《弹性力学与有限元》第7章空间问题的有限元分析

合集下载

有限元分析与应用 第2讲、有限元与弹性力学的基本原理

有限元分析与应用 第2讲、有限元与弹性力学的基本原理
∂τ ∂τ dx dx dy dy τ xy + xy dx dy ×1× + τ xy dy ×1× − τ yx + yx dx ×1× − τ yx dx ×1× =0 ∂x 2 2 ∂y 2 2
上式两边除dxdy,可得:
τ xy = τ yx
一、正压力(拉伸压缩应力)
v 其中,F 沿作用力截面的法线方向。 。
Fn σ= S
( 1)
例如图示, > 0 ,σ
二、线应变(相对伸长或压缩) 绝对伸长(或压缩)与原长之比称为相对伸长(或 压缩)。公式: ∆l
ε=

ε ε > 0 时,为拉伸形变; < 0 时,为压缩形变,因而,
b − b0 ∆b = b0 b0
f 是体积力向量, f
T
= fx , f y , fz
[
]
平面(二维)几何方程
经过弹性体内任一点P,沿X轴和Y轴的方向取两个微小长度的线段 PA=dx,PB=dy见图
εx =
∂µ ∂x
εy =
∂υ ∂y
γ xy = α + β =
∂υ ∂µ + ∂x ∂y
几何方程(应变-位移关系) 又叫柯西方程
平衡方程的矩阵形式为 Aσ + f = 0 (在V内)
f x , f y , f z 为单位体积的体积力在z,y,z方向的分量。
其中,A是微分算子
∂ ∂ ∂ 0 0 0 ∂x ∂y ∂z ∂ ∂ ∂ A= 0 0 0 ∂y ∂x ∂z ∂ ∂ ∂ 0 0 0 ∂z ∂y ∂x
梁的弯曲
中性层:一根杆中处于中间的既不拉伸又不压缩的层, 如图中的 CC' 层。 对于纯梁弯曲形变有:

第7章 有限元分析概述

第7章 有限元分析概述

3、变形体及受力情况的描述:
基本变量:
u
(位移)
ε
(应变)
ζ
(应力)
(如果考虑三个方向(xyz)的情况,则有对应的向量、张量描述:
ε ij
ζ ij
ui

基本方程: ①力的平衡方面 三大类变量 ②几何方面 三大类方程 ③材料方面
求解方法: ①经典解析 ②半解析法 ③传统数值求解 ④现代数值求解(计算机软硬件,规范化,标准化, 规模化,计算机化)
几个概念: 单元:把弹性体假想地分割成有限个离散体,这些离
散体称为单元。 节点:离散单元仅在其顶点处相互连接,连接点成为节点。 要求:这种连接必须满足变形协调条件, 既:不能出现裂缝,不能发生重叠。 节点力:单元之间只能通过节点传递内力,通过节点 传递的内力成为节点力。 节点载荷:作用在节点上的载荷为节点载荷。 节点位移:当弹性体受到外力作用发生变形时,组成它的 各个单元也将发生变形,因而各个节点将产生
在工程技术领域内,经常会遇到两类典型的问题。 第一类问题,可以归结为有限个已知单元体的组合。把这类 问题称为离散系统。
例如,材料力学中的连续梁、建筑结构框架和桁架结构。
平面桁架结构
ቤተ መጻሕፍቲ ባይዱ
双向拉索悬索桥
第二类问题,通常可以建立它们应遵循的基本方程,即微分方 程和相应的边界条件。这类问题称为连续系统。
例如弹性力学问题,热传导问题,电磁场问题等。
目前应用较多的通用有限元软件如下表所列:
软件名称 简介
MSC/Nastran
MSC/Dytran MSC/Marc ANSYS ADINA ABAQUS
著名结构分析程序,最初 由NASA研制 动力学分析程序 非线性分析软件 通用结构分析软件 非线性分析软件 非线性分析软件

弹性力学的有限元分析教案

弹性力学的有限元分析教案

弹性力学的有限元分析教案
弹性力学的有限元分析教案
一、教学目标
1.掌握弹性力学的基本理论及有限元分析方法;
2.能够应用有限元软件进行简单的弹性力学分析;
3.培养学生的科学思维能力和解决实际问题的能力。

