高炉冲渣水余热利用现状分析

合集下载

高炉渣显热回收前景分析

高炉渣显热回收前景分析

高炉渣显热回收前景分析近年来开发的多项余热、余能回收技术在钢铁企业中得以应用并取得了显著效果。

但是,对于高品质余热资源之一的高炉渣显热,目前还没有成熟的回收技术,大量高炉渣显热能量白白耗散。

而我国年产高炉渣上亿吨,携带显热折合标煤七百多万吨,余热资源相当丰富,如能有效回收利用,将对我国钢铁企业的节能降耗,可持续发展有重要意义。

1 高炉渣显热资源状况钢铁企业余热资源主要集中在炼焦、烧结、炼铁、炼钢和热轧工序,表现为产品余热、烟(煤)气余热、废渣显热及冷却水显热等。

根据相关数据统计,各种形式余热资源状况如表1所示。

表1 钢铁企业余热资源状况————————————————————————————————————类别余热品质总量比例存在形式应用现状————————————————————————————————————烟(煤)中、低43%焦炉烟气、煤气,烧结烟气,部分利用气显热热风炉烟气,转炉煤气,高炉煤气产品显热高、中30%烧结矿/球团矿、焦炭、钢坯等部分利用渣显热高10%高炉渣、钢渣等极少利用冷却水显热低17%高炉冷却水等极少利用注:余热统计中不包含铁水显热钢铁企业各类余热资源中,产品及烟(煤)气显热占余热资源总量较多,余热品质包含各个温度等级。

目前已开发并应用的技术有干熄焦技术、烧结余热回收技术、转炉烟气余热回收技术、连铸坯热送热装技术等等,取得明显效果和效益。

冷却水显热虽然也占一定比例,但属低温余热资源,回收经济效果较差,余热回收率仅2%左右。

炉渣显热能级高,属高品位余热资源,约占全部高温余热资源的35%,其中高炉渣占28%(见图1),回收价值很大。

但是由于回收技术上的困难,目前渣显热回收率极低,只有部分高炉渣冲渣水余热得以利用,高炉渣显热是少数还未被开发利用的重要余热资源。

高炉渣的出炉温度在1400~1550℃之间。

每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤的热值。

高炉渣余热利用技术的现状及发展趋势 余热发电

高炉渣余热利用技术的现状及发展趋势 余热发电

高炉渣余热利用技术的现状及发展趋势摘要:本文系统的分析了高炉渣湿法与干法处理工艺及其余热利用的国内外现状,简述了底滤法(OCP)、因巴法(INBA)、拉萨法(RASA)、图拉法(TYNA)等典型的水淬法工艺,总结了水淬渣方式存在的诸多弊端,对风淬法、双内冷却转筒粒化法、Merotec 熔渣粒化流化法、机械粒化法、连铸连轧法、化学法等干法处理技术的研究进展和发展现状进行了总结。

最后得出结论: 离心粒化等干式余热回收技术在利用高炉渣的高品质热源时,不会造成水资源的浪费, 不会产生硫化氢、二氧化硫等有害气体,在克服水渣法固有缺点的同时,还可以得到玻璃化程度高的高附加值成品渣,是今后高炉渣余热回收工艺的发展趋势。

关键词:高炉渣;余热利用;水淬;干式粒化1 前言中国目前是全球最大的钢铁生产国。

中国钢铁产量已连续16年保持世界第一,并且遥遥领先于其他国家。

同时伴随我国高炉冶炼生产排出的含丰富热能的高炉渣数量也是巨大的,从节能与环保以及提高钢铁厂的经济效益的角度来看,对高炉渣的热量进行回收和高炉渣的资源化利用是十分必要的。

炉渣的出炉温度一般在1400~1550℃之间。

每吨渣含(1260~1880)×103kJ的显热,相当于60kg标准煤的热值[1]。

每生产1吨生铁要副产0.3吨高炉渣,每生产1吨钢要副产0.13吨钢渣[2],以目前我国的钢铁产量6.83亿吨进行计算,可产生2.9亿吨以上的高炉渣和转炉渣,其显热量相当于1740万吨标准煤,尽管并非可以全部回收高炉渣的热能,但若能部分回收利用,其节能效益也是显著的,非常具有市场开发潜力。

就目前应用大量应用水淬技术情况来看,这部分高温热源显然是被浪费了,该高温热源就温度品质来说,完全符合高品位能源的要求,如果能回收这部分热量得以重新利用,就可以为社会和企业带来可观的经济、社会和环保效益。

开展余热余能的回收利用不仅是钢铁企业节约能源降低成本,提高竞争力的重要手段,而且也符合国家钢铁工业的政策要求。

安钢高炉冲渣水余热利用技术的实践

安钢高炉冲渣水余热利用技术的实践

安钢高炉冲渣水余热利用技术的实践摘要通过对安钢目前厂区高炉冲渣水分析,大量的低温余热未能充分回收利用,既造成蒸汽的浪费,也不利于环保要求,针对存在的问题,回收利用高炉冲渣水的低温余热,用于生活区冬季采暖改造,节省蒸汽资源,提高能源的综合利用。

关键词高炉冲渣水余热利用生活采暖实践0前言近年来,安钢在节能降耗、资源综合利用等方面不断创新、发展,引进、消化、吸收和开发、创新、研制先进节能减排技术,全面推广应用节能减排“四新”技术,促进工艺技术装备水平的优化升级,提高了节能减排创效能力。

