铝合金熔炼与铸造简介(PPT课件)
合集下载
铝冶金与熔炼PPT课件
熔剂法:扩散法 原理:在液面上撒放熔剂:1)让熔剂吸 附Al2O3 ;2)破坏表面Al2O3的连 续 性,使[ H ] 。 • 熔剂种类:NaCl,KCl 和冰晶石 过滤 ,真空 加压: 氢气孔形成条件,Pa越大,氢气 孔越难形成。
第36页/共39页
• 一点说明:精练[ H ] ,Al2O3排一即 可,只防出现H2 针孔。
第9页/共39页
由上述反应可见: ➢ 铝土矿高压溶出的结果Al2O3进入溶液; ➢ 而SiO2、Fe2O3、TiO2 等杂质则留在残渣(赤泥)之中,借助于机械的方法即
可使残渣与溶液分开,从而达到把Al2O3与杂质分离的目的。
第10页/共39页
铝土矿的溶出是将若干个预热器、压煮器 和自蒸发器依次串联成为一个压煮器组
一、铝的性质和用途
铝的物理性质和用途
物理性质
银白色,有金属光泽 质地较软,延展性好
密度小、熔沸点低
导热性能好 导电性能较好 熔点低、硬度大
用途
易加工成各种形状, 包装、装饰工艺, 铝箔、铝丝、银粉涂料
铝锅、铝壶等加热器具 铝芯电线、电缆
用途不一的各种铝合金
第1页/共39页
第2页/共39页
二、炼铝原料和铝冶金特点
第22页/共39页
(4)碳酸化分解:此工序是把CO2炉气通入铝酸钠溶液中,发生中和反应: 2NaOH+CO2 Na2CO3+H2O NaAl(OH)4Al(OH)3 +NaOH 碳酸化分解后,采用过滤机将氢氧化铝与溶液分离。氢氧化铝经洗涤后送往煅 烧,煅烧过程与拜耳法一样,母液经蒸发后返回烧结配料。
第8页/共39页
➢ Al2O3nH2O+2NaOH2NaAlO2+nH2O ➢ SiO2+2NaOH2Na2SiO3+H2O ➢ 2Na2SiO3+2NaAlO2+H2ONa2OAl2O32SiO22H2O+4NaOH ➢ Fe2O3 ➢ TiO2+2Ca(OH)22CaOTiO22H2O ➢ CaCO3+2NaOH2Na2CO3+Ca(OH)2 ➢ MgCO3+2NaOH2Na2CO3+Mg(OH)2
【精品课件】铸造合金熔炼工艺及组织.pptx
浇注试样(3个) 浇注试样(3个)
分别观察铝液精炼与不精炼所获得试样液面的变化。
装料、熔化 Na 变质
浇注试样(3个)
(4) 性能检测
将上述三种试样加工成标准试样,进行硬度的测定, 通过硬度的变化,比较ZAlSi13合金精炼前后以及变
质前后性能的变化。
(5) 金相组织观察
将拉伸后的试样制成金相试样,观察去气精炼前后和 变质前后的组织变化情况。
组织变化的情况。
(五)、实验报告要求
1. 简述实验目的、实验内容和实验过程; 2. 阐述去气精炼的目的和原理以及铝硅合金的变质
机理; 3. 比较铸造铝硅合金去气精炼前后组织及性能的变
化并分析其变化规律; 4. 分析铝合金在不同的冷却速度(凝固条件)下组
织的变化规律及其对性能的影响。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。20. 7.820.7.8Wednesday, July 08, 2020
• 13、志不立,天下无可成之事。20.7.820.7.814:53:0514:53:05July 8, 2020
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
1.2-铝冶金与熔炼PPT课件
生料配比(过饱和):
C C C
(Na2O) C ( Al2O3 ) (CaO) 2
(
F
e2O3
)
1
C(SiO2 )
烧结后主要产物:铝酸钠、铁酸钠、硅- 酸钙组成的块状多孔熟料与含尘2炉8 气。
(2)熟料溶出 熟料经破碎后用稀碱溶液进行溶出,溶出过程的主要反应为
Na2O·Al2O3 + 4H2O→ 2NaAl(OH)4 (溶解) Na2O·Fe2O3 + 2H2O → Fe2O3·H2O↓+ 2NaOH SiO2 + 2CaO → 2CaO·SiO2
① 氧化铝
Al2O3·nH2O + 2NaOH → 2NaAlO2 + nH2O
② 二氧化硅 SiO2 + 2NaOH → Na2SiO3 + H2O
2Na2SiO3 + 2NaAlO2 + 4H2O → Na2O·Al2O3·2SiO2·2H2O↓ + 4NaOH
反应结果,矿石中的SiO2以Na2O·Al2O3·2SiO2·2H2O的形式进入赤泥,同 时造成NaOH和Al2O3的损失,这种损失与矿石中的SiO2含量成正比。
γ-Al2O3 (尖晶石型立方晶系)在900℃开始转变为α-Al2O3 (六方晶系),但须在1200℃维持足够长的时间,γ-Al2O3才能 转变为适合电解的α-Al2O3。
-
23
(4)母液的蒸发与苛化
① 母液的蒸发 在生产过程中,赤泥洗涤和氢氧化钠洗涤及蒸汽直接加热产
生的冷凝水导致循环母液浓度下降,不符合生产要求。为排除 水分,保证母液的浓度,通过蒸发来平衡水量。
-
22
(3)氢氧化铝的煅烧 煅烧使氢氧化铝完全脱水,得到氧化铝。目前,大多数氧化
