ZnO纳米粒子合成

合集下载

均匀共沉淀法制取zno

均匀共沉淀法制取zno

均匀共沉淀法制取zno1. 简介均匀共沉淀法是一种常用的制备纳米氧化锌(ZnO)的方法。

该方法具有操作简单、反应时间短、较高产率和纯度等特点。

因此被广泛应用于氧化锌的制备。

2. 均匀共沉淀法的原理均匀共沉淀法是一种通过均匀混合两种不同用途的盐溶液制备氧化锌纳米粒子的方法。

在该方法中,先将氧化锌前体溶于溶液中,然后加入NH4OH,用于提高pH值,促进Zn2+ 沉淀生成Zn(OH)2,并形成胶体粒子。

接着,将其他金属离子的溶液与Zn(OH)2混合,进一步沉淀形成氧化物混合物。

最后,为了获得氧化锌,还需要将混合物进行煅烧处理。

3. 实验过程在实验过程中,首先需要制备两种不同的盐溶液,一种是氧化锌前体,另一种是含其他金属离子的盐溶液。

然后将两个溶液均匀混合,再利用氨水溶液调节pH值。

当pH值为8左右时,混合物开始沉淀。

接着需要连续搅拌20-30分钟,以保证混合物充分均匀混合。

此时,将混合物加入醇类溶剂中,然后以高温(> 300°C)煅烧,在高温下还原并生成氧化锌样品。

4. 实验优势该方法有许多实验优势,包括:4.1 粒子的尺寸和分散性较好,分布范围窄,对于研究粒子的表面结构和性能具有优势;4.2 操作简单,适用于规模化制备;4.3 可以轻易地通过改变混合液体中含量和浓度,来调控最终得到的纳米ZnO的性质,并优化其光电性能;4.4 纳米氧化锌制备过程中的化学反应具有容易控制的化学反应动力学,可以通过单一反应温度调控合成过程。

5. 结论均匀共沉淀法制备氧化锌是一种非常普遍的方法,适用于制备纳米ZnO。

该方法具有高效、简单、灵活和易于控制反应动力学特性等优点。

在未来,该方法将继续被研究和改进,以提高其效率和应用范围,并促进氧化锌在各种领域中的使用。

CVD法制备ZnO微纳米材料

CVD法制备ZnO微纳米材料

CVD法制备ZnO微纳米材料
摘要
本文首先简单介绍了ZnO纳米材料性能和各种制备方法的结构特点和研究进展。

由于它在化学、光学、生物和电学等方面表现出许多独特优异的物理和化学性能,在橡胶、涂料、塑料、陶瓷、等行业广泛应用,有着广阔的发展前景。

CVD法制备微纳米ZnO,主要利用Zn粉作为反应源。

首先让反应源在550℃~900℃的范围内得到产物ZnO;其次在Zn粉中添加催化剂在550℃~900℃的范围内得到不同形貌的ZnO;最后使用了Si片和Al片作为衬底,在上面得到了不同形貌的ZnO。

我们运用扫描电镜(SEM),X-射线衍射(XRD)等技术对产物进行了系统的表征和性能测试。

扫描电镜表明了微纳米ZnO的不同的形貌。

X-射线衍射结果证实了微纳米ZnO具有六晶系的纤锌矿结构。

本文的重点是利用Zn粉作为反应源生成ZnO,研究不同条件下生成的ZnO 是否存在差异,并对其进行了表征。

关键词:CVD法、ZnO的形貌结构、不同条件
参考文献:
[1]魏绍东.纳米氧化锌的现状与发展[J]化工设计通讯,2006,32(4):46-60
[2]王辉,朱俊杰.液相微波介电加热法制备纳米粒子的研究进展[J]无机化学学
报,2002,18(4):329-334.
[3]翟国钧,李从举,等ZnO微纳米纤维的静电纺丝及其表征[J]合成纤维工
业,2006,29(6): 6-8.
[4]刘艳,夏宁,陈日耀,等静电纺丝法制备Zn0纳米纤维及其光催化性能的研究[J]
福建师范大学学报,2008,24(1):66-69
[5]杨森,倪永红.低维氧化锌纳米材料[J]化学进展,2007,19(10):1510-1516.。

关于ZnO的论文

关于ZnO的论文

毕业论文 (设计)论文题目:Fe掺杂ZnO纳米粒子的制备及表征学院:药学院专业:化学教育班级:一班指导教师:杨立滨学生姓名:岳瑞轩学号:0711014102佳木斯大学教务处毕业论文(设计)用纸Fe掺杂ZnO纳米粒子的制备及表征摘要: 目的开展Fe掺杂ZnO纳米粒子的制备及表征的研究工作。

方法以硝酸锌、硝酸铁、氢氧化钠等为原料,采用沉淀法合成Fe掺杂ZnO纳米粒子,并对样品进行表征。

用WCT-2A 型热重分析仪对样品进行TG-DTA测试;用X-射线衍射仪测试样品的晶型结构;用UV-Vis 分光光度计记录样品DRS光谱。

结果通过沉淀法成功地合成了纯ZnO、及Fe含量为(0.5%、1%、3%、5%)的Fe-ZnO纳米粒子,并对样品进行表征。

结论掺杂的铁离子进入了ZnO的晶格取代了锌,拓展了样品的光学响应范围;并且,适量的Fe掺杂也丰富了ZnO纳米粒子的表面态(表面缺陷)并改善了与之相关的光生载流子的分离效率。

