线性代数试题及答案汇编
线性代数试题线性代数试卷及答案大全(173页大合集)
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的伴随矩阵|adj(A)|的值为()。
A. 4B. 8C. 2D. 1答案:B2. 若向量a=(1, 2, 3),向量b=(2, 3, 4),则向量a和向量b的点积为()。
A. 11B. 12C. 13D. 14答案:C3. 设矩阵A和矩阵B为同阶方阵,且AB=I,则矩阵A和矩阵B互为()。
A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 正交矩阵答案:B4. 设矩阵A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ-2),则矩阵A的特征值为()。
A. 0, 1, 2B. 0, 1, 3C. 1, 2, 3D. 2, 3, 4答案:A二、填空题(每题5分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的行列式|A|=______。
答案:-22. 设向量a=(1, 2),向量b=(3, 4),则向量a和向量b的叉积为向量c=(______, ______)。
答案:-2, 63. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}2 & 1 \\ 4 & 3\end{bmatrix}\],则矩阵A和矩阵B的乘积AB=______。
答案:\[\begin{bmatrix}10 & 11 \\ 22 & 25\end{bmatrix}\]4. 设矩阵A的特征值为λ1=2,λ2=3,则矩阵A的特征多项式为f(λ)=______(λ-2)(λ-3)。
答案:(λ-2)(λ-3)三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数试题及答案解析
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
完整版)线性代数试卷及答案
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数试题及答案
线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。
答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。
答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。
答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。
线性代数考试题及答案
线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题及答案
线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数试题(试题与答案)
线性代数试题(试题与答案)一、选择题(每题5分,共25分)1. 设矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \),则 \( A^2 \) 的特征值是()A. 5, 9B. 1, 16C. 5, -5D. 10, -102. 设 \( \alpha_1, \alpha_2, \alpha_3 \) 是线性无关的向量组,则下列向量组线性无关的是()A. \( 2\alpha_1 + \alpha_2 - \alpha_3 \)B. \( \alpha_1 + 2\alpha_2 + 3\alpha_3 \)C. \( \alpha_1 - \alpha_2 + \alpha_3 \)D. \( 3\alpha_1 - 2\alpha_2 + \alpha_3 \)3. 设 \( A \) 是一个 \( n \) 阶可逆矩阵,则 \( A^{-1} \) 的行列式等于()A. \( \frac{1}{|A|} \)B. \( |A| \)C. \( |A^{-1}| \)D. \( -|A| \)4. 设 \( A \) 是一个 \( n \) 阶实对称矩阵,则下列结论正确的是()A. \( A \) 的特征值都是实数B. \( A \) 的特征值都是正数C. \( A \) 的特征值都是负数D. \( A \) 的特征值既有正数也有负数5. 设 \( A \) 是一个 \( n \) 阶矩阵,且 \( A \) 的秩为\( n \),则下列结论正确的是()A. \( A \) 是可逆矩阵B. \( A \) 的行列式不为0C. \( A \) 的特征值不全为0D. \( A \) 的任意一行都可以作为主行二、填空题(每题5分,共25分)6. 若 \( A \) 是一个 \( n \) 阶矩阵,且 \( |A| = 0 \),则称 \( A \) 为________矩阵。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。
答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。
答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。
答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。
答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。
答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。
答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。
答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。