二、教学内容
1.弹性力学的基本理论
2.有限元方法的基本原理
3.有限元软件的应用与实践
4.弹性力学问题的有限元分析案例
三、教学步骤
1.导入课程,介绍弹性力学与有限元方法的重要性,以及在本课程中将要学
习的内容。

2.讲解弹性力学的基本理论,包括弹性力学的基本假设、平衡方程、几何方
程和物理方程等。

3.介绍有限元方法的基本原理,包括单元划分、节点位移、单元应力和整体
平衡等。

4.讲解有限元软件的应用与实践,包括模型的建立、材料的属性、边界条件
和载荷的施加等。

5.通过具体的案例讲解如何进行弹性力学问题的有限元分析,包括前处理、
求解和后处理等步骤。

6.组织学生进行实践活动,自己动手进行一次简单的弹性力学有限元分析,
并讲解自己的分析过程和结果。

7.对本次课程进行总结,并对学生实践活动进行点评与指导。

四、教学重点与难点
1.重点:掌握弹性力学的基本理论和有限元方法的基本原理,能够熟练应用
有限元软件进行简单的弹性力学分析。

2.难点:理解有限元方法的基本原理,掌握有限元软件的应用技巧,能够对
弹性力学问题进行正确的建模和求解。

五、教学评价与反馈
1.对学生进行考核评价,包括理论知识的掌握程度和实践能力的表现等;
2.根据学生的表现和反馈,对教学内容和方法进行改进和优化。

弹性力学及有限元

弹性力学及有限元

热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。

弹性力学与有限元智慧树知到答案章节测试2023年武汉工程大学

弹性力学与有限元智慧树知到答案章节测试2023年武汉工程大学

第一章测试1.下列不属于弹性力学研究对象的是()。

A:板壳B:刚体C:杆件D:实体结构答案:B2.下列不属于弹性力学中基本未知量的是()。

A:位移分量B:应力分量C:面力分量D:应变分量答案:C3.在工程强度校核中起着重要作用的是()。

A:应力分量B:主应力C:正应力D:切应力答案:B4.已知物体内某点的应力张量(单位:Pa),则沿方向的正应力大小为()。

A:222.22 PaB:888.89 PaC:666.67 PaD:444.44 Pa答案:D5.下列关于应力分量的说法,正确的有()。

A:坐标面上的应力B:一点的9个应力分量可以完全确定该点的应力状态C:应力分量与面力分量的正负号规定相同D:正截面上的应力E:弹性力学中应力分量的正负号规定反映了作用力与反作用力原理以及“受拉为正、受压为负”的传统观念。

答案:ABDE6.理想弹性体满足的假设有()。

A:无初始应力假设B:均匀性假设C:连续性假设D:完全弹性假设E:各向同性假设答案:BCDE7.建立在基本假设上的弹性力学,也称为()。

A:弹性理论B:线性弹性力学C:应用弹性力学D:数学弹性力学答案:ABD8.弹性力学的主要任务是解决各类工程中所提出的问题,这些问题包括()。

A:稳定B:刚度C:强度D:动力答案:ABC9.弹性力学的研究方法是在弹性体的区域内严格考虑三方面条件,建立三套基本方程,这三方面条件包括()。

A:几何学B:物理学C:静力学D:动力学答案:ABC10.中国科学家胡海昌于1954年最早提出了三类变量的广义变分原理。

()A:错B:对答案:B11.物体内任意一点的应力分量、应变分量和位移分量,都不随该点的位置而变化,它们与位置坐标无关。

()A:对B:错答案:B12.在最大正应力的作用面上切应力为零,在最大切应力的作用面上正应力为零。

()A:对B:错答案:B13.应力张量的三个不变量是与坐标选择无关的标量。

()A:错B:对答案:B14.弹性力学与材料力学在研究方法上是完全相同的。

有限元分析理论(弹性力学)

