a i g d ma d f rh g e o rd n i o v lin GBT a e b c me p may p we e i e t t e i c e sn e n o ih rp we e st c n e o ,I h y  ̄ s h v e o r r o r d vc s i

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。

ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead

C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即

带辅助谐振的移相全桥ZVSDC_DC变换器研究

带辅助谐振的移相全桥ZVSDC_DC变换器研究

带辅助谐振的移相全桥 ZVS DC/DC 变换器研究
号扰动,则有:
d! eff=d! i+d! u+d! d
(9)
综合式(5),(7),(8)和(9),并对所得结果进行
拉普拉斯变换,即可得移相全桥 ZVS DC/DC 开关变
换器输出电压扰动u! o(s)对输入占空比扰动d! (s)的传 递函数:
GVD(s)=
s2LfCf+s(Lf
nUs /RL+RPCf)+RP
/RL+1
式中:RP=2n2Llr fr;Llr =Lr+La ;fr=2/Ts。
4 控制环节仿真及实验波形
(10)
辅助谐振支路移相全桥 ZVS DC/DC 开关变换
器的主电路参数:Us=270 V,Uo=28 V,额定输出功率 PN=1 kW,fs=100 kHz,变压器次级与初级变比 n= Ns /Np=1∶8;Lf=30 !H,Cf=1 410 !F,Lr=20.3 !H,La= 38 !H,Ca=10 !F。主电路开关管采用 IRFP460 型功 率 MOSFET ,并安装散热片。控制电路以 UC3875 作
定稿日期: 2008- 02- 18 作者简介: 袁进行( 1981- ) , 男, 陕西西安人, 硕士生。研
究方向为开关电源变换方面的研究工作。
的。但是,开关变换器是典型的强非线性系统,其传 统意义上的解析分析异常复杂。目前,开关变换器的 建模方法一般有数字仿真和解析建模两种。数字仿 真准确度和精确度都高,并且有很多商用软件仿真 平台(如 Pspice,Saber 等),但其物理意义不甚明了, 对工程设计的理论指导意义有限。解析建模法目前 大致有离散法、平均法、符号法和 PFC 电路建模法, 其中平均法比较常用[4- 5]。这里采用平均法中应用较 为普遍的状态空间平均法对带辅助谐振支路的 ZVS 移相全桥变换器进行建模分析,该方法物理概念清 晰,能更好地分析开关电源的动态性能。

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。

关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。

ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。

图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。

即当原边电流减小到零后,不允许其继续反方向增长。

原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。

图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。

图4 1)NhoE.C. 电路如图1所示[1]。

该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。

这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。

变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

最新-改进型全桥移相ZVS-PWMDCDC变换器 精品

改进型全桥移相ZVS-PWMDCDC变换器
摘要介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相-变换器。

在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台486的变换器。

关键词全桥变换器;零电压开关;死区时间
引言
移相控制的全桥变换器是在中大功率变换电路中最常用的电路拓扑形式之一。

移相控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。

从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。

同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。

移相控制的全桥变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。

电路不能实现零电压开关时,将产生以下几个后果
1由于开关损耗的存在,需要增加散热器的体积;
2开关管开通时存在很大的,将会造成大的;
3由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入-吸收。

针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感,扩大变换器的零电压开关范围[2][3]。

但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。

而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致1增加电路环流,从而增加变换器的导通损耗;。

移相全桥软开关DCDC变换器的研究

移相全桥软开关DCDC变换器的研究
f传统移相全桥ZVS DC/DC变换器具有两个主要的缺点:~是副边占空比丢 失较大,二是变换器在轻载时无法实现滞后桥臂开关管的ZVS。ZVS的实现是
以牺牲变压器副边一定量的占空比为代价的,它无法消除只能尽量减小。在低压 大电流输入的情况下,副边占空比的丢失尤为严重,导致变换器的效率低下,使 得实现ZVS变得没有意义。论文通过在传统移相全桥DC/DC变换器的变压器原 边串入可饱和电感,大大减小了副边占空比的丢失,同时在滞后桥臂并联辅助谐 振网络,使得滞后桥臂开关管在轻载时也能实现ZVS,并迸一步减小了副边占 空比的丢失。可饱和电感和辅助谐振网络的引入解决了低压大电流输入情况下宽 负载范围内实现ZVS和副边占空比丢失严重的矛盾,在实现ZVS的同时将副边 占空比丢失减小到几乎为零,使得移相全桥ZVS技术能够很好地应用于这类
adopts Phase—Shifted Full—Bridge zero—voltage—switched(PS FB ZVS)technology
instead of traditional hard switching technology to decrease the switching wastage.It gets good results.
performance ofthe converter.
±里!!兰堕皇三!壅堕堡:!兰垡堕苎
鳖塑全堡墼墅茎里璺竺£奎垫墨!!!!里
Based on the analyzing of the theory,the parameters of main circuit,control
circuit and closed—loop part are designed through simulation.Some performances of