(完整word版)线性代数试题和答案(精选版)
线性代数习题和答案第一部分选择题(共28分)、单项选择题(本大题共 14小题,每小题2分,共28分)在每小题列出①四个选项中只有 一个是符合题目要求◎,请将其代码填在题后①括号内。
错选或未选均无分。
A. -6 C. 24. 设A 是方阵,如有矩阵关系式 AB =AC ,则必有( A. A = 0C. A =0 时 B =C5. 已知3X 4矩阵A O 行向量组线性无关,则秩( A. 1 C. 3 D.46.设两个向量组a 1, a 2,…,a s 和B 1, 3 2,…,3 s 均线性相关,则()A. 有不全为0 O 数入1,入2,…,入s 使入1 a 什入2 a 2+…+入s a s =0和入1 3什入2 3 2+…入s 3 s =0B. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1+ 3 1) +入2 ( a 2+ 3 2) +…+入s ( a s + 3 s ) =0C. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1- 3 1) +入2 ( a 2- 3 2)+…+入s ( a s - 3 s ) =0D. 有不全为0 O 数入1,入2,…,入s 和不全为0 O 数卩1 ,卩2,…,卩s 使入1 a 计入2a 2+…+入 s a s =0 和卩 1 3 1+ 卩 2 3 2+ …+ 卩 s 3 s =0 7. 设矩阵A O 秩为r ,则A 中( )A. m+n C. n-a11a12a13a11=m ,a 21 a 22a 23 a 21a11 a 12 ' a13a 21 a 22 亠a 23B. - (m+n)D. m- n等于(2•设矩阵A =3.设矩阵 ■‘3 -1 21 0 -1 V-2 14丿中位于 (1 , 2)0兀素是(B. 6 D.-)B. B = C 时 D. | A0 时 B =C A T)等于( )B. 2 1•设行列=n ,则行列式(10 2 VP 0 A. C.0,则A -1等于(3丿,A *是A ①伴随矩阵,则 A A =A.所有r- 1阶子式都不为0C.至少有一个r阶子式不等于08.设Ax=b是一非齐次线性方程组,n 1,A. n什n 2是Ax=0 O—个解B.所有r- 1阶子式全为0D.所有r阶子式都不为0n 2是其任意2个解,则下列结论错误O是1 1B. —n 1+ n 2是Ax=b O—个解C. n i -n 2 是 Ax=O ①一个解D.2 n 1- n 2 是 Ax=b ①一个解 9•设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n- 1 C. A=0 D.方程组Ax=0只有零解 10•设A 是一个n (>3)阶方阵,下列陈述中正确①是( )A. 如存在数入和向量a 使A a =入a,则a 是A ①属于特征值 入①特征向量B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A ①特征值C. A O 2个不同①特征值可以有同一个特征向量D. 如入1,入2,入3是A O 3个互不相同①特征值, a 1, a 2, a 3依次是A ①属于入i ,入2,入3①特征向量,贝U a 1, a 2, a 3有可能线性相关 11. 设入o 是矩阵A ①特征方程①3重根,A ①属于入°①线性无关①特征向量①个数为 k ,则必有( ) A. k < 3B. k <3C. k=3表示|A |中元素a j ①代数余子式(i,j=1,2,3 ),则2 218. 设向量(2, -3, 5)与向量(-4, 6, a )线性相关,贝y a= 一 . 19. ______________ 设A 是3X 4矩阵,其秩为3,若n 1, n 2为非齐次线性方程组 Ax=b O 2个不同①解,则它 ◎通解为 .20.设A 是m x n 矩阵,A ①秩为r (<n ),则齐次线性方程组 Ax=0①一个基础解系中含有解①个 数为D. k>312. 设A 是正交矩阵,则下列结论错误①是(A.| A|2必为 1 -1 ■ T C. A = A13. 设A 是实对称矩阵,C 是实可逆矩阵,A. A 与B 相似B. A 与B 不等价C. A 与B 有相同①特征值D. A 与B 合同 14.下列矩阵中是正定矩阵①为()i'2 3:A. I I 母4丿'1 0 0C. 0 2-3©-35」)B.| A 必为1D. A ①行(列)向量组是正交单位向量组 B =C AC .则()4 6」、1 12 0第二部分 、填空题(本大题共 10小题,每小题 小题①空格内。
线性代数期末试题及答案
线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。
答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。
答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。
答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。
答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。
答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。
2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。
3. 说明矩阵的相似对角化的条件。
答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。
四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。