关键词:ZnO;Fe掺杂;沉淀法;表征佳木斯大学教务处第I页毕业论文(设计)用纸Fe Doped ZnO Nanoparticles and Characterization Abstract: Object Fe doped ZnO nanoparticles to carry out the preparation and characterization of the study. Methods zinc nitrate, ferric nitrate, sodium hydroxide as raw materials, synthesis of Fe doped ZnO precipitation of nanoparticles, and the samples were characterized.With a WCT-2A type TGA TG-DTA samples were tested; By X-Ray diffraction crystal structure of the test sample; using UV-Vis DRS spectra recorded sample spectrophotometer. Results Successfully synthesized through the precipitation of pure ZnO, and Fe content (0.5%, 1%, 3%, 5%) of the Fe-ZnO nano-particles, and the samples were characterized. Conclusions Iron doped into the ZnO lattice replaced by zinc, corresponding to expand the scope of the optical sample; and the appropriate amount of Fe doped ZnO nanoparticles are also enriched in the surface states (surface defects) and the associated improved Photogenerated carrier separation efficiency.Keywords:ZnO; Fe doped; precipitation; Characterization佳木斯大学教务处第II页毕业论文(设计)用纸佳木斯大学教务处目录摘要 (Ⅰ)Abstract (Ⅱ)前言 (1)1 仪器试剂 (11)1.1 仪器 (11)1.2 试剂 (11)2 实验方法 (11)2.1 Fe-ZnO纳米粒子的制备 (11)2.1.1 纯ZnO前驱物的制备 (12)2.1.2 Fe-ZnO前驱物的制备 (13)2.1.3 目标产物Fe-ZnO纳米粒子的制备 (13)2.2 样品表征 (13)3 实验结果 (13)3.1 TG-DTA测试 (13)3.2 XRD测试 (14)3.3 UV-Vis DRS测试 (16)4 讨论 (17)结论 (18)致谢 (19)参考文献 (20)附录 (21)附录Ⅰ(英) (21)附录Ⅱ(中) (24)毕业论文(设计)用纸前言氧化锌(ZnO)是一种重要的直接宽带隙半导体材料,其室温禁带宽度为3.37 eV。

纳米氧化锌的合成及性能表征【文献综述】

纳米氧化锌的合成及性能表征【文献综述】

文献综述纳米氧化锌的合成及性能表征一、前言部分纳米半导体材料是一种自然界不存在的人工设计制造的(通过能带工程实施)新型半导体材料,它具有与体材料截然不同的性质。

随着材料维度的降低和结构特征尺寸的减小(≤100nm),量子尺寸效应、量子干涉效应、量子隧穿效应、库仑阻塞效应以及多体关联和非线性光学效应都会表现得越来越明显,这将从更深的层次揭示出纳米半导体材料所特有的新现象、新效应。

MBE,MOCVD 技术,超微细离子束注入加工和电子束光刻技术等的发展为实现纳米半导体材料的生长、制备以及纳米器件(共振隧穿器件、量子干涉晶体管、量子线场效应晶体管、单电子晶体管和单电子存储器以及量子点激光器、微腔激光器等) 的研制创造了条件。

这类纳米器件以其固有的超高速(10-12~10-13)、超高频(>1000GHZ)、高集成度(>1010元器件/cm2)、高效低功耗和极低阈值电流密度(亚微安)、极高量子效率、高的调制速度与极窄带宽以及高特征温度等特点在未来的纳米电子学、光子学和光电集成以及ULSI 等方面有着极其重要应用前景,极有可能触发新的技术革命,成为21世纪信息技术的支柱。

纳米氧化锌是一种新型高功能精细无机材料,其粒径介于1~100nm之间,又称超氧化锌。

由于颗粒尺寸的细微化,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米氧化锌在磁,光电,敏感等方面具有一些特殊的性能,主要用来制造气体传感器、荧光体、紫外线屏蔽材料、变阻器、记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

氧化锌是一种半导体催化剂的电子结构,在光照射下,当一个具有一定能量的光子或者具有超过这个半导体带隙能量Eg的光子射入半导体时,一个电子从价带NB激发到导带CB,而留下了一个空穴。

激发态的导带电子和价带空穴能够重新结合消除输入的能量和热,电子在材料的表面态被捕捉,价态电子跃迁到导带,价带的孔穴把周围环境中的羟基电子抢夺过来使羟基变成自由基,作为强氧化剂而完成对有机物(或含氯)的降解,将病菌和病毒杀死。

纳米zno的制备与应用

纳米zno的制备与应用

纳米zno的制备与应用
一、制备方法
1、水溶法:水溶法是制备纳米ZnO的简便方法,可采用连续(水-硝
酸甲酯)、隔离(亚硝酸乙酯或酒精-硝酸甲酯)分步法,在反应液中
向锌溶液添加过量浓硝酸,使溶液pH降低到≤2。

在搅拌条件下使锌溶
液和硝酸发生反应,形成纳米锌硝酸。

在增加浓乙醇或水的添加下硝
酸制备出不同的形貌的纳米ZnO粒子。

2、氧化还原反应:可以将氧化锌与还原剂进行氧化还原反应,从而在
一定pH范围内制备出纳米ZnO粒子,氧化还原反应过程可以由X射
线衍射、扫描电镜等表征分析仪表进行表征。