ZVS移相全桥双向DC/DC变换器

ZVS移相全桥双向DC/DC变换器
山西 电子 技术 21 0 0年第 1期
文 章 编 号 :64 7 (0 0 0 - 0  ̄2 17 45 8 2 1 ) 1 0 5 0
应 用 实践
Z S移 相 全 桥 双 向 D / C变换 器 V CD
张 波 ,曹丰文 ,索 迹 ,高金 生
( 苏州市职 业大 学 电子信 息工程 系, 苏 苏州 250 ) 江 114
用软开关技术 , 同样软开关技术还可 以显著减少开关过 程中
激起 的振 荡 , 可大幅地 提高开关 频率 , 更好地 实现 开关 电源
小 型 化 、 效 率 的 优 点 。 因 此 致 力 于 开 发 新 型 软 开 关 双 向 高 D — C变 换 器 的 研 究 很 有 必 要 , 时 软 开 关 双 向 D —C 变 CD 同 CD 换 器 是研 究 的 热 点 内 容 。
换 器 中使 用 最 多 的 一种 软 开 关 控 制 方 式 , 是 谐 振 变 换 技术 它
和P WM技术 的结 合 , 具有 容易 实现 Z S开 关 、 V 响应 速度 快 等优 点 , 自提 出以来获得 了广 泛的研究 。图 1中 D 1~/ 9 4分 别是 s ~s 1 . 4的内部寄生 二极 管 , 1~c C 4分别 是 . s S 1~. 4的 寄生 电容或其 寄生 电容 与外 接小电容的等效 , 中 C :C , 其 1 3
S l
图 1 桥 式 直 流 变 换 器
C 2

_J _l
Cn — —_ ▲ J Cb l

D2
C 2=C , b 4 C 是隔直 电容 , 是为防止变压器铁心 因不对称 导致
直 流偏 磁饱 和 ,r 变 压器 原边 漏 电感 与外 串 电感之 和。 L是

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋

移相全桥ZVZC软开关DC_DC稳压电源分析与设计_吕春锋
断电容 Cb 放电,由于阻断电容 Cb 较大,其自身电压在放电过
(e)
4
(f)
5
图 3 换流过程模态
VDR2 流过负载电流。 要实现滞后桥臂零电流,原边电流需在滞后桥臂开通前
减小到零。由开关模态 2 可知,原边电流线性减小:
V (t ) − V (t ) ?V
(1)
i (t) − I ?V (t ? t ) / L
?V (t ) ? V (t ) ? 2 C V / C ?
V ? I ?t / C ? 2 C V / C ? ?V
(5)
一般 Cr垲Cb,式(5)可以简化为:
程中近似不变,而变压器原边电流近似线性减小。
V − I ?t / 2 C
(6)
如图 3(d)所示,开关模态 3 换流过程如下:[t2-t3]期间,阻
通常所说的硬开关,在开通和关断时会产生较大的开关 损耗,开关频率越高,损耗越大。软开关电源是在开关器件通 断条件下,加在其电压上电压为零,即零电压开关(ZVS),或者 通过开关器件的电流为零,即零电流开关(ZCS)。软开关技术 显著解决了元件开关时刻产生的损耗,可以更大幅度地提高 开关频率,这种软开关的方式为缩小电源体积和提高电源效 率创造了条件。移相全桥零电压零电流软开关(ZVZCS)DC-DC 变换器是在移相全桥 ZVS 的基础上发展而来的,其工作模式 基本上克服了 ZVS 和 ZCS 软开关模式的固有缺陷,使全桥变 换器的超前桥臂实现 ZVS,而滞后桥臂实现 ZCS,在中、大功 率开关电源中具有广泛的应用。其超前桥臂的零电压实现是 通过并联电容电压不能突变完成的,滞后桥臂的零电流是通 过串联隔直电容和漏感谐振,从而使电流能量转移到了电容 中,滞后桥臂串接的二极管阻止了关断后的反向电流,减弱了 环路损耗[1]。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移相全桥ZVZCSDC/DC变换器综述
河北秦皇岛燕山大学朱艳萍电源技术应用
摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。

关键词:移相控制;零电压零电流开关;全桥变换器
1概述
所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。

ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。

滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。

即当原边电流减小到零后,不允许其继续反方向增长。

原边电流复位目前主要有以下几种方法:
1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;
2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件;
3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。