有限元分析理论(弹性力学)
如果插值函数选得合适,单元分得越多、越细,得到的计算结果就越精确。当单元数趋于 无穷时,计算结果就收敛于精确解。但是,随着单元数、节点数的增加,计算工作量和存储信 息量就会迅速地增加,因此一般都是根据具体问题对精度的要求,只取一定数量(有限个)的单 元和节点进行分析。由于这种方法需要求解大型联立方程组,因此只是在解决了计算机的运算 速度和存储容量等问题后,这种方法才有实用意义并得到了迅速发展。
3)可以适应不连续的边界条件和载荷条件。 4)各单元的计算程式都相同,便于实现规范化和在计算机上统一编程,容易将程序编成模 块式结构。 5)有限元法最后得到的大型联立方程组的系数是一个稀疏矩阵,其中所有元素都分布在矩 阵的主对角线附近,且是对称的正定矩阵,方程间的联系较弱。这种方程计算工作量小,稳定 性好,便于求解,占用的计算机内存也少。 有限元法的这些特点,正好可以克服工程科学计算中所遇到的许多困难。对于已有方程的 物理问题,主要是因为集合形状复杂、边界条件复杂、本构关系复杂而解不出来。利用有限元 法离散化的手段,用各种小单元来适应这些复杂多变的因素,用分块近似插值函数来逼近全域 上的连续函数,问题就变得容易了。
目前,有限元法以远远超出了原有的应用范畴,已从弹性力学扩展到了弹塑性力学、岩石 力学、地质力学、流体力学、传热学、气动力学、计算物理学、海洋工程、大气污染等各种学 科和应用领域,取得了出人意料的成功。
在机械工程领域内,可以用有限元法解决的问题有: 1)包括杆、梁、板、壳、三维块体、二维平面、管道等各种单元的各种复杂结构的静力分 析。 2)各种复杂结构的动力分析,包括频率、振型和动力响应计算。 3)整机(如水压机、汽车、发电机、泵、机床)的静、动力分析。 4)工程结构和机械零部件的弹塑性应力分析及大变形分析。 5)工程结构和机械零件的热弹性蠕变、粘弹性、粘塑性分析。 6)大型工程机械轴承油膜计算等。

弹性力学及有限元方法-空间问题

弹性力学及有限元方法-空间问题

4.2 应变与应力
– 将假定的位移代入式(4.12),得到单元内应
变为:
– 将应变矩阵[B]按节点分块表示为:
– 由(4.12),得到应变矩阵[B]中任一子矩阵 [Bi] 为:
• 其中bi、ci及D如前,而
• 按物理关系式,有应力 • 注意轴对称问题三角形单元的形函数虽与平面
问题三角形单元相同,但其应变、应力则不相
• 同理,用v式可求得a5到a8 ,用w求得a9到 a12 ,为:
• 用矩阵记法统一表达为:
• [N]为形状函数矩阵,可表示为:
• [I]为三阶单位矩阵,而各节点的形状函数 可按下式计算得到,即
• 如记矩阵
为四面体单元的体积,其他系 数皆可由[L]确定,如
• 为矩阵第一行各元素的代数余子式。同样 可以确定al、bl、cl、dl…an、bn、cn、dn等, 它们是矩阵[L]第二、三、四行元素的代数 余子式。
• 轴对称问题中,上述截面内任一点p,实 际上代表一个半径为r的圆周(图4-2),当 此圆周上各点都有径向位移u时,圆周被 拉伸,多出一个环向应变q。有:
• 全部应变的4项分量与两项位移分量之间 的几何关系(几何方程),以矩阵表示为:
• 轴对称问题的4项应力分量,以列阵表示为:
• 轴对称问题的应力与应变间的物理关系仍写为:
用位移法,就是只研究这个代表截面的位 移求得一个截面的位移分布,也就有了整 个三维结构内的位移分布,从而可以求得 体内任一点的应变及应力。这样,一个三 维问题,就可以转化为一个二维问题。 由于结构的变形是对称于中心轴的,因而 子午面内各点都只有沿径向r的位移u和沿 轴向z的位移w,一般应为截面坐标r,z的 函数,即
• 单元内应变为常值,按物理方程,单元内的 应力也是常值。当然,一般受力情况下,三 维体内有限大小的四面体内的应力并不是常 值,用常应力单元来代替它,只是近似的。 • 对此单元,单元间的应力是不连续的。只有 当单元划分得较小时,单元内的应力才会接 近于常值,此时计算的应力在单元间的不连 续才会比较小,因而可以作为真实应力分布 的近似。 • 一般,把这种单元应力的计算值作为单元中 心一点的应力近似值是比较适当的。