因此,加强能源优化利用、提高余热余能利用水平、发展循环经济已成为安钢科学发展的一个重要趋势。

安钢东线采暖泵站主要给安钢五生活区供暖,热源采用动力锅炉中温中压蒸汽,蒸汽使用量约15~20t/h,供应采暖面积约14万平方米,是安钢的职工住宅区之一。

而安钢目前有大量的低温余热余能未能充分回收利用,部分余热余能是供应生活采暖的最佳热源,如高炉INBA冲渣水余热资源,其温度高、水量大,蕴含着巨大的热能,目前均未回收利用。

一方面,高炉冲渣水热量一部分流失对环境造成热污染;另一方面,采用动力锅炉蒸汽用于生活采暖则消耗了宝贵的蒸汽资源,增加了企业采暖成本,影响企业经济效益。

因此,利用高炉冲渣水余热向生活小区供暖已成为节能与资源综合利用的最佳选择。

现就安钢高炉冲渣水的余热利用技术实践做简单介绍。

1安钢高炉冲渣水现状安钢目前有3座2000m³以上级高炉,均采用INBA法水冲渣工艺,冲渣水余热均未回收利用。

其中1#高炉是2200m³高炉,其正常生产时,冲渣水循环量为1200m³/h,冲渣水温度在80℃以上,东、西两个INBA交替出渣,其中西INBA为双出铁口出渣,东INBA为单出铁口出渣。

经测算,1#高炉冲渣水有效热量为25.54MW,按照本地区的采暖设计规范,具有供应约50万平方米的采暖能力。

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析

高炉冲渣水余热回收的可行性分析文章结合高炉冲渣水的余热特点,提出了三种余热回收方案,并针对其可行性进行了分析。

标签:高炉;冲渣水;余热回收;可行性前言在当前经济全球化的背景下,能源危机的不断深化,使得节能降耗可持续发展受到了社会各界的广泛关注。

钢铁作为我国国民经济的支柱产业,同时也是耗能大户,在生产过程中,会产生大量的余热,以高炉冲渣水为例,其温度可以达到95℃左右,一般都是在进入空冷塔冷却后,对水资源进行循环利用,但是其中蕴含的热量却白白浪费,而且对于周边环境造成了热污染。

对此,做好高炉冲渣水余热回收工作,是非常重要的。

1 高炉冲渣水余热特点高炉冲渣水余热的热源温度相对较低,但是流量巨大,而且由于水中蕴含相应的化学物质,对于普通钢材有着一定的腐蚀性,做好高炉冲渣水余热的回收工作,不仅能够有效减少能源的浪费,还可以保护周边环境,其重要性是不言而喻的。

在钢铁企业中,一般情况下,高炉冲渣水采用的是浊环水,能够减少对于水资源的消耗,但是其在冷却过程中大量的热量散失,造成了一定的浪费,而且冲渣过程中产生的二氧化硫、硫化氢等物质会在大气中形成酸雨,造成严重的环境污染,因此,如何对高炉冲渣水余热进行回收利用,是當前钢铁企业需要重点研究的课题。

2 高炉冲渣水余热回收方案从目前来看,对于高炉冲渣水余热的回收,主要是以下三种方案。

2.1 采暖在对高炉冲渣水进行沉淀过滤后,进行相应的水热交换,通过循环泵,将采暖水输送至采暖用户。

将余热回收用于采暖的方法,具有投资少、设备简单、散热少、余热利用率高等优点,不过也存在两个方面的问题,一是由于采用的是浊环水,容易出现感到堵塞和腐蚀的现象,维护起来比较困难,对于换热设备的要求较高;二是只能在冬季使用,无法全年回收余热。

因此,如果采用这种方案,经济效益相对较差,而且对于余热的回收利用率低。

2.2 发电在对高炉冲渣水进行沉淀、过滤等预处理后,导入换热器,此时冲渣水的温度降低到40-50℃,之后回归到高炉供冲渣使用,可以对一定的余热进行回收。

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术

高炉冲渣水余热回收技术通过对高炉冲渣水余热回收利用的几种方式的对比,分析了传统换热设备在余热回收项目中的优缺点,并提出真空相变换热技术在冲渣水余热回收中的优势,其较好地解决了传统冲渣水换热器设备堵塞、耗损、腐蚀、结晶等一系列问题。

真空相变换热器有效地利用了此项技术,在钢厂高炉冲渣水余热回收利用中值得推广利用,具有广阔的应用前景,可以实现较好的经济效益和环保及社会效益。

标签:换热器;真空相变;高炉冲渣水;余热回收1 概述高温熔渣作为高炉炼铁的附属产物,其经过水淬工艺处理后将产生70~90℃的高温冲渣水,这些具有大量余热的冲渣水具有成分复杂、悬浮物多的特点,尤其是其中含有矿棉类纤维等成分,极易造成沉积钩挂、堵塞,同时其渣粒也会造成管道的严重磨损。

长期以来,人们采用直接或间接的换热器来利用冲渣水的余热,都达不到理想的换热及运行效果。

高炉冲渣水若直接作为采暖热水,会在采暖管道及散热器中产生淤积、堵塞;若间接换热,则同样会在传统的换热器中发生堵塞、腐蚀、结晶、磨损等问题,无法长周期有效使用。

综上,如何全面、有效地利用高炉冲渣水便成了一个亟待解决的现实问题。

2 真空相变换热技术简介由于水的沸点会随着压力的变化而相应地变化,所以,通过降低水所在周围环境的压力大小,从而使水在低压环境下沸腾,进而转化为水蒸气,这些水蒸气便可以被我们充分利用与循环水进行相变换热,从而达到了余热回收的目的。