答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题5分,共25分)1.下列哪一个不是线性空间?A. 实数集RB. 矩阵的集合M(n,R)C. 正实数集R+D. 空集答案:C2.下列关于线性变换的叙述,正确的是()A. 线性变换保持向量的长度不变B. 线性变换保持向量的方向不变C. 线性变换保持向量的数量积不变D. 线性变换保持向量的线性组合关系不变答案:D3.若向量组α1,α2,α3线性无关,则向量组()A. 2α1,3α2,4α3 线性相关B. 2α1+3α2,4α3 线性无关C. α1+α2,α2+α3,α3+α1 线性无关D. α1,α1+α2,α1+α2+α3 线性相关答案:C4.设A是3阶矩阵,且|A|=5,则|2A|=()A. 10B. 25C. 50D. 125答案:D5.下列关于线性方程组的叙述,正确的是()A. 如果系数矩阵的秩小于未知数的个数,则方程组一定有解B. 如果系数矩阵的秩等于未知数的个数,则方程组一定有唯一解C. 如果系数矩阵的秩等于增广矩阵的秩,则方程组一定有解D. 如果系数矩阵的秩小于增广矩阵的秩,则方程组一定无解答案:C二、填空题(每题5分,共25分)6.若向量组α1,α2,α3线性无关,则其极大线性无关组所含向量的个数为______。
答案:37.设A是3阶矩阵,且|A|=4,则|A的逆矩阵|=______。
答案:1/48.若线性方程组Ax=b有解,则系数矩阵A的秩r(A)与增广矩阵B的秩r(B)满足关系______。
答案:r(A)=r(B)9.设A是n阶对称矩阵,则A的转置矩阵A^T______。
答案:等于A10.线性空间V的维数等于______。
答案:V中极大线性无关组所含向量的个数三、计算题(每题10分,共30分)11.已知向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),判断向量组是否线性相关,并说明理由。
答案:线性相关。
因为α3=α1+α2,所以向量组线性相关。
线性代数试题及答案.doc
线性代数试题及答案.doc.(试卷一)一、填空题(本题总计20 分,每小题 2分)1.排列 7623451 的逆序数是_______。
a11 a12a11 3a12 01,则a212.若a21 a22 3a22 00 6 13.已知 n 阶矩阵A、B和C满足ABC E,其中E为 n 阶单位矩阵,则B1CA。
4.若 A 为m n矩阵,则非齐次线性方程组AX b 有唯一解的充分要条件是_________5.设A为8 6的矩阵,已知它的秩为4,则以A为系数矩阵的齐次线性方程组的解空间维数为 __2。
6.设 A 为三阶可逆阵, 1 0 0 ,则 A*A 1 2 1 03 2 1.7.若 A 为m n矩阵,则齐次线性方程组Ax0 有非零解的充分必要条件是1 2 3 4 53 04 1 28.已知五阶行列式D111 1 1,则1 1 02 35 4 3 2 1A41A42A43A44A459. 向量( 2,1,0,2)T的模(范数)______________。
10. 若 1 k 1 T与12 1 T正交,则k二、选择题(本题总计 10 分,每小题 2 分)1. 向量组1,2, ,r线性相关且秩为 s,则 (D)A. r sB.C. s rD.r s s r2. 若 A 为三阶方阵,且A 2E 0, 2A E 0,3A 4E 0,则A(A) .A.C.8B.8 4D. 43 33.设向量组 A 能由向量组 B 线性表示,则( d )A. R(B) R( A)B.R( B) R( A)C. R( B) R( A)D.R( B) R( A)4.设 n 阶矩阵A的行列式等于D,则kA等于_____。
c( A) kA( B) k n A(C )k n 1 A(D) A5.设 n 阶矩阵A,B和C,则下列说法正确的是 _____。
(A)AB AC则 B C(B)AB 0,则A 0或B 0(C) (AB)T A T B T(D) (A B)( A B) A2B2.三、计算题(本题总计60 分。
线性代数考试卷和答案
线性代数考试卷和答案一、选择题(每题5分,共30分)1. 向量组的线性相关性是指()。
A. 至少有一个向量可以由其他向量线性表示B. 至少有一个向量不能由其他向量线性表示C. 所有向量都可以由其他向量线性表示D. 所有向量都不能由其他向量线性表示答案:A2. 对于一个n阶矩阵A,下列说法正确的是()。
A. A的行列式为0,则A一定可逆B. A的行列式不为0,则A一定可逆C. A的行列式为0,则A一定不可逆D. A的行列式不为0,则A一定不可逆答案:C3. 矩阵A和B可以相乘的条件是()。
A. A的列数等于B的行数B. A的行数等于B的列数C. A的行数等于B的行数D. A的列数等于B的列数答案:A4. 矩阵的秩是指()。
A. 矩阵中非零行(或列)的最大个数B. 矩阵中非零元素的最大个数C. 矩阵中行(或列)的最大线性无关组的个数D. 矩阵中行(或列)的个数答案:C5. 线性方程组有解的条件是()。
A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的秩等于增广矩阵的秩且等于未知数的个数答案:D6. 二次型的标准型是()。
A. 一元二次型B. 一元一次型C. 二元二次型D. 多元二次型答案:D二、填空题(每题5分,共20分)1. 矩阵A的转置记作____,即A的行变为列,列变为行。
答案:A^T2. 向量组α1, α2, ..., αn线性无关的充分必要条件是方程k1α1 + k2α2 + ... + knαn = 0的解只有____。
答案:k1 = k2 = ... = kn = 03. 矩阵A的行列式为0,则矩阵A____。
答案:不可逆4. 线性方程组的解集构成的集合是____。
答案:向量空间三、计算题(每题10分,共40分)1. 计算矩阵A的行列式,其中A为3x3矩阵,A =\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n)(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
)(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B )(C TTTB A AB =)( )(D 22))((B A B A B A -=-+三、计算题(本题总计60分。