有限元分析—空间问题简介 PPT

有限元分析—空间问题简介 PPT

坐标下表示的形函数,xi为 总体坐标下的节点坐标
N1
1(1)(1)
4
N2
1(1)(1)
4
对四节点四边形等参元,Ni
N3
1(1)(1)
4
N4
1(1)(1)
4
5-4 等参数单元
变换实例
η 4 (-1,1)
1 (-1,-1)
3 (1,1) ξ
2 (1,-1)
tη ζ ξ
4 (x4,y4) y
η=1 η
v P(x,y) u
2.位移函数
线性位移函数
u(x, y,z) a1 a2xa3ya4z v(x,y,z)a5 a6xa7ya8z w(x, y,z)a9 a10xa11ya12z
5-3 四面体单元
利用节点位移可待定系数,并整理为如下形式
u v ( (x x ,,y y ,,z z ) ) N 0 1 N 0 1 0 0N 0 2 N 0 2 0 0N 0 3 N 0 3 0 0N 0 4 N 0 4 0 0 u M 1 w (x ,y ,z) 0 0N 1 0 0N 2 0 0N 3 0 0N 4 w 4
x
柱坐标系
z
p
(r, , z)
5-1 轴对称问题
基本方程
位移分量{urw }T Q u=0
应力分量{}{r z rz}T
应变分量 {}{r z rz}T
= { u r ru rr w z u r z w r } T
虚功方程
2
Q d 2 则 { * } T { F } 2 { * } T { } R rd rd z
zx
v
z
w y
bi 0 0
wx

弹性力学及有限元

弹性力学及有限元
第五章 用有限单元法解平面问题 第六章 空间问题的基本理论
2
3
第一章 绪 论
§1–1 弹性力学的研究对象
§1–2 弹性力学中的几个基本概念
§1–3 弹性力学中的基本假设 §1–4 有限元分析的基本思想
4
在未知领域 我们努力探索 在已知领域 我们重新发现
5
初中物理-力学
高中物理-力学
大学物理-力学
的形式和尺寸并选择适宜的材料提供必
要的理论基础和计算方法。
9
结构力学的研究对象、内容和任务
对象——杆件系统(结构)
梁、刚架、桁架、组合结构和拱
内容——结构的组成规律、特性和外来因素作用
下的内力、位移及其分布规律。 任务——校核结构是否具有所需的强度、刚度和
稳定性,并寻求和改进它们的计算方法 以实现安全和经济的最优化。 三部分——静力学、动力学和稳定学。
c
p y l xy m y n zy pz l xz m yz n zy
b
P
y
25
x
a
正负号规定:
正面:外法向方向和坐标轴正向一致的面 负面:外法向方向和坐标轴正向反向的面
正面上应力沿坐标轴正向为正 负面上应力沿坐标轴负向为正
i j
+ + + + -
+
力学,包括固体力学和流体力学中的许多学科,弹
性力学仅是其中的一个分支。
35
2) 线性完全弹性:引起物体变形的外力除去后物体能
恢复原状(完全弹性),应变与引
起该应变的应力分量之间的关系服
从胡克定律(线性),弹性常数与
应力、应变大小无关,无需考虑应
力历史。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系(物理方程)成线性方程。 线性关系的Hooke定律是弹性力学特有的规律,是弹性力 36 学区别于连续介质力学其它分支的标识。

弹性力学与有限元分析.ppt

弹性力学与有限元分析.ppt

上式建立了单元中任意一点的位移与节点位移的关系,
即通过单元节点位移 e 插值求出单元中任一点位移
f (x, y),把位移函数的这种描述形式称为插值函数形
式。 形函数具有以下两个性质: 1、形函数 N i在节点 i处的值为1,而在其余两个节点 处的值为0。
2、在单元中任意一点,3个形函数之和为1,即:
差太大,即单元划分中不应出现过大的钝角或过 小的锐角,否则,计算误差较大。 在应力较大和应力集中的区域,单元应划分细一 些,以提高精度。 如果边界上有集中力作用,则该点应被划分为点。
单元的大小和数目应根据精度要求来确定,在保证
精度的前提下,力求采用较少的单元。