2 电路拓扑
根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。

1)NhoE.C.电路如图1所示[1]。

该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。

这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。

变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。

该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

2)ChenK.电路如图2所示[2][3]。

该电路超前桥臂并联有串联的电感和电容。

电感L1和L2 很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰。

该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关。

但是,这个电路也付出了代价,漏感L1k中的能量L1kip2/2和ip反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中。

3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示。

它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关。

在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态。

尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题
4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5]。

这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件。

超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的负载范围内满足零电压开关条件,开关管的导通与关断的死区时间间隔受原边电压最大占空比的限制。

在此种拓扑结构中,可能会出现副边整流输出电压的占空比大于原边电压最大占空比的现象,这种现象称为“占空比增大效应”(duty cycleboost effect)这种现象是由箝位电容Cc和箝位开关的作用造成的。

此电路的主要缺点是控制上稍微复杂一些,以及有源箝位开关采用的是硬开关,但是,有源箝位开关在一个开关周期中仅工作很短一段时间,对变换器整体效率影响很小。

5)利用变压器辅助绕组的FB-ZVZCS-PWM变
换器电路拓扑如图5所示[6]。

该电路通过在副边增加一个变压器辅助绕组和一个简单的辅助线路,无须增加耗能元件或有源开关来取得滞后桥臂ZCS。

其副边整流电压可由箝位电容箝位,一般可将其限制在120%额定值内,该方案可在大功率场合应用。

该电路拓扑的优点是负载范围宽,占空比损失小,器件的电压应力、电流应力小,成本低。

但是它也有缺点,即副边结构复杂,设计时有些困难。

6)副边带能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图6所示[7]。

它的副边增加了由3个快恢复二极管和2个小电容构成的能量恢复缓冲电路,此电路在能量传递初始期间,电容Cs1和Cs2与漏感谐振,电容上的电压达到2nVin,超前桥臂开关管一关断,电容上电压就折合到原边,在漏感上产生一反压,使得原边电流下降。

而且,通过能量恢复电路的低阻抗路径使副边整流二极管实现了ZVS。

该结构稍微复杂些,最大缺点是,由于电容Cs1和Cs2与漏感谐振,使得副边整流电压几乎是正常电压nVin的2倍,增加了整流管的电压应力,并且由于存在大量环流,也增加了导通损耗。

7)使用改进的能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图7所示[8]。

它运用改进的能量恢复缓冲电路来减小循环电流和副边瞬间超压。

除了增加二极管Ds4外,其工作原理和线路与6)相同
8)滞后桥臂中串入二极管的FB-ZVZCS-PWM变换器如图8所示[9]。

它利用串联二极管
阻断电容电压可能引起的原边电流的反向流动。

可以在任意负载和输入电压变化范围内实现滞
后桥臂的零电流开关。

9)副边利用简单辅助电路的FB ZVZCS PWM变换器如图9所示[10]。

此电路副边由一个简单辅助电路构成:包括一个小电容和两个小二极管,结构简单,整流电压不恒定,取决于占空比。

该方案不含饱和电感,辅助开关,不产生大的环流,没有额外的箝位电路,这是因为,副边整流电压被箝位于箝位电
容电压与输出电压之和。

所?的元器件均在低电压,低电流下工作,还有负载范围宽,占空比损失小等优点,从而使此变换器具有高效率,低成本,解决了目前常见变换器的许多问题。

在高功率场合很有发展前途。

综上所述可知,图2和图3电路使用耗能元件来复位原边电流,降低了总效率并阻碍功率超过5kW;图4电路通过副边增加有源箝位开关来复位原边电流,价格较贵并且控制复杂,有源箝位开关采用的是硬开关,开关频率是原边的两倍,开关损耗大;图5电路所有有源和无源元器件都工作在最小电流应力和电压应力下,有较宽的ZVZCS范围,较小的占空比损耗,不存在严重的寄生环流,功率超过5kW,但是辅助电路复杂;图6电路中电容Cs1和Cs2与漏感谐振引起大的循环能量,降低了总效率并使得副边整流电压几乎是正常电压nVs的二倍,增加了副边整流管的电流应力,变压器和开关的导通损耗也增加了;图7电路是对图6电路的改进,它减小了副边瞬间超压和环流,也能使开关损耗传到负载;通过比较图6和图7缓冲电路中Cs放电时间和漏感L1k复位时间,可以看出吸收电容复位变压器漏感能量的能力和容量,后者比前者加倍,因而使用图7电路能扩展到重载范围。

图9电路简化了前几种ZVZCS 方案,仅仅增加由一个小电容和两个小二极管组成的简单辅助电路,无须增加耗能元件和有源开关实现ZVZCS,不仅为原边开关提供ZVZCS条件,而且箝位副边整流二极管,效率高而且价格便宜。

相关文档
最新文档