3、溶液浸渍法:它是把染料溶液,碱金属氢氧化物和无机酸比较平衡
地溶液等介质前加入Zn(II)离子,制备出具有不同形貌的纳米ZnO粒子,此法做法简便。

4、共沉淀法:将酸性和碱性的底物混合,随后向其中加入Zn(II)离子,在碱性底物的碳酸钙、硅酸钙的存在下,再缓缓加入氢氧化钾溶液,ZnO的纳米颗粒会在pH范围内沉淀到底物表面,即可得到纳米ZnO
粒子。

二、应用:
1、电子器件:ZnO纳米粒子具有较高的非线性折射率,此特性使其成
为数码电子器件中的主要组件。

纳米ZnO多晶硅材料具有优异的机械
强度和电磁介质性,因此其在可靠性和耐热性方面特别有利。

2、光学元件:纳米ZnO具有上至真空处的高反射率和强的抗紫外线能
力,因此应用于需要高反射和抗UV的光学元件。

3、量子点:纳米ZnO也被用于制造量子点,量子点具有非常独特的物理特性和电子特性,使其成为生物技术与材料学研究中重要的技术工具。

ZnO合成方法

ZnO合成方法

存档日期:存档编号:北京化工大学研究生课程论文课程名称:纳米材料化学课程代号:ACh530任课教师:左胜利完成日期:2011 年12 月8 日专业:化学学号:2011200989姓名:李浩成绩:ZnO纳米材料的制备与应用摘要本篇综述从制备方法和应用领域出发,论述了制备ZnO纳米材料的一些常用方法如直接沉淀法、微乳液法、溶胶-凝胶法、模板法、水热合成法等,并简单介绍了氧化锌纳米材料在环境、食品、油漆涂料、橡胶、塑料、树脂、纺织品、化妆品等领域的应用。

关键词:ZnO纳米材料制备应用目录前言 (1)第1章氧化锌纳米材料的结构与性质 (2)1.1节氧化锌纳米材料的结构 (2)1.2节氧化锌纳米材料的主要性质 (2)第2章氧化锌纳米材料的制备方法及应用领域 (4)2.1节氧化锌纳米材料的制备方法 (4)2.2节氧化锌纳米材料的主要应用领域 (6)结论 (8)参考文献 (9)前言19世纪末到20世纪初,人类对微观世界的认识已经延伸到一定层次,时间上已经达到了纳秒、皮秒和微妙的数量级。

随着研究的深入,20世纪70年代,人类开启了规模生产纳米材料的历史。

纳米微粒狭义上是指有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管、纳米固体材料的总称,而广义上则指晶粒或晶界等显微构造能达到纳米尺寸材料。

该新型材料必将以其独特的量子尺寸效应、小尺寸效应、表面效应及宏观量子隧道效应等性质在各个领域崭露头角。

例如复合材料、大规模集成电路、超导线材料多相催化等方面的开发及应用。

近年来,纳米材料的合成方法及应用领域受到了研究者的广泛关注,TiO2、ZnO、CaF2、Al2O3纳米材料的研究成果及学术报告日益增多。

尤其是与人们日益提高的生活质量戚戚相关的纳米氧化锌材料制备及应用。

纳米氧化锌具有许多优良性能如压电性能、近紫外发射性、透明导电性、生物安全及适应性等,使其在非标柴油有害物质吸收、抑制食品污染菌、抗紫外线、压电材料、紫外光探测器、场效应管、表面声波、胎压、太阳能电池、气体传感器、生物传感器等领域有着广阔的发展前景而氧化锌复合材料的制备及研究也有着对人类生活不可估量的巨大作用。

ZnO纳米粒子的制备与表征及其光催化活性

ZnO纳米粒子的制备与表征及其光催化活性
M a .,2 0 r 01
文 章 编 号 :6 2— 0 7 2 1 ) 1 0 0 一 3 17 4 6 (0 0 0 — 0 1 O
Z O纳米粒 子的制备与表征及 其光催化活性 n
杨 玉英 尚秀丽 ,
(. 1 西北师范大学 化学 化工学院高分子重点实验室 , 甘肃 兰州 7 0 7 30 0
下 制备 的 Z O纳米粒 子 的光 催化 活性 。 n
关键 词 : 枝 淀粉 , 米粒 子 ,n 制备 ; 接 纳 Z O; 光催 化
中 图分 类号 : Q 3 . T 124 文 献标识 码 : A
由于半导体纳 米材料独特的光学和电学性质 , 在 过去 几 十年 中就 已引起 了科学 家 的广 泛关 注 。 当

波加 热法 。采 用 溶 胶 一凝 胶 法 可 以 制 得 大 量 的
将 Z ( O ) A. )溶 于 去 离 子 水 中 形 成 溶 n N ( R 液 , 入 一定 量 的接枝 羧基 淀粉 , 加 用一 定浓 度 的氨水
纳米材料 , 但是在形成溶胶 一 凝胶 的过程 中极易形 成沉淀 , 并且 , 由于在这一过程 中使用金属醇盐为原 料 , 该 法合成 成 本 较 高 。化 学 沉 淀 法最 具 工业 应 使 用前景 , 但是具有反应 温度高 、 所得颗粒 粒度分 布 宽, 比表面积大等缺点 。因此 , 探索低成本 、 高产率、 易操作且具有工业应用前景 的超微粉制备技术 , 具 有重要 的意义 。现今许 多科 学 家都 致 力于研 究低 成
1 2 氧 化锌 纳米 粒子 的制 备 .
泛应用 , 因而更受广大科学工作者的青睐。 为了制得质量好 、 粒度分 布窄 、 形貌好 的纳米 Z O, n 目前 ,已发展 了多 种制 备 方 法 , 中包 括溶 胶 其 凝 胶法 J沉 淀法 J热 分解 法 J水 热 法 j , , , 和微