2.1 高炉冲渣水的水质分析高炉冲渣水的余热回收具有其鲜明的特点,有必要对其水质进行简单地分析。

高炉渣的主要成分为CaO、SiO2、AL2O3等物质,冲渣水是高炉渣在1400℃左右的熔融状态下水淬形成的,故在其水淬过程中会将高炉渣的一些成分溶解在水中,再加上冲渣水作为冷却高炉渣的重复利用循环水,不断往复地冲渣过程中冲渣水也不断地被浓缩,从而使高炉渣中可以溶于水的物质达到了一个饱和的状态。

笔者从某钢厂冲渣水提供的水质报告得到以下数据。

高炉冲渣水余热回收解决方案-仟亿达

高炉冲渣水余热回收解决方案-仟亿达

仟亿达高炉冲渣水余热回收利用解决方案一、高炉冲渣水余热利用背景钢铁厂在高炉炼铁工艺中,产生的炉渣温度大约为1000℃。

目前,大多数炼铁企业的处理方法是:将此炉渣在冲渣箱内由冲渣泵提供的高速水流急冷冲成水渣并粒化,以供生产水泥之用。

这一过程中能够产生大量温度在80~95℃的热水。

通常,为了保证冲渣水的循环利用效果,需要将这部分冲渣水在沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣。

这样就使得很大一部分热量在空冷塔中流失,既造成了能源的浪费,又对环境造成了热污染。

目前,高炉冲渣水余热回收利用技术主要应用于余热发电、冬季采暖和浴池用水。

二、高炉冲渣水余热利用解决方案2.1余热发电基本原理为:炼铁厂高炉冲渣水排出时温度为80~95℃,经沉淀清除杂质预处理后进人特殊设计的蒸发换热器和预热换热器,将高炉冲渣水热量传递给换热介质,温度降至约5O℃,再送回高炉冲渣,从而回收一定量的余热。

换热介质在换热器内吸收热量后变成80℃的过热蒸气,然后进入气轮机膨胀做功,带动发电机转动,输出电能。

做功后的换热介质变成低压过热蒸气,进入冷凝器放出热量,变成低温、低压的液体换热介质,然后由泵送至换热器中吸热,再次变成过热蒸气推动气轮机膨胀做功。

如此连续循环,将高炉冲渣水中的热量源源不断地提取出来,转换成电能。

图1、高炉冲渣水余热发电工艺流程图冷凝器冷却方式包括水冷式和风冷式2种。

其中,水冷式冷凝器投资较低,投资回收期较短,但运行过程需补充冷却水;风冷式冷凝器净发电量较少,但不需要冷却水,比较适合干旱缺水地区。

2.2螺杆膨胀机余热发电简介螺杆膨胀机是一种专门回收各种低品位热能发电的高新技术新型发电机组,具有通用性强、热能适用广、使用维护安全便捷、节能高效等技术特点,在不影响用户正常生产的前提下实现节能减排和经济增效的投运效果。

工业热液(75℃以上)的应用范围:热水温度150℃以上,可以直接用“螺杆膨胀动力机组+冷凝器”回收发电热水温度70-150℃范围,可以采用“双循环螺杆膨胀动力机组+冷凝器”回收发电图2、螺杆发电流程图2.3冬季采暖高炉冲渣水在渣池中沉淀后仍含有很多炉渣杂质,不能满足采暖系统水质要求,所以高炉冲渣水必须过滤才能进入采暖系统。

高炉余热利用

高炉余热利用

3200高炉区域循环水余热利用方案余热采暖利用现状目前济钢余热利用项目主要为高炉冲渣水余热利用项目,共设有三个高炉冲渣水换热泵房,每个泵房安装板式换热器三台(开二备一),设计负荷为36.5MW,采暖水流量:2100t /h供回水温度:65℃/50℃供回水压力:6.5/4.5MPa根据供热负荷48W/㎡计算,可供采暖面积:76万㎡左右。

现已为钢城新苑和韩仓小区供暖。

为充分利用济钢余热资源,为济钢创造更大的经济效益,结合济钢实际运行情况,可采用热泵技术回收高炉水冷壁等的余热水余热,加热冲渣水余热利用项目采暖水,用于实现济钢周边城市小区供暖。

从而实现了节约高品位一次能源,提高能源综合利用率的目的,并减少了余热排放大气所带来的环境污染问题.3200高炉区域余热负荷技术方案在石河西侧3200高炉区域采暖水供热管线母管处,建设3台25MW 吸收式热泵,用320烧结和400烧结锅炉蒸汽作为驱动,提取3200循环冷却水热量,把采暖循环水由65℃加热至95℃。

根据吸收式热泵蒸汽负荷占总负荷的40%--50%.热泵参数采暖水温度: 95℃/ 65℃循环水温度:37℃/ 30℃循环水量:1500t/h 采暖热水量:700t/h单台蒸汽量:18t/h蒸汽压力:2.0MPa温度:400℃负荷计算表投资估算三台吸收式热泵每台约1000元,蒸汽、水系统改造费用约1000万,合计4000万元项目收益项目建成后可采暖总负荷可达到110MW,供热面积220万平方米。

可增加供热面积144万平方米,采暖费按20元/平方米分配给济钢,收入2880万元/年,采暖配套建设费用78元/平方米按50%分配给济钢,可一次性获得费用5616万元。