铝合金熔炼及铸轧基础知识课件
三、铝合金的熔炼
3.1
演讲完毕
1 A SL 3
0
即:临界形核功ΔG*的大小为临界晶核表面能 的三分之一, 它是均质形核所必须克服的能量障 碍。形核功其中一部分由熔体中的“能量起伏” 提供,但不能保证形核。因此,必须在过冷条件 下克服这部分能量,才能克服能量障碍。因此, 均质形核的过程在过冷条件下借助 “能量起伏” 形成新相晶核的过程。
Tm及Δ Hm对一特定金属或合金为定值,所以过冷度 Δ T是影响相变驱动力的决定因素。过冷度Δ T 越 大,凝固相变驱动力Δ GV 越大。
2.形核类型 均质形核 :形核前液相金属或合金中无外来固相质点
而从液相自身发生形核的过程,所以也称“自发形核”
(实际生产中均质形核是不太可能的,即使是在区域精炼的条
临界晶核的表面能为:
A SL 4 ( r ) 2 SL 3 VS Tm 16 SL H T m
2
2
形核功为: G 所以:
VS Tm 16 3 SL 3 H T m
G
件下,每1cm3的液相中也有约106个边长为103个原子的立方体
的微小杂质颗粒)。
异质形核:依靠外来质点或型壁界面提供的衬底进行
生核过程,亦称“非均质形核”或“非自发形核”。
2-1均质形核
G V GV A SL
4 G r 3GV 4r 2 SL 3
图3.4 液相中形成球形晶胚时自由能变化
2-2 异质形核
合金液体中存在的大量高熔点微小固相杂质,可作为非均 质形核的基底。晶核依附于夹杂物的界面上形成。这不需要形 成类似于球体的晶核,只需在界面上形成一定体积的球冠便可 成核。非均质形核过冷度Δ T**比均质形核临界过冷度Δ T*小 得多时就大量成核。
有色金属熔炼与铸锭 ppt课件
当a>1时,氧化膜致密、连续,有保护性 当a<1时,氧化膜疏松多孔,无保护性
二、金属氧化的动力学方程
平面金属的氧化速度可用氧化膜厚度随时间的变化来表示:
1.温度、面积一定,内扩散速度: (dx/dt)=D/x * (CO2-C´O2)
2.结晶化学反应速度: (dx/dt)=K CO2
两阶段速度相等可求得:1/D*x*dx+1/K*dx= CO2*dt t为时间
二、熔炼温度 温度升高,氧化速度加快 如,4000C以下,氧化铝膜强度高,线膨胀系数与铝接近,膜保护良好 (抛物线规律),但高于5000C则按直线氧化规律,7500C时易于断裂
三、炉气性质 存在诸如O2、H2O、CO2、CO、H2、CmHm、SO2、N2等气体 体系对金属是 氧化性还是还原性或中性应视具体情况而定 金属的亲和力大于C、H与氧的亲和力则含有CO2、CO或H2O的炉气就会 使其氧化
影响氧化烧损的因素及降低氧化烧损的方法
影响金属氧化烧损的因素:
一、金属及氧化物的性质
纯金属氧化烧损取决于金属与氧的亲和力和金属表面氧 化膜的性质 Mg、Li与氧亲和力大,而且a<1,氧化烧损大 Al、Be 与氧亲和力大,但a>1,氧化烧损小 Au、Ag、Pt与氧亲和力小,a>1,故很难氧化
例外情况:a>1,但线膨胀系数与基体金属不相适应则 易产生分层,断裂而脱落—显然也属于易氧化烧损金属
铸锭的凝固传热: 1)金属性质 2)锭模和涂料性质 3)浇注工艺(浇注温度、浇注速度、冷却强度)
●绝热模(如砂模)中 铸锭凝固时的温度分布:
●铸锭凝固以凝壳热阻为主时(如水冷模)的温度分布
●铸锭凝固以界面热阻为主时(如水冷模)的温度分布
影响凝固传热的因素:
二、金属氧化的动力学方程
平面金属的氧化速度可用氧化膜厚度随时间的变化来表示:
1.温度、面积一定,内扩散速度: (dx/dt)=D/x * (CO2-C´O2)
2.结晶化学反应速度: (dx/dt)=K CO2
两阶段速度相等可求得:1/D*x*dx+1/K*dx= CO2*dt t为时间
二、熔炼温度 温度升高,氧化速度加快 如,4000C以下,氧化铝膜强度高,线膨胀系数与铝接近,膜保护良好 (抛物线规律),但高于5000C则按直线氧化规律,7500C时易于断裂
三、炉气性质 存在诸如O2、H2O、CO2、CO、H2、CmHm、SO2、N2等气体 体系对金属是 氧化性还是还原性或中性应视具体情况而定 金属的亲和力大于C、H与氧的亲和力则含有CO2、CO或H2O的炉气就会 使其氧化
影响氧化烧损的因素及降低氧化烧损的方法
影响金属氧化烧损的因素:
一、金属及氧化物的性质
纯金属氧化烧损取决于金属与氧的亲和力和金属表面氧 化膜的性质 Mg、Li与氧亲和力大,而且a<1,氧化烧损大 Al、Be 与氧亲和力大,但a>1,氧化烧损小 Au、Ag、Pt与氧亲和力小,a>1,故很难氧化
例外情况:a>1,但线膨胀系数与基体金属不相适应则 易产生分层,断裂而脱落—显然也属于易氧化烧损金属
铸锭的凝固传热: 1)金属性质 2)锭模和涂料性质 3)浇注工艺(浇注温度、浇注速度、冷却强度)
●绝热模(如砂模)中 铸锭凝固时的温度分布:
●铸锭凝固以凝壳热阻为主时(如水冷模)的温度分布
●铸锭凝固以界面热阻为主时(如水冷模)的温度分布