ZnO纳米结构的制备及光学性质的研究的开题报告

ZnO纳米结构的制备及光学性质的研究的开题报告

ZnO纳米结构的制备及光学性质的研究的开题报告题目:ZnO纳米结构的制备及光学性质的研究课题背景:纳米材料的出现引发了人类对材料科学领域的巨大兴趣,巨大的比表面积和量子效应使得纳米材料具有许多独特的性质,例如热稳定性和光学性质。

在过去的二十年中,ZnO纳米材料已经引起了广泛的关注。

ZnO是一种具有光催化性质、磁性和阳光防护功能的广泛应用的材料,因此ZnO纳米材料的制备及其性能研究成为课题的研究方向,具有重要的科学和实际应用价值。

研究目的:本课题的研究目的是通过改变合成条件制备高品质ZnO纳米结构,探讨其光学性质,并将其应用于光电器件的研究和开发。

研究方案:1. 合成ZnO纳米结构采用热溶液法合成ZnO纳米棒、纳米片和纳米粒子。

以Zn(NO3)2和NaOH为前驱体,在恒温条件下进行溶剂热合成,并通过改变反应时间、溶液浓度、温度等条件来控制合成的ZnO纳米结构的形貌。

2. 表征ZnO纳米结构利用SEM、TEM对合成的ZnO纳米结构进行形貌和晶体结构的表征,利用XRD和EDS检测其晶体相和元素配比,利用UV-Vis吸收光谱对其光学性质进行研究。

3. 应用研究将合成的ZnO纳米结构应用于光电器件的研究和开发,并通过光电转换效率和稳定性的测试来评估其性能。

预期创新点:本课题利用热溶液法制备ZnO纳米结构,通过控制合成条件实现形貌可控,结合光学性质研究,探索其应用于光电器件的发展,有望在材料科学领域做出一定的创新。

预计影响:本课题研究所得的成果对于ZnO纳米结构的制备及其光学性质的研究有着积极的意义,为光电器件的研究和开发提供基础和支撑,并促进ZnO材料在其他领域的应用。

ZnO纳米复合粒子的制备及紫夕吸收性能研究

ZnO纳米复合粒子的制备及紫夕吸收性能研究
第 3期 21 0 2年 6月




NO 3 .
Na o ce c n s in e& Na o e h oo y n t e n lg
J n 0 2 u e2 1
Z O纳米 复合粒子 的制备及紫外 n 吸收性 能研究
王幸运 , 贾瑛 ,刘 田田 ,许 国根
( 第二 炮兵 工程 大学5 3 ,陕西 西安 O室
fs f c v pcrm(V v )T e euto ersac hw dta,nut v l— ibea srt nset iue uerl t eset U — i. h sl fh erhso e ti lai e vs l bopi c adf s, ee i u s r s t e h r ot i o p r f
Ab ta t n / i 2a d Z O S O2C mp st n p r ce r r p r d b y r t e ma o i e a s td eh n l sr c :Z O T O n n / n o o i Na o a t ls we e p e a e y h d oh r lc mb n d— s i e ta o e i s
t e ma i m b op in p a s o n T O2a d Z O S O2n n c mp st a t ls w r l e s i o a e o p r h x mu a s r t e k f Z O/ i n n / n a o o o i p ri e e e b u h f c mp r d t u e o e c t
C O,而实验制备 出的C OTO一 n u /i S O纳米复合 材 料在 8 ℃的低 温 条 件下 就 能 催化 氧 化 C [ 利用 O 02 1 。 水热法合成 出Z OF , n /e 纳米复合粒子 ,其紫外一 O

ZnO纳米材料的制备及其光性能分析

ZnO纳米材料的制备及其光性能分析

ZnO纳米材料的制备及其光性能分析ZnO纳米材料的制备及其光性能分析摘要:随着纳米材料的研究和应用逐渐深入,ZnO纳米材料因其优异的光学性质和广泛的应用潜力而备受关注。