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用

高炉冲渣水余热回收技术的创新与应用高炉熔融炉渣的温度高达1400℃~1500℃,其热量大,属于高品质的余热资源。

我国高炉渣的处理工艺主要采用水淬处理,大量高温炉渣通过冲渣水进行冷却,产生大量温度为70℃~85℃的热水。

通常,为了保证冲渣水的循环利用,需要将这部分冲渣水沉淀过滤后引入空冷塔,降温到50℃以下再次循环冲渣,或自然降温后继续循环冲渣。

这个过程损失了大量的热量,既造成了能源的浪费,又对环境造成了污染。

高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。

目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。

冲渣水余热发电是一种最有价值的研发方向,但因其技术要求相对较高,投资回收期较长,目前还处于研究开发阶段。

利用冲渣水采暖或作浴池用水,已经被北方地区的部分钢厂使用,并带来较好的经济效益。

高炉水渣含有CaO、SiO2、MgO、Al2O3和少量的Fe2O3,pH值大于7,呈弱碱性。

高炉水渣杂质在冲渣水中以固体颗粒或悬浮物的形式存在,日积月累,杂质会使采暖系统中的管道、阀门、散热器发生大面积淤积、堵塞,所以高炉冲渣水作为采暖热源时不适于直接使用。

通过间接换热的形式重复利用冲渣水进行采暖或作为浴池用水是高炉冲渣水利用的技术点,而高炉冲渣水专用换热器适用于换热介质在高悬浮物、高黏度等恶劣工况下的实体应用。

冲渣水余热回收出利器冲渣水专用换热器是由螺旋状扁管换热元件制造而成的新型高效换热器,螺旋扁管的截面为椭圆形,其管内外流道均呈螺旋状,获得国家实用新型专利。

该换热器在使用过程中具有以下特点:压降小。

管壳式换热器在壳程为了减少死区和短路设置了一定数量的折流板,相应地增加了阻力,而螺旋扁管的应用使得壳程中介质的曲折流动变为直接螺旋流动,没有死区,不必设置折流板。

取消折流板降低了阻力,并大大提高了热传递效率。

冲渣水专用换热器和螺旋板式换热器的压降≤30kPa,而板式换热器和固定管板式换热器的压降均为50kPa~100kPa。

钢铁企业高炉冲渣水余热利用技术分析

钢铁企业高炉冲渣水余热利用技术分析

钢铁企业高炉冲渣水余热利用技术分析摘要:随着社会经济快速发展,钢铁行业取得了巨大进步,这对于促进我国工业化水平提升起到了重要的推动作用。

但是钢铁企业在工业生产中的能耗较大,而且在生产过程中还会产生大量余热,如果不能合理利用,则会导致能源损耗严重,不利于保障企业的可持续发展。

对此,针对高炉冲渣水余热进行科学利用对于帮助钢铁企业降低能耗并实现能源节约,同时促进自身绿色环保发展具有重要意义。

本文主要分析了钢铁企业生产中高炉冲渣水余热的特点,并出了具体的余热利用技术,以期为钢铁企业余热科学利用提供指导。

关键词:钢铁企业;高炉冲渣水;余热利用在钢铁企业生产过程中,高炉冲渣水属于低温性的废热源,其具有温度稳定而且流量大的特点,如果将此项资源直接浪费掉,不仅会给钢铁企业造成极大损失,同时也会对周边环境造成极大污染。

为了更好地利用高炉冲渣水余热,就必须要积极探索其具备的特点,并基于此分析可利用的方向,从而提高余热利用效能,为钢铁企业带来更大经济效益,也为其后续高质量发展提供基础支持。

一、钢铁企业高炉冲渣水余热特点1、余热资源潜力大高炉冲渣水具有低温余热热点,虽然温度不高,但由于流量庞大,成为了重要的能源回收点[1]。

例如在一个年产铁量达250万吨的大型高炉中,每小时可产生高达2200立方米的循环冲渣热水,等量冲渣水热负荷估计达到40兆瓦,由此可见其巨大的能源回收潜力,若能高效利用低温余热,不仅能显著降低能源消耗,还能减轻环境热污染。

目前,冲渣热水通过冷却后循环使用或自然降温,其间大量热能未被充分利用,如果能开应用高效的热能回收和利用技术如热泵系统或低温余热发电技术等,可以有效转换热能为发电或供暖等其他用途,不仅对钢铁企业降低能源成本和提升环保水平有着重要意义,也对推动整个工业领域的绿色转型和可持续发展具有积极影响。

2、具有强腐蚀性在现代钢铁生产过程中,为应对日益严格的环保标准,许多钢铁厂开始循环利用各工序产生的含盐废水作为高炉冲渣用水,虽然有效减少了废水排放,但却使得冲渣水的腐蚀性显著增强。

高炉冲渣水余热中PLC控制系统的应用

高炉冲渣水余热中PLC控制系统的应用

高炉冲渣水余热中PLC控制系统的应用【关键词】高炉冲渣;案例分析;余热利用技术传统钢铁厂在冶炼钢铁过程中,由燃煤锅炉提供能源,每年钢铁厂消耗煤炭数量。

高炉冲渣是目前钢铁厂采用的主要生产工艺,在炉内1400℃-1500℃高温影响下,冲渣后的水温度很高,若能将水余热收集起来,为冶炼工艺提供能量,有效减少钢铁厂煤炭消耗,降低生产成本。