影响凝固传热的因素:
铝合金熔炼与铸造
1. FILD法(无烟在线脱气法)
在耐火坩埚或耐火砖衬里 的容器中,用耐火隔板将容 器分成两个室。从静置炉中 流出的铝液,经倾斜流槽进 入第一室,在熔剂覆盖下进 行吹氮脱气和除渣,然后通 过涂有熔剂的氧化铝球滤床 除去夹渣,再流到第二室, 通过氧化铝球滤床,以除去 铝液夹带的熔剂和夹渣。
2. SNIF法(旋转喷气净化法)
2.组合式结晶器:一般用于Cu、Al及其合金 圆锭,Al及其合金扁锭上。
圆锭用结晶器,组成:内套— Cu : T2、铜 合金、石墨,Al : LD5、LY11 。外壳— 铸 铁、钢、锻Al。
易大常细量形硬加化的AA系成脆入晶lT-熔li-C熔来粗 相 少 粒C炼u炼u-技-M技首 先 原 材 料 的 清 洁 度 要 高 然 后 加 强 对 熔 体 的 精 炼 除 气 最 每 个 熔 次 后 要 彻 底 大 清 炉其 次 操 作 时 避 免 频 繁 搅 动 熔 体M术g术g-特-F特FSF量 下e点eei-点系、控 限N/NiN制 并i=i在 使含1
续直接水冷铸锭法。其中包括可调液流的中间包 或炉头箱、漏斗、结晶器、引锭托座和铸造机等 部分。
特点
优点:
1.液流平稳、减少了吸气和夹渣。
2.直接水冷,冷却强度大,结晶速度快, 组织致密
3.自下而上连续结晶,有利于排气和补缩。
4. 生产连续进行,几何废料少,成品率 高。
5.易实现机械化、自功化,铸坯质量较好。
• 由美国联合碳化物公司开发的,是一 种最新的、效率最高的、最易操作的 在线式精练工艺。
• 特点:省时节能;无环境污染;战地 面积小;熔体质量高等。
影响熔剂除渣精炼效果的因素
➢精炼温度:一般先用高温进行除渣精 炼,然后在较低的温度下进行脱气, 最后保温静置。
铝合金铸造基础知识课堂PPT
41
冷芯制芯
冷芯制芯:
将树脂砂填入冷芯模,而后吹气硬化制成坭芯。 根据使用的粘结剂和所吹气体及其作用的不同,而 有三乙胺法、SO2法、酯硬化法、低毒和无毒气体 促硬制芯法。
三乙胺法:一般用干燥的压缩空气或氮气作液态硬 化剂(三乙胺)的载体气体,稀释到约5%浓度,形 成三乙胺气雾,向冷芯模中填入树脂砂后再吹入三 乙胺气雾,树脂砂便能在数秒至数十秒内硬化制成 所需要强度的坭芯。
36
壳芯制芯
壳芯:进排气道
37
壳芯制芯
壳芯制芯的优点: ➢混制好的覆膜砂可以较长期贮存(三个月以上); ➢能获得尺寸精确的坭芯; ➢坭芯的强度高、质量轻、易搬运; ➢可用细的原砂得到光洁的铸件表面; ➢覆膜砂消耗量小。
38
壳芯制芯
壳芯制芯的缺点: (一)壳芯表面易疏松 覆膜砂流动性差; 排气不当,在深凹处疏松和缺肉的,多是排气不好; 射砂压力太低; 射砂时间太短; 覆膜砂所使用的原砂太粗。
42
冷芯制芯
冷芯:冒口芯
43
冷芯制芯
冷芯制芯的冷芯树脂(粘结剂)由两部分组成,组 分Ⅰ是酚醛树脂,组分Ⅱ是聚异氰酸酯。
硬化反应:
酚醛树脂+聚异氰酸酯 三乙胺 尿烷
采用三乙胺法制芯时,原砂采用干净的AFS的细度 50-60的硅砂。
原砂必须干燥,水分超过0.1%(质量分数)就会减 少树脂砂的可使用时间,降低坭芯的抗拉强度,也 会增加铸件针孔缺陷。
第三章 铝液的熔化 及精炼处理
47
熔炼炉的操作
➢第一节 熔炼炉的简介 ➢第二节 铝合金熔炼理论知识
48
熔炼炉的简介 熔炼炉的分类:
熔炼炉
火焰炉
感应炉
电阻炉
49
熔炼炉的简介
冷芯制芯
冷芯制芯:
将树脂砂填入冷芯模,而后吹气硬化制成坭芯。 根据使用的粘结剂和所吹气体及其作用的不同,而 有三乙胺法、SO2法、酯硬化法、低毒和无毒气体 促硬制芯法。
三乙胺法:一般用干燥的压缩空气或氮气作液态硬 化剂(三乙胺)的载体气体,稀释到约5%浓度,形 成三乙胺气雾,向冷芯模中填入树脂砂后再吹入三 乙胺气雾,树脂砂便能在数秒至数十秒内硬化制成 所需要强度的坭芯。
36
壳芯制芯
壳芯:进排气道
37
壳芯制芯
壳芯制芯的优点: ➢混制好的覆膜砂可以较长期贮存(三个月以上); ➢能获得尺寸精确的坭芯; ➢坭芯的强度高、质量轻、易搬运; ➢可用细的原砂得到光洁的铸件表面; ➢覆膜砂消耗量小。
38
壳芯制芯
壳芯制芯的缺点: (一)壳芯表面易疏松 覆膜砂流动性差; 排气不当,在深凹处疏松和缺肉的,多是排气不好; 射砂压力太低; 射砂时间太短; 覆膜砂所使用的原砂太粗。
42
冷芯制芯
冷芯:冒口芯
43
冷芯制芯
冷芯制芯的冷芯树脂(粘结剂)由两部分组成,组 分Ⅰ是酚醛树脂,组分Ⅱ是聚异氰酸酯。
硬化反应:
酚醛树脂+聚异氰酸酯 三乙胺 尿烷
采用三乙胺法制芯时,原砂采用干净的AFS的细度 50-60的硅砂。
原砂必须干燥,水分超过0.1%(质量分数)就会减 少树脂砂的可使用时间,降低坭芯的抗拉强度,也 会增加铸件针孔缺陷。
第三章 铝液的熔化 及精炼处理
47
熔炼炉的操作
➢第一节 熔炼炉的简介 ➢第二节 铝合金熔炼理论知识
48
熔炼炉的简介 熔炼炉的分类:
熔炼炉
火焰炉
感应炉
电阻炉
49
熔炼炉的简介
