八年级数学下册《二次根式》知识点总结

合集下载

八年级数学下册知识点总结

八年级数学下册知识点总结

八年级数学下册知识点总结一、二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”叫做二次根号,a叫做被开方数。

例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。

2. 二次根式有意义的条件。

- 被开方数必须是非负数,即对于√(a),a≥slant0时二次根式有意义。

例如在√(x - 2)中,x - 2≥slant0,解得x≥slant2时该二次根式有意义。

3. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(3))^2=3。

- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥slant0) - a(a < 0)end{array}right.。

例如√((-2)^2)=| - 2| = 2。

4. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。

例如(√(8))/(√(2))=√(frac{8){2}}=√(4)=2。

5. 二次根式的加减。

- 先把二次根式化成最简二次根式,再合并同类二次根式。

- 最简二次根式满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。

例如√(8)=√(4×2)=2√(2),2√(2)就是最简二次根式。

- 同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

例如√(12)=2√(3)与√(27)=3√(3)是同类二次根式,可以合并,2√(3)+3√(3)=(2 + 3)√(3)=5√(3)。

八年级下册二次根式

八年级下册二次根式

八年级下册二次根式二次根式学习资料。

一、二次根式的概念。

1. 定义。

- 一般地,形如√(a)(a≥0)的式子叫做二次根式。

其中“√()”称为二次根号,a 叫做被开方数。

例如√(4),√(9)等都是二次根式。

这里要特别注意被开方数a是非负数,因为负数在实数范围内没有平方根。

2. 判断二次根式的方法。

- 看是否形如√(a)的形式,并且a≥0。

例如√(-2)不是二次根式,因为被开方数-2<0;而√(0)是二次根式,因为0≥0。

二、二次根式的性质。

1. (√(a))^2 = a(a≥0)- 例如(√(5))^2 = 5。

这个性质表明,一个非负数的算术平方根的平方等于它本身。

- 应用:在计算(√(x + 1))^2(x≥ - 1)时,根据这个性质可得(√(x + 1))^2=x + 1。

2. √(a^2)=| a|=a(a≥0) -a(a < 0)- 例如√(3^2)=|3| = 3,√((-3)^2)=| - 3|=3。

- 应用:化简√((x - 2)^2)时,当x≥2,√((x - 2)^2)=x - 2;当x<2,√((x -2)^2)=2 - x。

三、二次根式的运算。

1. 二次根式的乘法。

- 法则:√(a)·√(b)=√(ab)(a≥0,b≥0)。

- 例如√(3)×√(5)=√(3×5)=√(15)。

- 推广:√(a)·√(b)·√(c)=√(abc)(a≥0,b≥0,c≥0)。

2. 二次根式的除法。

- 法则:(√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)。

- 例如(√(12))/(√(3))=√(frac{12){3}}=√(4) = 2。

3. 二次根式的加减。

- 先把各个二次根式化成最简二次根式,再把同类二次根式合并。

- 最简二次根式:满足被开方数不含分母;被开方数中不含能开得尽方的因数或因式这两个条件的二次根式。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

初二数学下册二次根式基础知识点

初二数学下册二次根式基础知识点

初二数学下册二次根式基础知识点
一、二次根式概念
1、二次根式是由有限个幂次相加,其幂次均为二次的代数表达式。


达式的形式一般为ax² + bx + c(a≠0),其中a、b、c是实数的称为二
次根式,x是未知数,叫做二次根式的自变量,其系数a、b、c分别叫
做常数项系数、一次项系数和常数项系数。

2、方程式ax² + bx + c = 0是所有二次根式共同拥有的方程式,称为二
次方程式。

通过解二次方程组,可以求出给定的二次根式的两个根,
从而实现了对二次根式的完全解析。

二、二次根式的解析解
1、对于ax² + bx + c = 0(a ≠ 0),可以用求根公式进行解析式求解,
即设D = b² - 4ac,则 x12= [-b + √D]/ 2a,x2= [-b-√D]/ 2a,分别是二次
方程式的两个实根。