本文通过对ZnO纳米材料的制备方法及其光性能的分析,探讨了其在可见光谱范围内的应用前景和潜在问题。

1. 引言ZnO是一种重要的半导体材料,在可见光范围内具有良好的透明性和光学性能。

纳米化技术使ZnO纳米材料的制备更加容易,并且能够调控其形貌和结构,进一步扩展了其应用领域。

本文主要研究了ZnO纳米材料的制备方法和其在光学性能方面的应用。

2. ZnO纳米材料的制备方法2.1 水热法水热法是制备ZnO纳米材料常用的方法之一。

通过在高温高压条件下将Zn源物与反应溶液中的脱水剂反应,在特定的温度、压力和时间下得到纳米级的ZnO颗粒。

这种方法可以控制纳米粒子的形貌和大小。

2.2 氧化法氧化法是将氧化锌粉末进一步破碎并通过化学反应得到纳米级ZnO颗粒的方法。

具体步骤包括溶液制备、沉淀制备和煅烧等。

这种方法制备的ZnO纳米材料通常具有较高的纯度和比表面积。

2.3 等离子体辅助沉积法等离子体辅助沉积法是一种通过等离子体溅射氧化锌薄膜并在退火过程中形成纳米颗粒的方法。

这种方法对制备较大面积的纳米薄膜具有较高的效率和可控性。

3. ZnO纳米材料的光性能分析3.1 光吸收与发射性质ZnO纳米材料在可见光谱范围内具有很好的吸光性能,吸收光谱主要集中在紫外光区域,具有很高的吸收系数。

此外,ZnO纳米材料还表现出良好的荧光性能,其荧光峰位主要在380-420 nm范围内。

3.2 光电导性质由于ZnO纳米材料是一种半导体材料,因此具有良好的光电导性能。

通过引入掺杂元素或修饰表面,可以调控和增强ZnO纳米材料的光电导能力。

这使得ZnO纳米材料在光电器件和太阳能电池等领域有广泛的应用前景。

3.3 光催化性能ZnO纳米材料具有较高的光催化性能,可以在可见光区域内吸收光能并产生电子-空穴对。

纳米氧化锌的制备

纳米氧化锌的制备

纳米氧化锌的制备摘要:以氯化锌为原料,氢氧化钠为沉淀剂,采用均相沉淀法制备纳米ZnO关键词:纳米ZnO 均相沉淀法合成应用前景I引言纳米ZnO是一种高功能精细无机材料,其晶粒尺寸在1~100nm 之间的氧化锌微粒又称为超微细ZnO,由于粒子尺寸小、比表面大使其具有一般粒度的氧化锌所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应等,所以纳米氧化锌在紫外线屏蔽、抗菌除臭、橡胶工业、涂料工业、光催化材料、气敏、压电材料、吸波材料等方面有许多优异的物理性能和化学性能。

氧化锌的传统制备方法从原理上讲分为三类:即直接法间接法和湿化学法。

从方式上讲有物理法,气相法和化学法当前出售的超细纳米氧化锌产品都生产自气相法[1]和湿化学法[2]化学方法有激光诱导化学气相沉积法[3]、化学法溶胶-凝胶法[4]等等本实验是以ZnCl2 为原料,氢氧化钠为沉淀剂,合成纳米氧化锌[5]。

纳米氧化锌的性质1. 表面效应表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,表面原子数迅速增加,另外,随着粒径的减少,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是因为粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,具有不饱和性。

易与其它原子相结合而稳定下来,故具有很大的化学活性。

2.体积效应当纳米粒子的尺寸与传导电子的德布罗意波长相当或者更小时,周期性的边界条件被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。

纳米氧化锌的应用纳米氧化锌最突出的应用领域为催化剂、饲料、橡胶、抗菌材料、化妆品、陶瓷、涂料等。

纳米氧化锌的抗菌作用使得化妆品具有收敛性与抗炎性,纳米氧化锌的粒径小,表面活性好,具有杀菌消毒的作用。

而且纳米氧化锌还是广泛使用的物理防晒剂,它们屏蔽紫外线的原理都是吸收与散射紫外线。

zno纳米粒子的制备及表征

zno纳米粒子的制备及表征

zno纳米粒子的制备及表征ZnO纳米粒子是一种重要的功能材料,其制备和表征在材料科学和纳米技术研究中具有重要的意义。

本文将介绍ZnO纳米粒子的制备方法和表征技术。

一、ZnO纳米粒子制备方法1. 溶液法溶液法是制备ZnO纳米粒子的常用方法之一。

这种方法需要将金属Zn或Zn碎块加入酸性或碱性溶液中,然后加入氧化剂,如NaOH,NH4OH和H2O2等,使其氧化形成ZnO纳米粒子。

其中,NaOH和NH4OH是碱性氧化剂,而H2O2是氧化性氧化剂。

不同的氧化剂会影响ZnO纳米粒子的形貌和大小。

2. 水热法水热法是一种简单有效制备ZnO纳米粒子的方法。

该方法将Zn盐与氢氧化物或碱性溶液混合,在高温高压的条件下反应,形成纳米粒子。

通常情况下,水热法制备的ZnO纳米粒子具有较高的结晶性和较好的晶型控制。

3. 氧化镀膜法氧化镀膜法是一种将Zn薄膜表面进行氧化反应的方法,可以制备出更为均匀和纯净的ZnO纳米粒子。

在氧化镀膜过程中,通过调节反应条件,例如反应温度、时间和氧气流量等,可以精确控制纳米粒子的大小和形貌。

4. 其他方法除了上述方法外,还有一些其他的制备方法,如化学还原法、气氛氧化法、放电火花法等。

这些方法具有各自的优缺点,可以根据具体需求进行选择。

二、ZnO纳米粒子表征技术1. X射线衍射 X射线衍射是一种常见的用于表征ZnO 纳米粒子晶体结构的技术。

该技术通过测量样品的X射线衍射谱,可以确定ZnO纳米粒子的晶体结构、晶粒大小和晶体品质等信息。

2. 透射电镜透射电镜是一种用于表征ZnO纳米粒子形貌和尺寸的技术。

透射电镜可以通过高清晰度的图像直接观察纳米粒子的形态和尺寸分布。

3. 紫外可见吸收光谱紫外可见吸收光谱是一种测量ZnO纳米粒子带隙能量的技术。

这种技术可以通过分析样品的吸收谱来确定纳米粒子的带隙能量,从而了解其光电性能。

4. 红外光谱红外光谱是一种可以测量ZnO纳米粒子表面官能团的技术。

通过分析样品的红外光谱,可以确定纳米粒子表面化学官能团的成分和数量,为其在化学反应和生物学应用中的应用提供支持。

ZnO纳米粒子的合成与表征

ZnO纳米粒子的合成与表征

ZnO纳米粒子的合成与表征陈延明;贾宏伟【摘要】以乙醇为溶剂,乙酸锌为前驱物,聚乙烯吡咯烷酮为表面修饰剂,采用溶液化学法,制备了氧化锌纳米粒子。

考察反应时间、聚乙烯吡咯烷酮加入量及含水量的影响。

通过UV-Vis、FL和TEM等对ZnO纳米粒子进行表征。

结果表明,在PVP-乙醇反应体系中加入3 mL浓度33.4 mmol/L乙酸锌水溶液,3 mL水,0.5 g PVP,在80℃反应120 min时,制得氧化锌纳米粒子的效果较好,氧化锌纳米粒子呈规则的球形,具有较好的分散性,粒径约为200 nm,且具有较窄的尺寸分布,证明PVP 对ZnO纳米粒子表面具有较好的修饰效果。