铝合金熔铸生产技术及产品运用PPT(共38页)
当炉料在熔池里已充分熔化,并且熔体温度达到 熔炼温度时,即可扒除熔体表面漂浮的大量氧化渣。
扒渣前应先向熔体上均匀撒入粉状熔剂,以使渣 与金属分离,有利于扒渣,可以少带出金属。扒渣要 求平稳,防止渣卷入熔体内。扒渣要彻底,因浮渣的 存在会增加熔体的含气量,并弄脏金属。
以5系合金为例,扒渣后便可向熔体内加入镁锭, 同时要用2号粉状熔剂进行覆盖,以防镁的烧损。
先装小块或薄片废料,铝锭和大块料装在中间, 最后装中间合金。熔点易氧化的中间合金装在中下层。 小块或薄板料装在熔池下层,这样可减少烧损,同时 还可以保护炉体免受大块料的直接冲击而损坏。中间 合金有的熔点高,如AL-NI和AL-MN合金的熔点为750800℃,装在上层,由于炉内上部温度高容易熔化, 也有充分的时间扩散;使中间合金分布均匀,则有利 于熔体的成分控制。
一、熔铸厂信息简介
熔铸厂作为公司铝合金加工车间,是将电解液态原铝直 接熔炼后铸造成各种加工用胚锭,目前已生产的品种有:
1、方锭:1100、PS1050、1020、1070、3003、3004、 3104、5052、5754、5182、5083、6061、8011等,其 规格从1100~1630mm不等 ; 2、圆锭:6061、6063、铝镁合金棒等品种, 每种圆锭均有 Φ127mm~ Φ228mm五个 规格; 车间年产能力为10万吨,产品销往西南铝、美铝渤海公司、 江苏常铝、中铝河南分公司、精美铝业、山西关铝、美国 来宝、美国佳能可、泰国等公司。
6、精炼
熔体精炼的目的就是采用不同熔体 净化方式,降低熔体中的气体(主要是 氢)、减少非金属夹杂物和各种有害金 属杂质。
炉内采用熔剂喷射精炼法,利用分压 差脱气原理既托克斯定理 。
7、在线细化、除气、除渣
细化:铸造在线播种Al-Ti-B丝细化晶粒。 除气:采用ARPUL除气装置对熔体进行在线
扒渣前应先向熔体上均匀撒入粉状熔剂,以使渣 与金属分离,有利于扒渣,可以少带出金属。扒渣要 求平稳,防止渣卷入熔体内。扒渣要彻底,因浮渣的 存在会增加熔体的含气量,并弄脏金属。
以5系合金为例,扒渣后便可向熔体内加入镁锭, 同时要用2号粉状熔剂进行覆盖,以防镁的烧损。
先装小块或薄片废料,铝锭和大块料装在中间, 最后装中间合金。熔点易氧化的中间合金装在中下层。 小块或薄板料装在熔池下层,这样可减少烧损,同时 还可以保护炉体免受大块料的直接冲击而损坏。中间 合金有的熔点高,如AL-NI和AL-MN合金的熔点为750800℃,装在上层,由于炉内上部温度高容易熔化, 也有充分的时间扩散;使中间合金分布均匀,则有利 于熔体的成分控制。
一、熔铸厂信息简介
熔铸厂作为公司铝合金加工车间,是将电解液态原铝直 接熔炼后铸造成各种加工用胚锭,目前已生产的品种有:
1、方锭:1100、PS1050、1020、1070、3003、3004、 3104、5052、5754、5182、5083、6061、8011等,其 规格从1100~1630mm不等 ; 2、圆锭:6061、6063、铝镁合金棒等品种, 每种圆锭均有 Φ127mm~ Φ228mm五个 规格; 车间年产能力为10万吨,产品销往西南铝、美铝渤海公司、 江苏常铝、中铝河南分公司、精美铝业、山西关铝、美国 来宝、美国佳能可、泰国等公司。
6、精炼
熔体精炼的目的就是采用不同熔体 净化方式,降低熔体中的气体(主要是 氢)、减少非金属夹杂物和各种有害金 属杂质。
炉内采用熔剂喷射精炼法,利用分压 差脱气原理既托克斯定理 。
7、在线细化、除气、除渣
细化:铸造在线播种Al-Ti-B丝细化晶粒。 除气:采用ARPUL除气装置对熔体进行在线
铝合金熔炼与铸造简介课件
铝合金熔炼与铸造 简介课件
目录
• 铝合金熔炼基础 • 铝合金熔炼工艺 • 铝合金铸造技术 • 铝合金的应用 • 铝合金熔炼与铸造的挑战与未来发展
01
铝合金熔炼基础
铝合金的特性
01
02
03
物理特性
铝合金具有优良的导电性 、导热性和耐腐蚀性。
化学特性
铝合金易于氧化形成致密 的氧化膜,具有良好的耐 腐蚀性。
熔炼设备
常用的熔炼设备有坩埚炉 、电炉、感应炉等。
熔炼工艺参数
包括熔炼温度、熔炼时间 、熔炼气氛等,这些参数 对铝合金的性能和成分有 重要影响。
02
铝合金熔炼工艺
熔炼前的准备
原材料选择
配料计算
选择高质量的原材料,如铝锭、合金 元素和添加剂,以确保熔炼出的铝合 金具有所需的性能。
根据产品要求,计算所需的原材料配 比,以获得所需的化学成分和性能。
理。
热处理
根据需要,对铸件进行 热处理以提高其机械性
能。
铸造后处理
清理
去除铸件表面的毛刺、飞边等杂质,确保表 面质量。
质量检测
对铸件进行质量检测,确保其符合相关标准 和客户要求。
机械加工
对铸件进行机械加工,以满足其使用要求。
包装运输
对铸件进行包装,并选择合适的运输方式将 其送达目的地。
04
铝合金的应用
THANK YOU
感谢观看
模具准备
设计和制作铸造模具,确保其 结构合理、尺寸精确。
设备检查