2、若a= 0,b ≠ 0,则方程式实际上是一次方程式,解析式为x = -c/b,即为方程式的实根。

3、若a= 0,b= 0,c ≠ 0,此时方程式不存在实根,其所有实数均无法
使方程式成立。

三、二次根式的应用
1、实际运算:二次根式可以用来计算不同函数类型的函数值,如幂函数、指数函数、三角函数等,以及可以用来分析经济问题的利润曲线、
成本曲线等。

2、代数应用:二次根式可以用来解决复杂一元二次不定方程,解组合
问题,解联立方程等,起到了重要的作用。

比如求两条抛物线的焦点,利用二次根式的求根公式即可。

3、几何应用:二次根式可以用来处理任意给定的椭圆或抛物线等曲线,计算其焦点、准线等等。

八年级数学下册知识点归纳非常全面

八年级数学下册知识点归纳非常全面

八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。

4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。

5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。

7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。

八年级数学下册《二次根式》知识点总结

八年级数学下册《二次根式》知识点总结

八年级数学下册《二次根式》知识点总结二次根式【知识回顾】.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=&#8226;(a≥0,b≥0);(b≥0,a&gt;0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】、概念与性质例1下列各式1),其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1);(2)例3、在根式1),最简二次根式是()A.1)2)B.3)4)c.1)3)D.1)4)例4、已知:例5、(XX龙岩)已知数a,b,若=b-a,则A.a&gt;bB.a&lt;bc.a≥bD.a≤b2、二次根式的化简与计算例1.将根号外的a移到根号内,得A.;B.-;c.-;D.例2.把(a-b)-1a-b化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

八年级二次根式知识点归纳

八年级二次根式知识点归纳

八年级二次根式知识点归纳一、概念简述二次根式是一种由一个根号和一个二次式组成的算式,其形式为√a + b或√a - b,其中a为非负实数,b为实数。

二、基本性质1. 满足乘方运算律和分配律,即(√a + b)² = a + 2b√a + b²,(√a -b)² = a - 2b√a + b²。

2. 当a>0且b≠0时,有√a + b = √a - b当且仅当b² = a。

3. 二次根式可以化简为整数根式或分式根式,如:√12 = 2√3,√(4/9) = 2/3。

三、运算方法1. 二次根式的加减法:(1) 若√a + b = √c + d,则b = d和a = c或a + c = 2b√a。

(2) 若√a + b ≠ √c + d,则可将它们通分,然后进行加减运算。

2. 二次根式的乘除法:(1) 二次根式相乘,可以利用公式(√a + b)(√c + d) = (ac + bd) + (ad + bc)√ac得到。

(2) 二次根式相除,一般先将分式根式化为分数形式,然后将分母有关的项合并,最后分别将根式合并即可。

四、练习题1. √27 + √12 = ?解:√27 + √12 = 3√3 + 2√3 = 5√32. 2√3 - √75 = ?解:2√3 - √75 = 2√3 - 5√3 = -3√33. (2√6 - 3)(√6 + 1) = ?解:(2√6 - 3)(√6 + 1) = 2√6√6 + 2√6 - 3√6 - 3 = 15 - √64. (√12 - √3)/(√2 + 1) = ?解:(√12 - √3)/(√2 + 1) = (√4√3 - √3)/(√2 + 1) = √3 - √6五、总结归纳二次根式作为数学中的一种重要概念,在八年级的数学教学中占据着重要的地位。

通过对二次根式的概念、基本性质和运算方法的学习,能够更好地理解和掌握二次根式的运用,提高数学解题能力。

八年级下册数学二次根式知识点总结

八年级下册数学二次根式知识点总结

八年级下册数学二次根式知识点总结
一、二次根式的定义。

形如√(a)(a≥ 0)的式子叫做二次根式。

其中,a叫做被开方数。

二、二次根式有意义的条件。

被开方数a≥ 0时,二次根式√(a)有意义。

三、二次根式的性质。

1. √(a^2) = a
当a≥ 0时,√(a^2) = a;当a < 0时,√(a^2) = -a
2. (√(a))^2 = a (a≥ 0)
3. √(ab) = √(a)·√(b) (a≥ 0, b≥ 0)
4. √((a/b)) = (√(a))/(√(b)) (a≥ 0, b > 0)
四、二次根式的运算。