水余热利用技术目前在各大钢铁厂都有应用,但设备简单、供热量受季节影响,冲渣过滤不充分会堵塞管网,可见该项技术还有待完善。

1高炉冲渣水余热利用现状1、1采暖应用采暖质量受天气影响较大,钢铁厂冬天产出高炉渣水,其温度最高能达到53℃,这位室内取暖提供有利条件。

在钢铁厂周围住户房间里安装供暖设施,渣水经过滤装置顺着管道流向各处,水温下降后排出,持续供水能将室内温度保持在稳定水平,住户不用开空调。

1、2发电应用余热能为发电设备提供动力,热水经过蒸汽机处理后变成蒸汽,汽轮机被蒸汽推动做工,经过一系列措施将水热分离,并将热能转换成电能。

此外,水余热在海水淡化工艺中也有应用。

2案例分析2、1厂家生产现状炼铁厂共有三台锅炉,其中一座为高炉,炉内容量1000m3,剩下两台是燃气锅炉,重50吨。

高炉冲渣后得到大量渣水,水中包含较多热量,但并未被利用起来。

厂区共有两座汽水换热站,用于厂区供暖,两座换热站的总采暖负荷约为21MW。

在此情况下,渣水中热量散发,锅炉补水加热引入新水,导致资源消耗巨大。

为改变上述问题,厂家引入水余热回收系统,将水中热量收集起来,减少炼铁厂能耗。

本次系统设计融入先进科技,旨在提升系统实用性,采用PLC集中控制自动化系统,配合自动化仪表等仪器,构建相应的水余热回收系统。

为优化系统功能,将换热站、烟气回收系统配合此系统使用。

整个系统采用仪电一体化技术,将PLC控制系统安装在换热站中,在操作员站安置另一套PLC控制系统,实现对余热采集过程的自动控制,控制系统与计算机相连,相关参数在计算机屏幕上显示出来,技术员通过屏幕按钮,完成警报值设定、参数调整等功能。

浅析高炉冲渣水余热采暖的应用

浅析高炉冲渣水余热采暖的应用

浅析高炉冲渣水余热采暖的应用本文综述了国内冲渣水余热采暖利用现状,并通过案例对直接换热和间接换热两种方式进行比较研究,间接换热的形式重复利用冲渣水优势更加明显,具有更好的推广价值。

标签:高炉;冲渣水;集中供暖;余热1 概述1.1 高炉冲渣水余热利用大有可为近年来,随着冶金行业节能降耗、资源综合利用和建设资源节约、环境友好型企业水平不断提高,加强能源优化利用、发展循环经济、余热余能利用已成为各钢铁企业发展的趋势,以往被忽视的高炉冲渣水的余热利用已在部分企业得以开发。

高炉炉渣温度高达1400 ~1500℃摄氏度,热量大,属高品质的余热资源。

高炉渣处理方式多为水淬处理,与高温炉渣进行热交换的冲渣水,水温为60~80℃,浊度的质量浓度为50~80mg/L,经过渣水分离设施的滤池过滤后,浊度的质量浓度能净化到4~7mg/L,出水水温为50~70℃。

高炉炉渣带走的热量约占高炉总热耗的16%左右。

生产1t生铁要产生0.3~0.6 t 炉渣,每吨炉渣约含有(1.26~1.88)× 106 kJ的显热,相当于0.04~0.06 t标准煤的能量[1]。

以2010年为例,中国高炉渣排量高达2亿t计算,每年造成约1000万t标准煤的热量浪费[2]。

1.2 我国目前高炉冲渣水余热利用的现状冲渣水的利用方式主要有3种:一是供暖、供热水,二是海水淡化(受地理条件限制),三是低温余热发电技术,余热发电无疑是一个最有价值的研发方向,但由于其技术要求相对较高、投资回收期较长,目前还处于研究开发阶段。

利用冲渣水进行换热,然后向浴室、食堂、游泳池供应热水,或给居民楼供暖,这些方式技术相对成熟,目前被部分钢厂采纳,并带来了较好的经济效益。

目前建成的冲渣水余热利用工程以采暖方式为主,利用冲渣水的余热采暖主要可通过两种途径来实现:其一,经净化后的高炉冲渣水进入采暖系统各用户的末端采暖设备直接换热;其二,经净化后的高炉冲渣水通过高效换热器与采暖热水间接换热。

高炉冲渣水余热利用技术浅析

高炉冲渣水余热利用技术浅析
a r e a l s o e x po u n d e d.
Ke y Wo r d s : s l a g—wa s h i n g w a t e r ;wa s t e h e a t u t i l i z a t i o n;h e a t i n g;b e n e i f t a n a l y s i s
( 4 ) 换热效率高。渣水分离系统具有充足 的 给水水源 , 能使给水在不加压 的情况下通过换热
器 进入 蓄 水 池 , 从 而 很 经 济 地 完 成 换 热 功 能 。其 中, 换 热器结 构采 用 U型排管 形式 。
1 浴池 用水
西 钢采 用 高 炉 冲 渣 水 作 为 浴 池 用 水 的 热 源 ,
e f f e c t i v e l y r e du c e t he e n e r g y c o n s u mpt i o n o f t he s t e e l p l a n t t h r o ug h r e c o v e in r g t h e wa s t e h e a t .T he
该工 艺 的特 点如下 :
炼铁 厂泵 房 及 热 水 输 送 管 道 布 置 如 图 1所
示, 给排 水 系统如 图 2所 示 。
( 1 ) 余 热 易 回 收。高 炉 冲 渣 水 水 温 高 达
8 5℃ , 浴 池用 水温 度 一般 为 4 0 c 【 = , 采 用 换 热 器 可
徐 珊 珊
( 西 林钢铁 集 团有 限公 司 , 黑龙 江