对熔炼炉、浇注机等设备进行 检查和调试,确保其正常运转
。
工艺准备
制定合理的铸造工艺流程,明 确各环节的技术要求和操作规
范。
铸造过程
目录
• 铝合金熔炼基础 • 铝合金熔炼工艺 • 铝合金铸造技术 • 铝合金的应用 • 铝合金熔炼与铸造的挑战与未来发展
01
铝合金熔炼基础
铝合金的特性
01
02
03
物理特性
铝合金具有优良的导电性 、导热性和耐腐蚀性。
化学特性
铝合金易于氧化形成致密 的氧化膜,具有良好的耐 腐蚀性。
熔炼设备
常用的熔炼设备有坩埚炉 、电炉、感应炉等。
熔炼工艺参数
包括熔炼温度、熔炼时间 、熔炼气氛等,这些参数 对铝合金的性能和成分有 重要影响。
02
铝合金熔炼工艺
熔炼前的准备
原材料选择
配料计算
选择高质量的原材料,如铝锭、合金 元素和添加剂,以确保熔炼出的铝合 金具有所需的性能。
根据产品要求,计算所需的原材料配 比,以获得所需的化学成分和性能。
理。
热处理
根据需要,对铸件进行 热处理以提高其机械性
能。
铸造后处理
清理
去除铸件表面的毛刺、飞边等杂质,确保表 面质量。
质量检测
对铸件进行质量检测,确保其符合相关标准 和客户要求。
机械加工
对铸件进行机械加工,以满足其使用要求。
包装运输
对铸件进行包装,并选择合适的运输方式将 其送达目的地。
04
铝合金的应用
THANK YOU
感谢观看
模具准备
设计和制作铸造模具,确保其 结构合理、尺寸精确。
设备检查
对熔炼炉、浇注机等设备进行 检查和调试,确保其正常运转
。
工艺准备
制定合理的铸造工艺流程,明 确各环节的技术要求和操作规
范。
铸造过程
铸造铝合金熔炼原理PPT课件
提高精炼效果。
应减少精炼气泡直径,增加气泡与铝液接触时间,在不致使溶液表面
强烈翻腾而造成吸气氧化条件下,加强搅拌,以增大k值。
采用高纯度惰性气体或不溶于铝液的活性气体及真空除气,使Cms趋于0, 改善除气条件等。
第22页/共53页
精炼温度
从热力学角度,精炼温度应低些为好;
从动力学角度,精炼温度希望高些,以降低熔 体粘度。 铝液的粘度一般较小,故以降低精炼温度为宜。
用下式表示FF11 S M I S M G
σ
M
-
I
-
铝
液
与
A
l
2
O
3夹
杂
物
之间的表面自
第27页/共53页
由
能
;
通氮精炼(续)
➢根据热力学第二定律,系统表面能降低的方向,即为过程自动进
行的方向。故Al2O3夹杂物自动吸附在氮气泡上应满足
F F2 F1 0
SGI (S M I S M G ) 0
第20页/共53页
除气动力学
除气的动力学过程大致经过下列几个阶段:
气体原子从铝液内部向表面或精炼气泡界面迁移; 气体原子从溶解状态转变为吸附状态; 在吸附层中的气体原子生成气体分子; 气体分子从界面上脱附; 气体分子扩散进入大气或精炼气泡内,精炼气泡上 浮到铝液表面进入大气。
第21页/共53页
铝与氧的亲和力很大,极易氧化,4Al+3O2=2Al2O3。表面生成致密 的氧化铝膜,可阻止继续氧化。
在 通 常 大 气 ( 湿 度 较 大 ) 中 铝 的 熔 炼 温 度 下 γ-Al2O3 膜 常 会 含 12﹪H2O和H2,熔炼时若氧化皮被搅入铝液,即起Al- H2O反应。
应减少精炼气泡直径,增加气泡与铝液接触时间,在不致使溶液表面
强烈翻腾而造成吸气氧化条件下,加强搅拌,以增大k值。
采用高纯度惰性气体或不溶于铝液的活性气体及真空除气,使Cms趋于0, 改善除气条件等。
第22页/共53页
精炼温度
从热力学角度,精炼温度应低些为好;
从动力学角度,精炼温度希望高些,以降低熔 体粘度。 铝液的粘度一般较小,故以降低精炼温度为宜。
用下式表示FF11 S M I S M G
σ
M
-
I
-
铝
液
与
A
l
2
O
3夹
杂
物
之间的表面自
第27页/共53页
由
能
;
通氮精炼(续)
➢根据热力学第二定律,系统表面能降低的方向,即为过程自动进
行的方向。故Al2O3夹杂物自动吸附在氮气泡上应满足
F F2 F1 0
SGI (S M I S M G ) 0
第20页/共53页
除气动力学
除气的动力学过程大致经过下列几个阶段:
气体原子从铝液内部向表面或精炼气泡界面迁移; 气体原子从溶解状态转变为吸附状态; 在吸附层中的气体原子生成气体分子; 气体分子从界面上脱附; 气体分子扩散进入大气或精炼气泡内,精炼气泡上 浮到铝液表面进入大气。
第21页/共53页
铝与氧的亲和力很大,极易氧化,4Al+3O2=2Al2O3。表面生成致密 的氧化铝膜,可阻止继续氧化。
在 通 常 大 气 ( 湿 度 较 大 ) 中 铝 的 熔 炼 温 度 下 γ-Al2O3 膜 常 会 含 12﹪H2O和H2,熔炼时若氧化皮被搅入铝液,即起Al- H2O反应。
铝合金熔炼与铸造
润滑方法等。
1.铸造温度
T浇:T浇↑↑,G↑→ 热裂倾向↑;液穴↑→ 内部质量↓;吸气↑→ 气孔倾向↑;
晶粒粗化(非均质核心数↓);拉漏。
T浇↑→ 有利于表面质量。 T浇↓→ 避免上述缺陷、细化晶粒、V铸↑ T浇↓↓,η↑ 流动性↓→气孔、缩孔、 表面夹渣倾向↑;易堵眼;冷隔、拉裂