%ZnO nanoparticles have been synthesized by using ethanol as solvent,zinc acetate as precursor and poly( vinyl pyrrolidone) as polymer stabilizer through wet-chemical route. The influence of reaction time,PVP and water additions on preparation of ZnO nanoparticles were studied. The synthesized ZnO nanoparticles were characterized by UV-Vis,FL and TEM methods. The results show that the synthesized ZnO nanoparticles could give better properties by adding 3 mL zinc acetate aqueous with concentration 33. 4 mmol/L,0. 3 mL water,0.5 g PVP under reaction temperature 80 ℃ and reaction time 120 min re-spectively in PVP-ethanol reaction system. The size of the synthesized ZnO nanoparticles is about 200 nm with a good dispersion and narrow size distribution. This work demonstrated that poly( vinyl pyrrolidone) could play a better role in the modification of nano-ZnO surface as polymer stabilizer.【期刊名称】《应用化工》【年(卷),期】2015(000)006【总页数】4页(P1064-1067)【关键词】纳米氧化锌;乙醇;聚乙烯吡咯烷酮;溶液化学法【作者】陈延明;贾宏伟【作者单位】沈阳工业大学石油化工学院,辽宁辽阳 111003;沈阳工业大学石油化工学院,辽宁辽阳 111003【正文语种】中文【中图分类】TQ13;TB383纳米ZnO 带隙约为3.37 eV,激子结合能高达60 meV,广泛应用于紫外激光发射器[1]、场效应晶体管[2]、催化剂[3]、光电探测器[4]和细胞标记材料[5]等领域。

沉淀法合成纳米氧化锌

沉淀法合成纳米氧化锌

实验一均匀沉淀法制备纳米ZnO粉体
一、实验目的
熟悉均匀沉淀法制备纳米ZnO粉体的方法。

二、实验原理
均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。

所加入的沉淀剂不直接与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中均匀地、缓慢地析出。

该法得到的粒子粒径分布较窄,分散性好,工业化放大被看好。

以硝酸锌为原料,尿素为沉淀剂制备纳米ZnO的反应方程式如下:
尿素分解反应
沉淀反应
热处理
三、实验仪器和药品
1.仪器
磁力搅拌器、电子天平、电热鼓风干燥箱、马沸炉、离心机、烧杯、玻璃棒、量筒、坩埚、烧瓶、球形冷凝管,胶管等
2.药品
硝酸锌、尿素、蒸馏水
四、实验步骤
1、按硝酸锌浓度0.1mol/L、尿素浓度0.4mol/L配置250mL混合溶液。

其中硝酸锌称取19.9g,尿素12g溶于蒸馏水中,总体积调为250mL,装入圆底烧瓶中。

2、将上述圆底烧瓶放入95℃的恒温水浴中,装置回流管,搅拌保温5h;
3、将所得溶液冷却后,放入离心机中离心分离,用蒸馏水洗涤2-3次;
4、再将所得沉淀放入烘箱干燥24~48h,烘箱温度保持60℃左右;
5、最后,将干燥后的样品放入马沸炉中煅烧4h,温度为450℃。

6、用紫外分光光度计检测其光催化效果。

五、思考题
1、均相沉淀法的原理?
2、用尿素作为沉淀剂与硝酸锌制备氧化锌粉末的原理?。

纳米氧化锌的物理制备方法

纳米氧化锌的物理制备方法

纳米氧化锌的物理制备方法
纳米氧化锌的物理制备方法主要包括以下几种:
1. 机械化学合成:通过球磨机对原料进行机械化学活化,合成前驱体粉末,再经过热处理得到纳米氧化锌。

这种方法可以生成直径在10~40nm范围内的氧化锌纳米颗粒。

2. 脉冲激光沉积(PLD):这是一种薄膜生长技术,利用激光照射使靶材烧蚀,烧蚀物最终沉积到衬底形成薄膜。

此法能制备与靶材成分一致的化合物薄膜。

3. 磁控溅射:通过高能粒子轰击靶材表面,使得靶材表面的原子或分子被溅射出来,并在衬底表面沉积形成薄膜。

4. 喷雾热解:将原料溶液通过喷雾嘴喷洒成雾状,在高温下进行热解,生成氧化锌纳米颗粒。

5. 等离子体合成:利用等离子体的高温和高活性,使得气体中的分子发生化学反应,生成氧化锌纳米颗粒。

6. 分子束外延(MBE):通过控制分子束的流量和能量,在衬底表面外延生长氧化锌薄膜。

这些方法各有特点,可以根据具体需求选择合适的方法来制备纳米氧化锌。

ZnO纳米材料的制备与应用概况

ZnO纳米材料的制备与应用概况

1.1 纳米材料概述上世纪70年代纳米颗粒材料问世,80年代中期在实验室合成了纳米块体材料,80年代中期以后,成为材料科学和凝聚态物理研究的前沿热点。

纳米材料研究的内涵不断的扩大,从最初的纳米颗粒(纳米晶、纳米相、纳米非晶等以及由它们组成的薄膜与块体,到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶[1]。