伊春
1 5 3 0 2 5)
要: 炼铁高炉在生产过程 中产生 的高炉 冲渣水排放 了大量 的热量 , 如能利用这些废热可有效 降低钢铁企业

利用高炉冲渣水余热采暖技术现状

利用高炉冲渣水余热采暖技术现状

高炉渣 的主要成分是氧化镁 、 氧化钙 、 三氧化二 铝, 约占炉渣总量的9 5 %, 出渣温度在1 4 5 0 ~1 6 5 0℃。 炉渣的处理主要采用水力冲渣方式 , 这一过程 中产生 温度在7 0  ̄9 0 o C 的冲渣热水 。 高炉冲渣水余热热源温 度较低 , 但流量巨大 , 并且水中蕴含 的化学物质对普通 钢材具有一定的腐蚀性 , 因此做好高炉冲渣水余热 的 回收工作 , 不仅能够有效减少能源浪费, 还可以保护周
陈 超, 丁翠娇 , 朱善合
4 3 0 0 8 0 ) ( 武汉钢铁集 团公 司武钢研究院 , 湖北 武汉
摘要: 高炉在生产过程 中产生大量 的冲渣水 , 同时排放了大量的热量 , 做好高 炉冲渣水余热 回收工作 意义 重大。 本文 阐述 当前 高炉冲 渣水余热采暖的主要方式 和利用现状 , 分析各种利用方式的优 缺点及存在问题 , 为类似工程的开展提供参考 。
边环境 , 意义十分重大 。 关于冲渣水 的余热利用方式 , 主要有取暖、 发电和海水淡化三种 , 目前广为利用的方 式是利用冲渣水余热进行采暖。
图 1 高炉冲渣水直接换热 系统
1 高炉 冲渣 水 余 热 采 暖 的途 径
自2 0 世纪8 0 年 代 以来 , 邯钢 、 宣钢 、 鞍钢 、 济钢 、 通
C H E N C h a o , D I N G C u i j i a o , Z H U S h a n h e ( R & D C e n t e r o f WI S C O, Wu h a n 4 3 0 0 8 0 , C h i n a )
Ab s t r a c t : Wi t h o p e r a t i o n o f b l a s t f u na r c e ,a l a r g e n u mb e r o f s l a g l f u s h i n g w a t e r i s p r o d u c e d,wh i c h e x h a u s t l o t s o f h e a t . I t i s s i g n i f i c a n t t o r e c y c l e t h e wa s t e h e a t o f s l a g l f u s h i n g w a t e r . I n t h i s a r t i c l e ,t h e u t i l i z i n g mo d e s ,u t i l i z a t i o n s t a t u s a n d t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f e a c h me t h o d a r e p r e s e n t e d,w h i c h c a n p r o v i d e r e f e r e n c e o f e n g i n e e r i n g a p p l i c a t i o n . Ke y wo r d s : b l a s t f u r n a c e ;s l a g l f u s h i n g w a t e r ;w a s t e h e a t

高炉冲渣水余热利用

高炉冲渣水余热利用

昆明冶金高等专科学校毕业论文学院:冶金材料学学院专业:冶金技术班级:冶金1239班姓名:起赵林学号:**********论文题目:高炉冲渣水余热回收利用指导教师:***2015年2月10日高炉冲渣水余热回收利用摘要高炉冲渣是在高炉冶炼的末端工艺,高炉炼铁后产生的大量高温炉渣通过冲渣水进行冷切,在这个过程中能够产生大量温度在70℃-85℃的热水。

高炉冲渣水作为一种废热能源,因其温度稳定、流量大的特点,正逐渐成为余热回收利用的研究热点。

目前,对冲渣水余热的回收方式有利用冲渣水采暖、浴池用水和余热发电。

将其回收利用既能做到节约能源,争取能源的最大化利用,又能保护环境,它将成为冶金工厂的一个焦点。

正看到了这一点,本次,我结合了高炉冲渣水余热利用的可行性分析及高炉冲渣水余热利用的现状和技术发展分析与实践等的探究。

让我更近一步的了解高炉冲渣水余热回收与利用。

关键词:高炉冲渣水能源环保余热回收利用目录摘要1绪论2 浅析高炉冲渣水余热利用2.1高炉冲渣水简介2.2 高炉冲渣水余热回收的意义3 高炉冲渣水余热利用的可行性分析3.1高炉冲渣水余热参数3.2 高炉冲渣水余热回收利用效益分析4 高炉冲渣水余热利用的现状4.1 高炉冲渣水余热利用现状4.2 高炉冲渣水用于冬季采暖4.3 目前冲渣水余热利用存在问题5 高炉冲渣水余热利用技术发展分析与思考 5.1高炉冲渣水余热利用技术发展分析5.2高炉冲渣水余热利用技术的思考6高炉冲渣水余热利用技术的创新6.1高炉冲渣水余热利用技术6.2高炉冲渣水余热利用技术的创新 6.3 余热回收应用案例7高炉冲渣水余热供暖工程中的应用7.1 高炉冲渣水的过滤7.2 水泵流量及扬程7.3 泵房的布置7.4水泵安装高度7.5其他事项8高炉冲渣水余热采暖实践8.1 技术方案选择8.2 工程实施8.3开车调试8.4运行效果结论参考文献1 绪论随着能源与环境问题的日益突出,我国钢铁企业对节能降耗的重视程度进一步提高。

高炉冲渣水余热回收技术的现状及发展

高炉冲渣水余热回收技术的现状及发展

高炉冲渣水余热回收技术的现状及发展周泳吴良玉颜斌段建峰(武汉钢铁股份有限公司能源动力总厂供水厂,武汉 430083)摘要对水质波动较大、余热资源品位低的高炉冲渣水余热的回收还需要做大量创新性的摸索,尤其是应用这部分余热发电的技术,近年来已成为全行业急需解决的难题。

本文将综合分析高炉冲渣水余热回收技术的现状及发展,结合国内多家钢铁企业已有之经验,探讨高炉冲渣水余热回收技术的发展趋势,以期为钢铁企业在开展该项工作时提供重要参考。