(横裂)倾向↑。
➢二次冷却:(直接冷却)带走金属凝固 全部过程散热量的70~80%。
➢铸锭向周围的热散失
热平衡
➢半连续铸造时单位时间பைடு நூலகம்浇入结晶器 的金属熔体所带进的热量为Q
➢一次冷却带走的热量为Q1 ➢二次冷却带走的热量为Q2 ➢铸锭向周围的热散失的热量为Q3
Q=Q1+Q2+Q3
➢热平衡是半连续铸造的先决条件
5.2 结晶器内的凝固壳和液穴
液穴形状示意图
影响过渡带尺寸的因素
• 结晶温度范围窄的合金,过渡带小 • 冷却强度大,则温度梯度大,过渡带小 • 铸锭断面尺寸大,过渡带深度和宽度大 • 铸造速度快,过渡带深度增加,宽度减小 • 结晶器越高,过渡带的宽度越大 • 其他因素:铸造温度、金属的导入方式、
漏斗大小、结晶器锥度以及冷却介质等
预 净先 化处 去理 油
复 大化 料流 铺程 底
复化锭废的保管
干 燥 去 水
按炉料号、 行熔分次的复化组号保进管
搅 拌 扒 渣
制
铸
团
造
第六章 铝合金熔体的净化
联合在线精炼
• 联合在线精练:在炉外配备一套装置, 以炉外连续处理工艺取代传统的炉内 间歇式分批处理工艺。
• FILD法 • SNIF法
水平连续铸造原理
水平连续铸造是将保温炉中的金属熔 体通过液流控制装置直接导入结晶器 中,在结晶器内先凝固成具有一定强 度的凝壳,然后借助引锭杆及牵引辊 将已凝固的铸锭水平连续地拉出结晶 器,这就形成了水平连续铸锭的全过 程。
1.铸造温度
T浇:T浇↑↑,G↑→ 热裂倾向↑;液穴↑→ 内部质量↓;吸气↑→ 气孔倾向↑;
晶粒粗化(非均质核心数↓);拉漏。
T浇↑→ 有利于表面质量。 T浇↓→ 避免上述缺陷、细化晶粒、V铸↑ T浇↓↓,η↑ 流动性↓→气孔、缩孔、 表面夹渣倾向↑;易堵眼;冷隔、拉裂
(横裂)倾向↑。
➢二次冷却:(直接冷却)带走金属凝固 全部过程散热量的70~80%。
➢铸锭向周围的热散失
热平衡
➢半连续铸造时单位时间பைடு நூலகம்浇入结晶器 的金属熔体所带进的热量为Q
➢一次冷却带走的热量为Q1 ➢二次冷却带走的热量为Q2 ➢铸锭向周围的热散失的热量为Q3
Q=Q1+Q2+Q3
➢热平衡是半连续铸造的先决条件
5.2 结晶器内的凝固壳和液穴
液穴形状示意图
影响过渡带尺寸的因素
• 结晶温度范围窄的合金,过渡带小 • 冷却强度大,则温度梯度大,过渡带小 • 铸锭断面尺寸大,过渡带深度和宽度大 • 铸造速度快,过渡带深度增加,宽度减小 • 结晶器越高,过渡带的宽度越大 • 其他因素:铸造温度、金属的导入方式、
漏斗大小、结晶器锥度以及冷却介质等
预 净先 化处 去理 油
复 大化 料流 铺程 底
复化锭废的保管
干 燥 去 水
按炉料号、 行熔分次的复化组号保进管
搅 拌 扒 渣
制
铸
团
造
第六章 铝合金熔体的净化
联合在线精炼
• 联合在线精练:在炉外配备一套装置, 以炉外连续处理工艺取代传统的炉内 间歇式分批处理工艺。
• FILD法 • SNIF法
水平连续铸造原理
水平连续铸造是将保温炉中的金属熔 体通过液流控制装置直接导入结晶器 中,在结晶器内先凝固成具有一定强 度的凝壳,然后借助引锭杆及牵引辊 将已凝固的铸锭水平连续地拉出结晶 器,这就形成了水平连续铸锭的全过 程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
熔化
炉料装完后即可升温熔化,熔化是从固态转变液态的过程。 1、覆盖:熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外 层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易 侵入,造成内部金属的进一步氧化。并且已熔化的液滴或液流要向炉底流动,当 液滴或液流进入底部汇集起来的液体中时,其表面的氧化膜就会混入熔体中。所 以为了防止金属进一步氧化和减少进入熔体中的氧化膜,在炉料软化下塌时,应 适当向金属表面撒上一层粉状熔剂覆盖,这样也可以减少熔化过程中的金属吸气。 2、熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛 温度高达1200°C,在这样高的温度下容易产生局部过热。为此当炉料熔化后, 应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化。
3、中间合金的使用目的:防止熔体过热,缩短熔炼时间,降低金属烧损,便于加 入高熔点、难熔和易氧化挥发的合金元素,从而获得成分均匀,准确的熔体。
7
精炼
在线净化:炉内处理对铝合金熔体的净化效果是有限的,要进一步提高熔体纯洁度,尤其是进一步 降低氢含量和去除非金属夹杂物,必须采用高效的在线净化技术。除气装置都采用N2和Ar作为精炼 气体,能有效去除铝熔体中的氢。如在精炼气体中加入少量的Cl2、CCl4或SF6等物质,还能很好的地 除去熔体中的碱金属和碱土金属.