当物体的厚度有突变或物体由不同材料组成时,不 要把厚度不同或材料不同的区域划分在统一单元。
x y xy

且它们只是
x, y 的函数,与 z 无关。工程实际中,炮
筒、桥梁支座的柱形辊轴等都可简化为平面应变问题。
所以无论是平面应力问题还是平面应变问题,都只 需研究3个应力分量 x ,y ,xy,3个应变分量 x , y , xy
2个位移分量 U和 V。
四、单元划分
单元划分是有限元分析的基本前提,也是有限元 法解题的重要步骤。常用的单元类型有: 杆单元 平面单元 轴对称单元

空间单元 对平面问题,一般采用三角形单元,此时单元划
分应注意以下问题:
任一三角形单元的顶点必须同时也是其相邻三角
形单元的顶点,而不能是其内点。
三角形单元的3条边长(或3个顶角)之间不应相


x y xy



x y xy

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

弹性力学及有限元法chapter7精品PPT课件

弹性力学及有限元法chapter7精品PPT课件

e
i
j
m
v
j
w j
u
m
i
m
p
vm
wm
j y
u
p
x
vp
w p
第七章 空间问题和空间轴对称问题
7-2-1 位移函数
单元内任一点的位移 {f}假定为座标的线性函数
u
f
v
N
e
w
u 1 2x3y 4z v 5 6x7 y 8z w9 10x 11y 12z
节点i, j, m及 p的坐标分别为(xi,yi,zi),(xj,yj,zj),(xm,ym,zm) 及 (xp,yp,zp),把它们代入上式的第一式,得出各节点在x方 向的位移
第七章 空间问题和空间轴对称问题
ui 1 2 xi 3 yi 4 zi u j 1 2x j 3 y j 4z j um 1 2 xm 3 ym 4 zm up 1 2xp 3 yp 4zp
解方程组,求得 1,2,3,4,代入第一式,整理后得到
u N iu i N ju j N m u m N p u p
其中
Ni 61 Vaibixciydiz
N j 6 1 Vajbjxcjydjz
Nm61 Vambmxcmydmz
Np61 Vapbpxcpydpz
称为形函数,其系数是
第七章 空间问题和空间轴对称问题
xj yj zj ai xm ym zm
xp yp zp
1 xj zj ci 1 xm zm
同样,可以得到
vNivi Njvj NmvmNpvp wNiwi Njwj NmwmNpwp
单元内任一点的位移可以写成如下形式:
f N 0 i N 0 i 0 0