关键词高炉渣水淬处理余热回收Status and Development of Residual Heat Recovery inBlast Furnace Flushing Slag WaterZhou Yong Wu Liangyu Yan Bin Duan Jianfeng(Water Supply Plant, Wuhan Iron & Steel Co., Wuhan, 430083)Abstract Even so, the recovery of water quality fluctuations, waste heat resources of low grade waste heat water blast furnace slag is also need to do a lot of innovative exploration, especially the application of this part of waste heat power generation technology, in recent years has become a problem needed to solve the whole industry. In this paper, the present situation and development of a comprehensive analysis of blast furnace slag water waste heat recovery technology, to combine with the experience of many domestic steel enterprises, to explore the development trend of waste heat recovery technology for blast furnace slag water, in order to provide the important reference for the iron and steel enterprises in carrying out this work.Key words blast furnace slag, water quenching treatment, residual heat recovery1前言高炉渣是高炉炼铁的副产品,其主要成分为氧化钙、氧化镁、三氧化二铝、二氧化硅,约占炉渣总量的95%,排出温度在1450~1650℃之间。

2024年炉渣资源化利用市场分析现状

2024年炉渣资源化利用市场分析现状

2024年炉渣资源化利用市场分析现状1. 引言炉渣是在冶炼和燃烧过程中产生的一种废弃物。

随着环境保护意识的提高和资源利用的重要性,炉渣资源化利用成为当前的研究热点。

本文将对炉渣资源化利用市场的现状进行分析。

2. 炉渣资源化利用技术炉渣资源化利用技术主要包括炉渣胶凝材料、炉渣填埋材料、炉渣陶瓷制品和炉渣添加剂等。

这些技术的发展有助于提高炉渣的综合利用率,并减少对自然资源的依赖。

2.1 炉渣胶凝材料炉渣胶凝材料是利用炉渣中活性成分发生水化反应,形成硬化体的一种材料。

主要应用在建筑材料、道路建设和水泥制造等领域。

近年来,随着对环境友好型建筑材料需求的增加,炉渣胶凝材料在市场上的需求也不断增长。

2.2 炉渣填埋材料炉渣填埋材料主要用于填埋场和固体废弃物处理。

炉渣的高温特性和稳定性使其成为一种理想的填埋材料,可以有效防止污染物对土壤和地下水的渗透。

炉渣填埋材料在垃圾处理行业得到了广泛应用。

2.3 炉渣陶瓷制品炉渣陶瓷制品是将炉渣加工成颗粒状,然后与其他材料混合制成的陶瓷制品。

这种制品具有较高的强度、耐磨性和耐火性,广泛应用于建筑材料、耐火材料和陶瓷制品等领域。

2.4 炉渣添加剂炉渣添加剂主要用于钢铁、水泥和玻璃等行业,用于改善产品质量和性能。

炉渣添加剂可以提高钢铁的冶炼效率,增加水泥的强度和耐久性,同时还可以减少生产过程中废弃物的产生。

3. 市场分析3.1 市场规模随着炉渣资源化利用技术的成熟和市场需求的增长,炉渣资源化利用市场规模逐年扩大。

根据统计数据,2019年炉渣资源化利用市场规模达到1000亿元,预计到2025年将超过2000亿元。

3.2 市场增长因素炉渣资源化利用市场增长的主要因素包括环境保护政策的支持和资源利用的重视。

政府对环境保护的要求越来越高,对炉渣资源化利用技术的支持力度也越来越大。

此外,随着经济的快速发展和国土资源的有限性,资源利用的重要性日益凸显,炉渣资源化利用成为一种有效的资源替代手段。

高炉冲渣水余热回收利用

高炉冲渣水余热回收利用

高炉冲渣水余热回收利用作者:张燕来源:《中国科技博览》2016年第05期[摘要]采暖季节各厂区、办公楼等主要以蒸汽作为能源介质,向各采暖用户供热。

为进一步实现节能降耗,增加企业自发电量,现将银山前区高炉冲渣水余热回收,作为采暖换热介质,向银山前区周边冬季采暖用户供热,改造后将极大降低厂区非生产用蒸汽消耗量,满足发电机能源需求,实现真正的节能降耗。

[关键词]高炉冲渣水余热利用中图分类号:TK 文献标识码:A 文章编号:1009-914X(2016)05-0013-011.现状分析(1)高炉冲渣系统概况银山前区2座1080m3高炉,水冲渣系统共用一个渣池。

渣池总容积为7200m3,每小时的循环量约为5000m3/h。

每座高炉的循环水量为2500m3/h,水泵运行方式为2用1备。

两座高炉日均产量5500吨,渣比350kg/t~400kg/t。

两座1080m3高炉冲渣水循环流量最大1400m3/h。

(2)高炉冲渣系统设备参数(见表1)冲渣水水质参数(见表2)(3)采暖季供暖期:每年11月1日到次年3月31日。

2.冲渣水余热换热改造方案在银山前区两座高炉冲渣水池东北侧新建高炉冲渣水余热利用换热站、水泵站、供回水管道、银前区采暖系统改造、配套电气系统以及土建辅助系统。

新建高炉冲渣水余热利用独立运行,uliyphauv不影响高炉冲渣系统的安全稳定运行。

1)①冲渣水参数:,冬季水温70~90℃。

选定热源水温75℃。

冲渣水理论取水量:580m3/h。

②取热方式:冲渣水直接换热式。

③系统组成:冲渣水循环换热系统+供暖循环系统。

2)冲渣水采暖系统(1)冲渣水循环系统:①冲渣水循环系统流程:沉渣池—→引水管渠—→渣浆泵—→污水换热器—→沉渣池②冲渣水取水:按1400m3/h流量设计冲渣水取水系统。