1. 二次根式的乘法:√(a)·√(b) = √(ab) (a≥ 0, b≥ 0)
2. 二次根式的除法:(√(a))/(√(b)) = √((a/b)) (a≥ 0, b > 0)
3. 二次根式的加减:先将二次根式化为最简二次根式,然后将被开方数相同的二次根式进行合并。

五、最简二次根式。

满足下列两个条件的二次根式,叫做最简二次根式:
1. 被开方数不含分母;
2. 被开方数中不含能开得尽方的因数或因式。

六、同类二次根式。

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

在进行二次根式的运算时,要注意运算顺序和运算法则,同时要熟练掌握化简二次根式的方法,以提高解题的准确性和效率。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

八年级数学二次根式知识点

八年级数学二次根式知识点

八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。

本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。

1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。

例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。

2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。

即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。

(2)二次根式的值域为非负实数。

即,对于任意非负实数a,有$\sqrt{a}≥0$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。

(3)二次根式可以转化为分数形式。

即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。

这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。

3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。

(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。

(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。

初二数学二次根式知识点大全

初二数学二次根式知识点大全

初二数学二次根式知识点大全知识点1 二次根式1.二次根式的定义一般地,我们把形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。

其中,$\sqrt{}$ 称为二次根号,$a$($a\geq0$)是一个非负数。

2.二次根式有意义的条件二次根式的概念是形如 $\sqrt{a}$($a\geq0$)的式子叫做二次根式。

二次根式中被开方数是非负数,且具有非负性,即 $a\geq0$。

3.二次根式的双重非负性二次根式的双重非负性包括被开方数的非负性和算数平方根的非负性,即 $a\geq0$ 和 $\sqrt{a}\geq0$。

4.二次根式化简化简二次根式的方法包括把被开方数分解因式,利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来,化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数 2.题型1 二次根式定义例1】在式子 $\pi$,$a^2+b^2$,$a+5$,$-3y(y\geq0)$,$m^2-1$ 和 $ab$($a<0,b<0$)中,是二次根式的有()A。

3个B。

4个C。

5个D。

5个解答】解:式子 $\pi$,$a^2+b^2$,$-3y(y\geq0)$,$ab$($a<0,b<0$)是二次根式,共 4 个,故选 B。

点评】此题主要考查了二次根式定义,关键是注意被开方数为非负数。

题型2 二次根式有意义的条件例2】若 $\frac{\sqrt{2x}}{\sqrt{y}}$ 是二次根式,则下列说法正确的是()A。

$x<y$B。

$x$ 且 $y>\frac{2x^2}{y^2}$C。

$x$、$y$ 同号D。

$x,y>0$ 或 $x,y<0$解答】解:依题意有 $\frac{\sqrt{2x}}{\sqrt{y}}$,即$\sqrt{\frac{2x}{y}}$,是二次根式。

则 $\frac{2x}{y}>0$,即$x,y$ 同号且 $y\neq0$。

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结

全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。

其中,a被称为被开方数。

最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。

如果两个二次根式的被开方数相同,那么它们就是同类二次根式。

二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。

二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。

应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。

勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。

直角三角形还有一些其他的性质,需要我们认真研究和掌握。

1.直角三角形的两个锐角互余,即∠A+∠B=90°。

2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。

4.三角形面积公式为AB•CD=AC•BC。

5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。

6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。

7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。

8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。

9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。

10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。

人教版八年级数学下册二次根式的知识点汇总(超值哦)

人教版八年级数学下册二次根式的知识点汇总(超值哦)

二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式.例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23x++11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0().注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

例4(1)已知y=2x-+2x-+5,求xy的值.(2)若1a++1b-=0,求a2004+b2004的值知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论.上面的公式也可以反过来应用:若,则,如:,.例1 计算1.(32)22.(35)23.(56)24.(72)2例2在实数范围内分解下列因式:(1)x2—3 (2)x4—4 (3) 2x2—3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