有限元分析课件

有限元分析课件

物理模拟方法简介
(1)缝隙法 为了定性地了解接触面压力分布,可在模具的相应部分留有垂直于模
面的窄缝或小孔,根据流入窄缝或小孔的模拟材料外形或高度,定性地判定 接触面正压力分布。
物理模拟方法简介
(2)硬度法 冷变形时,变形程度越大硬化越强,硬度越高,因此可根据硬度
的分布,判别变形不均匀的程度。根据下图能判断出,圆柱体镦粗时变 形可分为三个区,中心区是大变形区,侧面鼓形是中等变形区,上下接 触面是小变形区。
物理模拟方法简介
(4)叠层法 叠层法是利用易变形材料(铅和塑性泥等)制成薄
片,然后叠成试样进行模拟实验的方法。 为了研究挤压时的变形流动情况,可以用颜色
不同的塑性泥层制成试样进行挤压,然后沿子午面切 开,由不同颜色的各层位置变化来观察变形区的情况, 此外,用铅制成薄片重叠成圆柱体进行镦粗,不仅可 观察变形流动,还可以把变形后的铅层分开,通过测 量各层不同部位的尺寸变化,计算出变形体内的应变 分布。
形状、尺寸精度和组织性能的产品的加工方法,称为金属塑性成形,也称为金 属塑性加工或金属压力加工。
如果不考虑切头、去尾、火耗等损失,那么金属材料的体积、质量在塑 性成形前后可看做没有发生变化,因此塑性成形是无屑或少屑的金属加工方法。
塑性成形方法与分类
1、根据加工时工件受力和变形方式的不同,金属塑 性成形方法可分为锻造、挤压、轧制、拉拔、冲压 等。 2、根据金属变形特征的不同,又可将金属塑性成形 分为:体积成形(或称块料成形)和板料成形(冲 压)两大类。 3、金属塑性成形按照加工时工件的温度又可分为热 塑性成形、冷塑性成形和温塑性成形。
物理模拟方法简介
(5)坐标网格法(Coordinate Grid Method) 是研究金属塑性变形分布应用最广泛的一种方法,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入各节点位移及坐标,可整理成
其中形状函数
10
10
10
∑ ∑ ∑ u = ui , v = vi , w = wi
i =1
i =1
i =1
角点: N1 = (2L1 − 1)L1 , N2 = (2L2 − 1)L2 , N3 = (2L3 − 1)L3 , N4 = (2L4 − 1)L4 ;
边中点: N5 = 4L1L2 , N 6 = 4L1L3 , N 7 = 4L1L4 , N8 = 4L3 L4 , N9 = 4L2 L3 , N10 = 4L2 L4 .
(1
+
ξiξ
)(1
+
ηiη
)(1
+
ζ

)
其中 (ξi ,ηi ,ζ i ) 是 i 节点的局部坐标。并且规定在局部坐标系中,面 2376 上ξ = 1,面 1485
上ξ = −1;面 3487 上η = 1,面 1265 上η = −1;面 5678 上 ς = 1,面 1234 上ς = −1 。
Li
=
Vi V
, Lj
=
Vj V
, Lm
=
Vm V
, Lp
=
Vp V
为体积坐标。其中 V 是四面体 ijmp 的体积, Vi、Vj、Vm、Vp 分别是四面体 ojmp、oimp、 oijp 和 oijm 的体积。
热动3同学修改
王正伟 13601363209
11 1 1 V = 1 xi x j xm xp ,
A
则单元节点力矩阵
{ } { } ∑ {P}e = { } ( Pp e + PF e + Pq e ) .
高次四面体单元 常应变四面体单元中的应力分量都是常量,难以适应急剧变化的应力场。为了保证计算 精度,一方面可以分割更加密集的常应变四面体单元,另一方面可以采用高次四面体单元。 体积坐标 用于空间问题的高次四面体单元通常采用 体积坐标。 如图 2,定义
x j xm xp
111
ai = y j ym yp , bi = − y j ym yp ,
z j zm zp
z j zm zp
x j xm xp
x j xm xp
ci = − 1 1 1 , di = − y j ym yp 。
z j zm zp
111
热动3同学修改
王正伟 13601363209
u = a1 + a2x + a3 y + a4z + a5x2 +a6y2 +a7z2 + a8xy + a9 yz + a10zx; v = b1 + b2x + b3 y + b4z + b5x2 +b6y2 +b7 z2 + b8xy + b9 yz + b10zx; w = c1 + c2x + c3 y + c4z + c5x2 +c6y2 +c7z2 + c8xy + c9 yz + c10zx.
2. 六面体单元
在平面问题中可以采用比三角形单元更复杂的矩形单 元一样,在空间问题中也可以采用比四面体更复杂六面体 单元。 图 5 所示为 8 节点正六面体单元,它是研究高次六 面体单元和六面体等参单元的基础。
单元位移模式取
u = a1 + a2 x + a3 y + a4 z + a5 xy + a6 yz + a7 zx + a8 xyz; v = b1 + b2 x + b3 y + b4 z + b5 xy +b6 yz +b7 zx + b8 xyz; w = c1 + c2 x + c3 y + c4 z + c5 xy +c6 yz +c7 zx + c8 xyz.
(3L4
− 1)(3L4

2)L4

边三等分点:
N5
=
9 2
L1L2 (3L1
− 1)

N6
=
9 2
L1L2 (3L2
− 1)

N7
=
9 2
L1L3 (3L1
− 1)

N8
=
9 2
L1L3 (3L3
− 1)