1-3每小题8分,4-7每小题9分)1. 计算n 阶行列式22221=D 22222 22322 21222-nn 2222 。
2.设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,求*A A 2)3(1--.3.求矩阵的逆111211120A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭4. 讨论λ为何值时,非齐次线性方程组21231231231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩① 有唯一解; ②有无穷多解; ③无解。
5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。
⎪⎩⎪⎨⎧=++=+++=+++522132243143214321x x x x x x x x x x x 6.已知向量组()T 32011=α、()T53112=α、()T13113-=α、()T 94214=α、()T52115=α,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.7. 求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的特征值和特征向量.四、证明题(本题总计10分)设η为b AX =()0≠b 的一个解,12,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,证明12,,n r ξξξη-线性无关。
(答案一)一、填空题(本题总计20分,每小题 2 分)1~15;2、3;3、CA ;4、()n b A R A R ==),(;5、2;6、⎪⎪⎪⎭⎫⎝⎛123012001;7、()n A R <;8、0;9、3;10、1。
.二、选择题(本题总计 10 分,每小题 2分 1、D ;2、A ;3、D ;4、C ;5、B 三、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)1、解:D),,4,3(2n i r r i =-00021 00022 0012203022-n 20022-n ------3分 122r r - 00001 00022 - 00122- 03022--n 20022--n -------6分)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n ----------8分 (此题的方法不唯一,可以酌情给分。
)解:(1)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=-11111111124121311211111111112A AB ------1分⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=222222222602222464⎪⎪⎪⎭⎫⎝⎛=420004242------5分(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-171111610239511311131122B A ⎪⎪⎪⎭⎫ ⎝⎛-------=161287113084--------8分 3. 设A 为三阶矩阵,*A 为A 的伴随矩阵,且21=A ,求*A A 2)3(1--. 因*A A =E E 21=A ,故411==-n A *A 3分 **A A A211==-A 5分 27164134342322)3(31-=⎪⎭⎫ ⎝⎛-=-=-=--****A A A A A 8分4、解: ⎪⎪⎪⎭⎫ ⎝⎛---=100111010011001001),(E A 1312r r r r ++⎪⎪⎪⎭⎫ ⎝⎛---101110011010001001---3分 23r r +⎪⎪⎪⎭⎫ ⎝⎛---112100011010001001)1()1()1(321-÷-÷-÷r r r ⎪⎪⎪⎭⎫ ⎝⎛------112100011010001001---6分故⎪⎪⎪⎭⎫ ⎝⎛------=-1120110011A -------8分 (利用*-=A A A 11公式求得结果也正确。
) 5、解;⎪⎪⎪⎭⎫ ⎝⎛=21111111),(λλλλλb A 131231rr r r r r λ--↔⎪⎪⎪⎭⎫⎝⎛------3222111011011λλλλλλλλλ23r r + ⎪⎪⎪⎭⎫ ⎝⎛-+-+---)1()1()1)(2(0011011222λλλλλλλλλλ---------3分(1)唯一解:3),()(==b A R A R21-≠≠λλ且 ------5分(2)无穷多解:3),()(<=b A R A R 1=λ --------7分(3)无解:),()(b A R A R ≠2-=λ --------9分 (利用其他方法求得结果也正确。
) 6、解:⎪⎪⎪⎭⎫⎝⎛=522011113221111),(b A −→−r ⎪⎪⎪⎭⎫⎝⎛---000003111052201--------3分 ⎩⎨⎧=--=++0022432431x x x x x x 基础解系为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=01121ξ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=10122ξ-----6分 ⎩⎨⎧-=--=++3522432431x x x x x x 令043==x x ,得一特解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0035η---7分 故原方程组的通解为: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=++101201120035212211k k k k ξξη,其中R k k ∈21,---9分(此题结果表示不唯一,只要正确可以给分。