铝合金熔炼与铸造简介 制作:李冬冬
铝合金熔铸工艺流程
配料
精炼 静置 铸造
装炉
扒渣 锯切
熔炼 熔化 炒灰
精炼 均质
扒渣/ 搅拌
合金化 交付
圆形顶开盖熔炼炉
倾动式方形保温炉
流槽式除气设备
过滤箱
铝液流槽
熔铸机及水盘
铝合金熔铸主要设备
装炉
熔炼时,装入炉料的顺序和方法不仅关系到熔炼时间、金属的烧损、热能消耗, 还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还 应考虑到最快的熔化速度,最少的烧损以及准确的化学成份控制。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉 料除上述的装炉要求外,在装炉前必须向熔池内撒20-30KG粉状熔剂,在装炉过 程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可减少烧损。 3、电炉装料时应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易 引起短路。
10
DDF旋转喷头除气法
DDF也是西南铝业有限责任公司在国内最早开发应用的一种旋转喷头法除气 何泡沫陶瓷相结合的铝熔体净化装置之一。
11
晶粒细化
在铝液中加入晶粒细化剂,可以明显改善铸锭的组织,晶粒细化的方法有多 种,使用最广泛的是二元合金Al-Ti和三元合金Al-Ti-B,产品主要有Al-4Ti和Al5Ti-1B块状或棒状细化剂,块状在调整好铝熔体成分后加入,而棒状在铸造 流槽中加入,细化效果显著提高,产品有Al-5Ti-1B、Al-5Ti-0.2B等
12
铸造
铸造是将符合铸造要求的液态金属通过一系列转注工具浇入到一定形状的铸 模中,冷却后得到一定形状和尺寸铸锭的过程。要求所铸出的铸锭化学成分 和组织均匀、冶金质量好、表面和几何尺寸符合技术标准。
13
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
14
熔体过滤:过滤是去除铝熔体中非金属夹杂物最有效和最可靠的手段,从原理上讲有饼过滤和深过 滤之分。过滤方式有多种,效果最好的有过滤管和泡沫陶瓷过滤板。泡沫过滤板使用方便、过滤效 果好、价格低
泡沫陶瓷过滤器示意图
8
溶剂精炼
常 用 溶 剂 成 分 和 用 途
9
DFU旋转喷头除气法
DFU是西南铝业责任公司在我国最先开发应用的旋转喷头除气与泡沫陶瓷过 滤相结合的铝熔体净化装置,如图所示,它的除气箱采用单旋转喷头法除气, 内部由隔板分为除气和静置区,内置浸入式加热器,可在铸造或非铸造期间 对金属熔体进行加热和保温,它Байду номын сангаас用的是Ar气(或N2气),加1%-3%的Cl (或CCl4)气体,可提高熔体净化效果。
6
中间合金的制备技术
1、中间合金的使用条件:熔制铝合金时,合金元素的添加方法一般有四种:a、 以纯金属直接加入;b、以中间合金的形式加入;c、以化工材料的形式加入;d、 以添加剂的形式加入。
2、中间合金的使用考虑:a、有些合金元素的含量范围较窄,为使合金获得准确 的化学成分,不适于加入纯金属,而需以中间合金形式加入;b、某些纯金属熔点 较高,不能直接加入铝熔体中,而应先将此难熔金属预先制成中间合金以降低其 熔点。c、某些纯金属密度大,在铝中溶解速度慢,这些合金元素若以纯金属形式 加入,易造成偏析。d、某些纯金属表面不清洁,有的绣蚀严重,直接加入熔体易 污染熔体,因此宜预先制成中间合金后使用。e、某些单质易蒸发或氧化,熔点高, 在铝中溶解度低
5
扒渣与搅拌
当炉料在熔池里已充分熔化,并且熔体温度达到熔炼温度时,即可扒除熔体 表面漂浮的大梁氧化渣。
扒渣:扒渣前应先在熔体上均匀撒入粉状熔剂,以使渣与金属分离,有利于 扒渣,可以少带出金属。
搅拌:目的在于使合金成分均匀分布和熔体内温度趋于一致。因为,一些密 度较大的合金元素容易沉底,另外合金元素的加入不可能绝对均匀,这就造 成了熔体上下层之间,炉内各区域之间合金元素的分布不均匀。如果搅拌不 彻底(没有保证足够长的时间和消灭死角),容易造成熔体化学成份不均匀。
熔化
炉料装完后即可升温熔化,熔化是从固态转变液态的过程。 1、覆盖:熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外 层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易 侵入,造成内部金属的进一步氧化。并且已熔化的液滴或液流要向炉底流动,当 液滴或液流进入底部汇集起来的液体中时,其表面的氧化膜就会混入熔体中。所 以为了防止金属进一步氧化和减少进入熔体中的氧化膜,在炉料软化下塌时,应 适当向金属表面撒上一层粉状熔剂覆盖,这样也可以减少熔化过程中的金属吸气。 2、熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛 温度高达1200°C,在这样高的温度下容易产生局部过热。为此当炉料熔化后, 应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化。
3、中间合金的使用目的:防止熔体过热,缩短熔炼时间,降低金属烧损,便于加 入高熔点、难熔和易氧化挥发的合金元素,从而获得成分均匀,准确的熔体。
7
精炼
在线净化:炉内处理对铝合金熔体的净化效果是有限的,要进一步提高熔体纯洁度,尤其是进一步 降低氢含量和去除非金属夹杂物,必须采用高效的在线净化技术。除气装置都采用N2和Ar作为精炼 气体,能有效去除铝熔体中的氢。如在精炼气体中加入少量的Cl2、CCl4或SF6等物质,还能很好的地 除去熔体中的碱金属和碱土金属.