纳米微粒的粒径一般在1~100nm,具有粒子尺寸小、比表面积大、表面原子数多、表面能和表面张力随粒径的下降急剧增大等特点,其组成的材料具有量子尺寸效应、表面效应、体积效应和宏观量子隧道效应,不同寻常的电学、磁学、光学和化学活性等特性,已在化工、制药、微电子、环境、能源、材料、军事、医学等领域展示了广泛的应用前景[2]。

1.2 氧化锌(ZnO概述氧化锌(ZnO是一种新型无机化工材料,它既是性能优良的压电、热电和铁电材料,同时也是一种新型的宽禁带半导体材料,被广泛应用于橡胶、染料、油墨、涂料、玻璃、压电陶瓷、气体传感器、图像记录材料、光电子及日用化工等领域,特别是纳米ZnO用于毛织物的后整理,使织物具有抗菌除臭、消毒、抗紫外线的功能,国内外在纳米ZnO制备和应用领域的研究正在不断的加强和深化。

目前己经制备出了多种不同形貌的ZnO一维纳米材料,并在激光、场发射、光波导、非线性光学等领域上有了新的用途[3]。

1.2. 1纳米ZnO的性质纳米氧化锌为白色粉末,其粒子尺寸小,比表面积大,因而它具有明显的表面与界面效应、量子尺寸效应、体积效应和宏观量子遂道效应以及高透明度、高分散性等特点,使其在化学、光学、生物和电学等方面表现出许多独特优异的物理和化学性能。

室温下,ZnO禁带宽度约为3.37eV,是一种新型的宽禁带直接带隙化合物半导体材料。

其激子束缚能高达60meV,在室温下不会全部分解,这意味着ZnO光致发光和受激辐射具有较低的闭值,因而更易在室温下实现高效受激发射。

ZnO被认为是一种更合适的用于室温或更高温度下的紫外光发射材料。

纳米ZnO的制备

纳米ZnO的制备

化学化工学院材料化学专业实验报告实验名称:纳米ZnO的制备年级:2010级日期:2012—9—12姓名:余梅娜学号: 222010316210045 同组人:王志容一、预习部分1、纳米Zn O的性质和应用:纳米ZnO是一种新型的精细功能无机材料,由于其具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而纳米ZnO产生了其体相材料所部具备的这些效应,展现了许多特殊性质。

在催化、滤光、光吸收、医药、磁介质、电等方面有着广阔的应用前景。

主要用于制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

2、纳米Zn O的制备方法:制备纳米氧化锌的方法很多,一般可以分为物理法和化学法。

物理法是利用特殊的粉碎技术,将普通的粉体粉碎;化学法是在控制条件下,从原子或分子的成核,生成或凝聚成具有一定尺寸和形状的粒子。

常见的合成方法有固相法、液相法和气相法,其中,液相法和气相法又有多种制备方式。

固相法:室温固相合成纳米氧化物是近年来发展起来的一种新方法。

首先制备固相前驱物,进而前驱物经高温热分解或微波辐射热分解制备纳米氧化锌。

(1)碳酸锌法:利用硫酸锌制得前驱物碳酸锌,在200℃烘1h,得纳米氧化锌初产品;经去离子水、无水乙醇洗涤,过滤、干燥可得纳米氧化锌产品。

(2)氢氧化锌法:利用硝酸锌制得前驱物氢氧化锌,在600℃保持2h,高温热分解得纳米氧化锌。

气相法:(1)化学气相氧化法:化学气相氧化法是Mitarai等以锌粉为原料,氧气为氧源,在550℃的高温下,以氧气为载体进行氧化反应。

该法制备的氧化锌粒度细(10~20nm),原料易得,分散性好。

但产品纯度低,其中含有未反应的原料。

(2)激光诱导化学气相沉淀法:利用反应气体分子对特定波长激光的吸收,引起气体分子激光光解,热解,光敏化和激光诱导化学合成反应,在一定条件下合成纳米粒子。

它以惰性气体为载体,以锌盐为原料,用cwco2激光器为热源加热反应原料,使之与氧气反应得到纳米氧化锌。

微波水热合成ZnO纳米晶的研究进展

微波水热合成ZnO纳米晶的研究进展

生介 电加热 ,即通过微观 粒子 这两种极 化过程 ,将微 波能转变 为热能 。
二 、微 波水 热制备 Leabharlann n O 粉体 的主要影 响因素
1 . 反应温 度对 Z n O纳米 晶生长的 影响
在研 究微 波水热 温度对 合成 Z n O粉 体 的影响过 程 中 ,出现 了三种 不 同结 论 :江锦春 等 [ 4 】 研究 表 明 :随着 温度 的升高温 制得 的氧化 锌微 晶 的晶粒粒 度减小 ;夏 昌奎等 ㈣ 实 验表 明 :水热 温度 是溶 液 中 Z n O的 晶 化 和 形貌 演 化 过 程 中的 一个 关 键 性 因 素 。 随 着 水 热温 度 的 升 高 , Z n O纳米 晶的形貌 经历 一个 逐渐演 变 的过程 随着 温度 增高 ,其 形貌依 次经 历 :树 枝状 形貌 ,短 棒状 形貌 ,长棒 状微 观 结构 ,其粒 度不 断增 大 ;朱振 峰 等[ 6 1 研究 表 明 :随着 温度 升 高 ,氢氧 化锌 前驱 沉 淀逐 渐 减 小 ,棒状 氧化 锌逐 渐增加 ,当温度 过高 时 ,晶体 出现 过烧 ,自组 装微 球被破 坏 。 对 比 三者 的合 成工艺 ,不 难发 现 ,其温 度 ,浓度 ,时 间等差 异较 大 ,根据 晶粒 均相 成核理 论, 对 于溶 液 中的晶粒生 长, 单 位体积单 位 时间 内形 成的 晶核数 , 即成核速 率与 成核 时的温 度和反应 物浓 度有关 ;晶体 生 长过程 与生长 时 间和温 度有 关 。因 此 ,三 者虽 然结 论不 同 ,但并 不
很 大的关 系 。
传 统的 Z n O合 成方法 加热 ( 如水 浴等) 时间长 ,晶核 不可 能一下 形 成 ,容 易形成 多次 成核 ,影 响了粒 子 尺寸 的均 匀性 。 目前 ,只有微 波