)7、解:特征方程2110430(2)(1)12A E λλλλλλ---=--=--- 从而1232,1λλλ=== (4分)当12λ=时,由(2)0A E X -=得基础解系1(0,0,1)Tζ=,即对应于12λ=的全部特征向量为11k ζ1(0)k ≠ (7分)当231λλ==时,由()0A E X -=得基础解系2(1,2,1)Tζ=--,即对应于231λλ==的全部特征向量为22k ζ2(0)k ≠四、证明题(本题总计10 分) 证: 由12,n r ξξξ-为对应齐次线性方程组0=AX 的基础解系,则12,n r ξξξ-线性无关。
(3分)反证法:设12,,n r ξξξη-线性相关,则η可由12,n r ξξξ-线性表示,即:r r ξλξλη++= 11 (6分)因齐次线性方程组解的线性组合还是齐次线性方程组解,故η必是0=AX 的解。
这与已知条件η为b AX =()0≠b 的一个解相矛盾。
(9分). 有上可知,12,,n r ξξξη-线性无关。
(10分)(试卷二)一、填空题(本题总计 20 分,每小题 2 分) 1. 排列6573412的逆序数是 .2.函数()f x = 21112xxx x x---中3x 的系数是 . 3.设三阶方阵A 的行列式3A =,则*1()A -= A/3 . 4.n 元齐次线性方程组AX=0有非零解的充要条件是 .5.设向量(1,2,1)Tα=--,β=⎪⎪⎪⎭⎫ ⎝⎛-22λ正交,则λ= .6.三阶方阵A 的特征值为1,1-,2,则A = .7. 设1121021003A --⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则_________A *=.8. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________.9.设A 为n 阶方阵,且A =2 则1*1()3A A --+= . 10.已知20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于12B y -⎛⎫⎪=⎪ ⎪⎝⎭,则=x ,=y .二、选择题(本题总计 10 分,每小题 2 分)1. 设n 阶矩阵A 的行列式等于D ,则A -5等于 . (A) (5)nD - (B)-5D (C) 5D (D)1(5)n D --2. n 阶方阵A 与对角矩阵相似的充分必要条件是 .(A) 矩阵A 有n 个线性无关的特征向量 (B) 矩阵A 有n 个特征值 (C) 矩阵A 的行列式0A ≠ (D) 矩阵A 的特征方程没有重根3.A 为m n ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充要条件是 .(A)(,)R A b m < (B)()R A m < (C)()(,)R A R A b n == (D)()(,)R A R A b n =< 4.设向量组A 能由向量组B 线性表示,则( ) (A).)()(A R B R ≤(B).)()(A R B R <(C).)()(A R B R = (D).)()(A R B R ≥ 5. 向量组12,,,s ααα线性相关且秩为r ,则 .(A)r s = (B) r s < (C) r s > (D) s r ≤三、计算题(本题总计 60 分,每小题 10 分)1. 计算n 阶行列式: 22221=D 22222 22322 21222-nn 2222 .2.已知矩阵方程AX A X =+,求矩阵X ,其中220213010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.3. 设n 阶方阵A 满足0422=--E A A ,证明3A E -可逆,并求1(3)A E --.4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:1234123412342342323883295234x x x x x x x x x x x x x x x +++=⎧⎪-++=⎪⎨-+--=-⎪⎪--=-⎩ 5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.123421234,1,3,5.2012αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.已知二次型:323121232221321844552),,(x x x x x x x x x x x x f --+++=,用正交变换化),,(321x x x f 为标准形,并求出其正交变换矩阵Q .四、证明题(本题总计 10 分,每小题 10 分)设11b a =, 212b a a =+,, 12r r b a a a =+++, 且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.(答案二)一、填空题(本题总计 20 分,每小题2 分)1. 172. -2 3.13A 4.()R A n <5.2λ=-6.-27.116A -或12110216003-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦8.29、21n)(-10、2,0-==y x 二、选择题(本题总计 10 分,每小题 2 分)1. A 2. A 3.C 4.D 5. B 三、计算题(本题总计 60 分,每小题 10分)1、解:D),,4,3(2n i r r i =-00021 00022 0012203022-n 20022-n ------4分122r r - 00001 00022 - 00122- 03022--n 20022--n -------7分)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n ---------10分(此题的方法不唯一,可以酌情给分。