铝合金熔炼与铸造简介 制作:李冬冬
铝合金熔铸工艺流程
配料
精炼 静置 铸造
装炉
扒渣 锯切
熔炼 熔化 炒灰
精炼 均质
扒渣/ 搅拌
合金化 交付
圆形顶开盖熔炼炉
倾动式方形保温炉
流槽式除气设备
过滤箱
铝液流槽
熔铸机及水盘
铝合金熔铸主要设备
装炉
熔炼时,装入炉料的顺序和方法不仅关系到熔炼时间、金属的烧损、热能消耗, 还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还 应考虑到最快的熔化速度,最少的烧损以及准确的化学成份控制。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉 料除上述的装炉要求外,在装炉前必须向熔池内撒20-30KG粉状熔剂,在装炉过 程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可减少烧损。 3、电炉装料时应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易 引起短路。
10
DDF旋转喷头除气法
DDF也是西南铝业有限责任公司在国内最早开发应用的一种旋转喷头法除气 何泡沫陶瓷相结合的铝熔体净化装置之一。
11
晶粒细化
在铝液中加入晶粒细化剂,可以明显改善铸锭的组织,晶粒细化的方法有多 种,使用最广泛的是二元合金Al-Ti和三元合金Al-Ti-B,产品主要有Al-4Ti和Al5Ti-1B块状或棒状细化剂,块状在调整好铝熔体成分后加入,而棒状在铸造 流槽中加入,细化效果显著提高,产品有Al-5Ti-1B、Al-5Ti-0.2B等
12
铸造
铸造是将符合铸造要求的液态金属通过一系列转注工具浇入到一定形状的铸 模中,冷却后得到一定形状和尺寸铸锭的过程。要求所铸出的铸锭化学成分 和组织均匀、冶金质量好、表面和几何尺寸符合技术标准。
13
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
14
熔体过滤:过滤是去除铝熔体中非金属夹杂物最有效和最可靠的手段,从原理上讲有饼过滤和深过 滤之分。过滤方式有多种,效果最好的有过滤管和泡沫陶瓷过滤板。泡沫过滤板使用方便、过滤效 果好、价格低
泡沫陶瓷过滤器示意图
8
溶剂精炼
常 用 溶 剂 成 分 和 用 途
9
DFU旋转喷头除气法
DFU是西南铝业责任公司在我国最先开发应用的旋转喷头除气与泡沫陶瓷过 滤相结合的铝熔体净化装置,如图所示,它的除气箱采用单旋转喷头法除气, 内部由隔板分为除气和静置区,内置浸入式加热器,可在铸造或非铸造期间 对金属熔体进行加热和保温,它Байду номын сангаас用的是Ar气(或N2气),加1%-3%的Cl (或CCl4)气体,可提高熔体净化效果。
6
中间合金的制备技术
1、中间合金的使用条件:熔制铝合金时,合金元素的添加方法一般有四种:a、 以纯金属直接加入;b、以中间合金的形式加入;c、以化工材料的形式加入;d、 以添加剂的形式加入。
2、中间合金的使用考虑:a、有些合金元素的含量范围较窄,为使合金获得准确 的化学成分,不适于加入纯金属,而需以中间合金形式加入;b、某些纯金属熔点 较高,不能直接加入铝熔体中,而应先将此难熔金属预先制成中间合金以降低其 熔点。c、某些纯金属密度大,在铝中溶解速度慢,这些合金元素若以纯金属形式 加入,易造成偏析。d、某些纯金属表面不清洁,有的绣蚀严重,直接加入熔体易 污染熔体,因此宜预先制成中间合金后使用。e、某些单质易蒸发或氧化,熔点高, 在铝中溶解度低
5
扒渣与搅拌
当炉料在熔池里已充分熔化,并且熔体温度达到熔炼温度时,即可扒除熔体 表面漂浮的大梁氧化渣。
扒渣:扒渣前应先在熔体上均匀撒入粉状熔剂,以使渣与金属分离,有利于 扒渣,可以少带出金属。
搅拌:目的在于使合金成分均匀分布和熔体内温度趋于一致。因为,一些密 度较大的合金元素容易沉底,另外合金元素的加入不可能绝对均匀,这就造 成了熔体上下层之间,炉内各区域之间合金元素的分布不均匀。如果搅拌不 彻底(没有保证足够长的时间和消灭死角),容易造成熔体化学成份不均匀。