小学数学总复习专题 14列方程解应用题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学总复习专题

14 列方程解应用题

1.甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?

2.甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米。甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离。

3.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?

4.两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?

5.高中学生的人数是初中学生人数的5/6,高中毕业生的人数是初中毕业生人数的12/17。高、初中的毕业生离校后,高、初中留下的人数都是520。那么,高、初毕业生共有多少人?

1.某商店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买,后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%。那么,第二次降价后的价格是原定价的百分之多少?

2.学校早晨6:00开校门,晚上6:40关校门。下午有一同学问老师现在的时间,老

师说:从开校门到现在时间的1

3

加上现在到关校门时间的

1

4

,就是现在的时间。那

么现在的时间是下午几点?

3.甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米。一艘船沿乙河逆水航行6小时,行了84千米到达甲河,在甲河还要顺水航行133千米。求这艘船一共航行多少小时?

9.某校100名学生在一次语、数、外三科竞赛中,参加语文竞赛的有39人,参加数学竞赛的有49人,参加外语竞赛的有41人,既参加语文竞赛又参加数学竞赛的有14人,既参加数学竞赛又参加外语竞赛的有13人,既参加语文竞赛又参加外语竞赛的有9人,

有1人三项都没有参加,问三项都参加的有多少人?

参考答案

1.61吨

【解析】先找相等的关系。乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:

甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解。

解:设从乙船抽出x吨油,则

595+x=(225-x)×4

595+x=900-4x

4x+x=900-595

5x=305

x=61

答:必须从乙船抽出61吨油给甲船。

总结:这类题目的难度为易,告诉你其中一个条件,就是谁如何,而其他的是它的多少倍(在多多少或少多少),那么,直接设问题问的问题,来得出等式,求出答案。

2.30千米

【解析】由甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:

甲时速×x=乙在甲前的路程+乙时速×(x-0.5),根据这样的等量关系,可以列出方程求解。

解:设甲第二次从西镇出发到东镇所用的时间为x小时,则

15x=10×(0.5×3)+10(x-0.5)

15x-10x=15-5

5x=10

x=2

代入15x=15×2=30

答:东西两镇的距离是30千米。

总结:像这类应用题,老生常谈的路程问题,在小学五年级的智力闯关资料中,用代数方法,解析了路程问题。其实这就是行程问题中经常遇到的相遇问题。两者同时从两地相向而行,这就是相遇问题。当然,大家也一定知道了,相遇的时间该如何表示了。

3.哥哥现在的年龄是18岁,弟弟现在的年龄是12岁。

【解析】解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为X/3岁,列表如下:

他们的年龄差不变。

设哥哥现在的年龄为x,则

x

X-(30-x)=30-x-

3

x

X-30+x=30-x-

3

x

2x-30=30-x-

3

方程两边同乘以3,得

6x-90=90-3x-x

6x+4x=90+90

10x=180

x=18

答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.

思考:如果设弟弟现在的年龄为x岁,如何列方程呢?

总结:这类的实际问题,做出试题答案后,要注意放到实际中检验,可遵循,一下方法来解答。

(1)“设”:用字母(例如x)表示问题的未知量;

(2)“找”:看清题意,分析题中及其关系,找出用来列方程的等量关系;

(3)“列”:用字母的代数式表示相关的量,根据等量关系列出方程。

(4)“解”:解方程;

(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;

(6)“答”:答出题目中所问的问题。

4.216个

【解析】设:原来每筐x个。

甲筐剩下的=乙筐剩下的3倍

x一150=(x一194)×3

x一150=3x一582

2x=432

x=216

答:原来甲筐有苹果216个。

总结:这些问题,可以转变看做实际应用问题,初学应用题时,往往见到“多”字就用加法计算,这是造成错解一的主要原因;再就是认为应用题总是“前面的数量加上后面的数量”,或者是“前面的数量减去后面的数量”,这是造成错解二的主要原因。要防止这种错误的产生,从乙开始学习应用题,就要注意培养分析题中已知条件和要求问题的习惯,确定解法后要进行检验,想一想这样计算对不对。

5.1160人

【解析】要想求出高、初中毕业生共有的人数,可以先分别求出高中毕业生与初中毕业生各是多少。已知条件中高中毕业生是初中毕业生人数的12/17,又知高、初中毕业生离校后都留下520人,如果设初中毕业生为x人,则原初中生有(x+520)人,高

中毕业生为12

17

x人,原高中生有(

12

17

x+520)人。根据高中学生人数是初中学生人

5

相关文档
最新文档