ZnO的实验报告

ZnO的实验报告

实验报告纳米氧化锌的制备一、实验目的:1、了解纳米ZnO的性质及应用。

2、掌握制备纳米ZnO的原理和方法,并比较不同方法的优缺点。

3、掌握检验纳米ZnO光催化性能的一般方法。

4、查阅资料,计算产品的利润。

二、纳米ZnO的性质:纳米级ZnO同时具有纳米材料和传统ZnO的双重特性。

与传统ZnO产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%。

同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。

纳米ZnO粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。

纳米ZnO粉体的BET比表面积在35m2/g以上。

由于纳米ZnO具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米ZnO表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。

因此对纳米ZnO粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。

三、实验原理:制备纳米ZnO的方法有很多。

按物质的原始状态分为固相法、液相法、气相法3类。

固相法包括沉淀法;气相法包括化学气相沉积法、气相反应合成法、化学气相氧化法、喷雾热分解法; 3液相法包括溶胶—凝胶法、微乳液法、水解加热法、水热法等。

本次试验采用沉淀法制备纳米ZnO。

本实验以锌焙砂(主要成分为氧化锌、锌并含有少量铁、铜、铅镍、镉等杂质,杂志均以氧化物形式存在)和硫酸为主要原料,制备七水硫酸锌,以碳酸氢铵为沉淀剂,采用碱式碳酸锌分解法制备活性氧化锌。

四、实验仪器与试剂:仪器:分析天平、托盘天平、温度计、蒸发皿、胶头滴管、马弗炉、烧杯、量筒、玻璃棒、恒温水浴锅、布氏漏斗、抽滤机、坩埚、研磨、200目筛子、石棉网、药匙、锥形瓶、洗瓶、滤纸、真空泵、PH试纸。

试剂:锌焙砂、去离子水、3mol/l硫酸溶液、碳酸氢铵、0.1mol/l高锰酸钾溶液、锌粉、氧化锌、二氧化钛粉、碳酸钙、滑石粉、凡士林、0.05mol/lAgNO溶液、水合肼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZnO纳米粒子合成
【实验目的】
1、了解ZnO等宽带隙半导体纳米材料的各类性质及应用领域
2、掌握ZnO纳米粒子的制备方法
【实验仪器】
电子天平,水浴锅,电动搅拌器,三颈烧瓶
【实验原理】
纳米技术与纳米材料的应用,在于充分利用纳米材料优异的光学特性、电学特性、磁学特性、力学特性和催化等特性,开展具有新技术和高性能的新材料和新产品,并对传统材料进行改性。

纳米氧化锌(ZnO)是一种粒径介于1-100 nm之间的面向21世纪的新型多功能精细无机材料,其表现出许多优异的性质,如荧光性、压电性、生物相容性等。

通过利用其在光、电和磁等方面的奇特性能,可用于制造气体传感器、荧光体、紫外线遮蔽材料、图像记录材料、压电材料、高效催化剂、磁性材料和塑料薄膜等。

国外对于ZnO的研究起步较早。

其中,日本于20世纪80年代初以锌的乙酞络合物为原料通过气相合成法制备出粒径为100 nm左右的ZnO超细粉体。

之后,日本、美国、德国和韩国相继开始用各种物理化学方法制备ZnO纳米粒子。

而我国的相关研究起步较晚,大约在20世纪90年代初期才开始对纳米ZnO的制备及应用展开研究。

目前,纳米ZnO作为一种宽禁带的直接带隙II-VI组半导体材料,正在抗紫外线、光催化、传感器、发光二极管、太阳能电池和生物医学等领域大展拳脚。

【实验内容】
1、取240 mg氢氧化钾粉末充分溶于10 mL甲醇中,备用;
2、取615 mg醋酸锌置于三颈烧瓶中,并注入30 mL甲醇,充分搅拌溶解后置于水浴锅中,密封,加热到60摄氏度;
3、将1中氢氧化钾溶液逐滴滴入2中,持续搅拌,反应2小时左右直至混合溶液出现白色浑浊为止,实验完成。

【注意事项】
1、注意反应原料的放入顺序及数量;
2、严格控制三颈烧瓶中甲醇的挥发,以免导致所制备的ZnO纳米粒子粒径不均匀。

【思考题】
正常情况下,该反应溶液需经过90-120分钟才会逐渐出现白色浑浊,而有些同学在实验中会发现如果不能很好控制甲醇溶剂挥发,反应会提前完成,为什么?导致的后果是什么?。

相关文档
最新文档