N9
=
9 2
L1L4 (3L1
− 1)

N10
=
9 2
L1L4 (3L4
− 1)

N11
=
9 2
热动3同学修改
王正伟 13601363209
形状函数
而且满足
∑8
u = N1u1 + N2u2 +" + N8u8 = Niui
⎫ ⎪
i =1

∑8
v = N1v1 + N2v2 +" + N8v8 = Nivi
⎪ ⎬
i =1

8

∑ w =
N1w1
+
N 2 w2
+" +
N8 w8
=
i =1
Ni
wi
二、单元应变矩阵 空间问题中,每一点有 6 个应力分量
( { }ε e = ε x ε y ε z γ xy γ yz
) γ T zx
= [L][N ]{δ }e
= [B]{δ }e ,
其中
⎜⎛ ⎜
∂ ∂x
⎜ ⎜
0

⎜0
[L] =
⎜ ⎜

⎜ ∂y ⎜
⎜0

0
∂ ∂y
0
∂ ∂x ∂ ∂z
0 ⎟⎞

0
⎟ ⎟
[ ] 可见矩阵 Bi 中的元素都是常量,所以采用线性位移函数的四面体单元是常应变单元。
三、单元应力矩阵
{σ }e = [D]{ε}e = [D][B]{δ }e ,
弹性矩阵
热动3同学修改
王正伟 13601363209
⎜⎛ 1 a a 0 0 0⎟⎞
⎜a 1 a 0 0 0⎟
[D] =
E(1 − µ)
6 yi y j ym y p zi z j zm z p
11 1 1
11 1 1
Vi
=
1 6
x y
xj yj
xm ym
xp yp
,Vj
=
1 6
xi yi
x y
xm ym
xp , yp
z z j zm zp
zi z zm z p
1 111
11 11
Vm
=
1 6
xi yi
xj yj
x y
xp yp
,Vp
可得到形状函数矩阵
[N
]
=
⎜⎛ ⎜
N1 0
0 N1
0 0
N2 0 0 N2
0 0
" N8 0 " 0 N8
0 ⎟⎞ 0⎟
⎜⎝ 0 0 N1 0 0 N2 " 0 0 N8 ⎟⎠
得到位移插值函数之后,利用应力应变关系得出单元刚度矩阵并合成整体刚度矩阵,列 出等效节点载荷列阵,给出边界条件,即可解空间有限元问题。分析方法同四面体单元,不 再详诉。
代入各节点位移及坐标,可整理成
20
20
20
∑ ∑ ∑ u = ui , v = vi , w = wi .
i =1
i =1
i =1
其中形状函数
角点:
N1
=
1 2
(3L1
− 1)(3L1

2)L1

N2
=
1 2
(3L2
− 1)(3L2

2)L2

N3
=
1 2
(3L3
− 1)(3L3

2)L3

N4
=
1 2
第 7 章 空间问题的有限元分析
空间问题的有限元分析方法与平面问题是一致的。首先是将结构离散化,分割成有限 个单元;然后进行单元特性计算,确定单元刚度矩阵;最后进行整体计算,将各单元的刚度 矩阵集成整体刚度矩阵,引入边界条件,解方程得到各节点位移及其它所求物理量。下面将 重点介绍单元特性分析过程。
1. 四面体单元
以下分析方法与常应变四面体单元相同。
热动3同学修改
王正伟 13601363209
20 节点四面体单元 分别取角点(4 节点)、边三等分点(12 节点)和面形心(4 节点)共 20 节点。如图 4 所示。 20 节点四面体单元的单元位移函数取完全三次多项式
u = a1 + a2 x + a3 y + a4z + a5x2 +a6y2 +a7z2 + a8xy + a9 yz + a10 zx + a11x3 + a12 y3 + a13z3 + a14 x2 y + a15x2 z + a16 y2 x + a17 y2z + a18z2x + a19 z2 y + a20 xyz
单元位移矩阵
其中形状函数矩阵
⎧u ⎫
{u}e
=
⎪ ⎨
v
⎪ ⎬
=
[N
]{δ
}e
.
⎪⎩w⎪⎭
[N
相关文档
最新文档