八年级数学实数之二次根式知识点总结

八年级数学实数之二次根式知识点总结

一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。

例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。

② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。

③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。

④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。

注:对于商的算术平方根,最后结果一定要进行分母有理化。

⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。

⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。

判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。

⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。

八年级数学下册《二次根式》知识点总结

八年级数学下册《二次根式》知识点总结

八年级数学下册《二次根式》知识点总结八年级数学下册《二次根式》知识点总结二次根式【知识回顾】1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑴被开方数中不含分母;⑴分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,⑴变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=•(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,⑴乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1),其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1);(2)例3、在根式1),最简二次根式是()A.1)2)B.3)4)C.1)3)D.1)4)例4、已知:例5、(2009龙岩)已知数a,b,若=b-a,则()A.a>bB.a2、二次根式的化简与计算例1.将根号外的a移到根号内,得()A.;B.-;C.-;D.例2.把(a-b)-1a-b化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

例1、比较与的大小。

初二下册数学二次根式知识点

初二下册数学二次根式知识点

【知识回顾】1.⼆次根式:式⼦( ≥0)叫做⼆次根式。

2.最简⼆次根式:必须同时满⾜下列条件:⑴被开⽅数中不含开⽅开的尽的因数或因式;⑵被开⽅数中不含分母;⑶分母中不含根式。

3.同类⼆次根式:⼆次根式化成最简⼆次根式后,若被开⽅数相同,则这⼏个⼆次根式就是同类⼆次根式。

4.⼆次根式的性质:(1)()2= ( ≥0);(2)5.⼆次根式的运算:(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.= • (a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.【典型例题】1、概念与性质例1下列各式1),其中是⼆次根式的是_________(填序号).例2、求下列⼆次根式中字母的取值范围(1);(2)例3、在根式1) ,最简⼆次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:例5、(2009龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、⼆次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a-b)-1a-b 化成最简⼆次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、⽐较数值(1)、根式变形法当时,①如果,则;②如果,则。

例1、⽐较与的⼤⼩。

(2)、平⽅法当时,①如果,则;②如果,则。

二次根式知识点整理:初二下册数学

二次根式知识点整理:初二下册数学

二次根式知识点整理:初二下册数学效果的提高是同窗们提高总体学习效果的重要途径,大家一定要在往常的练习中不时积聚,小编为大家预备了二次根式知识点整理:初二下册数学,希望同窗们不时取得提高!
1.二次根式概念:式子a(a≥0)叫做二次根式。

2.最简二次根式:必需同时满足以下条件:
3.同类二次根式:
二次根式化成最简二次根式后,假定被开方数相反,那么这几个二次根式就是同类二次根式。

4.二次根式的性质:
a(a0) 22(1)(a)=a (a≥0); (2)a a
0 (a=0);
5.二次根式的运算:
a(a0)
(1)因式的外移和内移:假设被开方数中有的因式可以开得尽方,那么,就可以用它的算术根替代而移到根号外面;假设被开方数是代数和的方式,那么先解因式,变形为积的方式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号外面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再兼并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相
乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
以上就是查字典数学网为大家整理的二次根式知识点整理:初二下册数学,大家还满意吗?希望对大家有所协助!。

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册《二次根式》知识点总结
二次根式
【知识回顾】
二次根式:式子叫做二次根式。
最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
二次根式的性质:
=;
二次根式的运算:
因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式, 变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
二次根式的乘除法:二次根式相乘,将被开方数相乘,所得的积仍作积的被开方数并将运算结果化为最简二次根式.
=•;.
有理数的加法交换律、结合律,乘法交换律及结合律, 乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
概念与性质
例1下列各式1),
其中是二次根式的是_________.
例2、求下列二次根式中字母的取值范围

例3、在根式1),最简二次根式是
A.1)2)B.3)4)c.1)3)D.1)4)
例4、已知:
例5、已知数a,b,若=b-a,则
A.a>bB.a0,b>0时,则:Leabharlann ①;②例8、比较与的大小。
规律性问题
例1.观察下列各式及其验证过程:
验证:;
验证:.
按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;
针对上述各式反映的规律,写出用n表示的等式,并给出验证过程.
相关文档
最新文档