在沉渣池侧壁开口,做引水管渠,经引水管渠将冲渣水引至冲渣水换热站,在引水管渠二端设沉沙井。

引水管渠当量管径1.15m。

③冲渣水换热器:系统采用冲渣水换热器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高炉冲渣水余热回收
1、高炉冲渣水余热利用背景。

高炉炉渣余热回收是中国未来10年节能的方向之一。

在高炉冲渣水低温余热回收工艺中,过滤和换热是一个永恒的课题,而相对应的过滤器和换热器就是一个非常关键的工艺设备。

以高炉冲渣余热为代表的低温余热亦蕴含着巨大的能量,高炉熔渣的潜热储量大,以中国2014年8.23亿吨的粗钢产量计算,高炉炉渣产量约2.59亿吨,其热量可折算为1411万吨标煤的热量,如这部分热量完全利用可冬季为1亿平米的城市民用住宅建筑供暖,占全国集中供暖面积的11.6%。

自2015开始,随着我国环境保护和城市雾霾治理的力度不断加大,城市燃煤供暖很难满足排放指标,高炉冲渣水余热供暖以其成本低、无排放等优势得到了热力公司的青睐,成为不少城市的“蓝天工程”。

冲渣水中含有较细微的高炉渣成份,主要化学成份是Ca、Si、Mg、O等离子化合物,在水中极易水解板结,造成末端管网堵塞严重。

冲渣水温度越低,其炉渣制成的水泥活性越高。

因此提取冲渣水余热,降低其循环使用温度,既有助于提高炉渣质量,同时能够降低冷却塔负荷,节约水泵和风机耗功。

目前,提出对冲渣水余热的回收方式有:利用冲渣水采暖或作浴池用水;冲渣水余热发电。

2、高炉冲渣水处理工艺。

A、明特法处理工艺。

利用冲制箱将冶金炉熔渣冲制成水渣混合物,由搅笼机将水渣混合物中渣分离出,并脱水成干渣,外运销售;冲渣水经过过滤器过滤成
干净水,由冲渣泵循环供冲制箱冲渣使用。

明特法水渣处理系统作为第三代水渣处理技术(即水渣领域的最新技术),其主要特点是彻底克服渣池法(第一代水渣处理技术:平流法、侧滤法、底滤法)、转鼓法(第二代水渣处理技术:INBA、图拉法)的不足,以全自动化方式对水渣进行处理。

即通过操作员的一个按钮动作,使水渣的分离自动完成,实现从设备出来的渣为干渣;出来的水为干净水,直接循环使用。

B、嘉恒法处理工艺。

由高炉放出的高温熔渣经熔渣沟流到出铁厂平台边缘的冲制箱前方,被冲制箱喷出的急速水流水淬,形成渣水混合物。

渣水混合物经水渣沟输送到脱水器中,实现渣水分离。

成品渣通过受料斗落到皮带机上,运至渣场或渣仓,水则透过筛网流入水池。

回水经过沉淀后被泵打到各用水点循环使用,沉淀池的细渣通过抓斗捞至皮带机上方漏斗,由皮带机运走。

C、因巴法INBA 法水冲渣工艺。

INBA法水冲渣是保尔沃特公司的专利技术,将熔渣水淬后通过渣浆泵输入到转鼓实现脱水,最终获得水渣的办法。

3、高炉冲渣水余热利用工艺。

A、余热发电。

高炉冲渣水排出时温度大约85℃,经过沉淀除杂预处理后进入特殊设计的换热器,在此将热量传递给工质,温度降到50℃左右,再送到高炉供冲渣使用,从而回收了一定量的余热。

工质在换热器内吸收热量后变成80℃的过热蒸汽,然后进入气轮机膨胀做功,带动发电机转动,对外输出电能。

做功后的工质变成低低压过热蒸汽,低低压过热蒸汽进入冷凝器放出热量,变成低温低压的液体工质,然后由工质泵送到热交换器中吸热,再次变成过热蒸汽去推动汽轮机作功。

如此连续循环,将热水中的热量源源不断的提取出来,生成高品位的电能。

目前在其他行业已经有余热发电技术的成熟应用,系统工作温度都在100℃以上,而高炉冲渣水属于较低温的余热源,其利用温度只有70℃-80℃,因此该项技术仍在研究阶段。

B、余热采暖技术。

采暖水经过专用板式换热器与冲渣循环水换热→输送到采暖供水干管→采暖用户→采暖回水干管→采暖水过滤器→经过采暖水循环泵加压→输送至板式换热器与冲渣循环水换热。

采暖水为闭式循环系统,采用软化水,避免管道及散热片结垢;在采暖循环泵前设置定压补水系统,采用变频补水泵自动补水。

考虑采暖季节高炉检修取热问题,在换热站设置汽水换热器,采用蒸汽补热保证供暖,凝结水回收至补水箱循环利用。

北京亿玮坤节能科技有限公司主要从事高炉冲渣余热回收供暖技术装备研发应用、高炉冲渣余热回收发电技术装备的研发、高炉冲渣余热回收制冷技术装备研发应用、高炉冲渣余热回收海水淡化装备研发应用等。

我公司可以通过合作方式在高炉冲渣水余热回收利用领域进行沟通。

4、高炉冲渣水余热利用经济效益。

经测算,采用水力冲渣余热取暖每个采暖期相对于锅炉取暖将会节约费用285-73=212万元/年。

单台300kW机组每小时能回收96t低温热水的余热。

若采用水冷式系统,将1000 t/h的冲渣水余热完全回收,可并联10台相同的机组,那么该系统净发电功率可达到2030kW,取系统年运行时间为7000h,则年发电量为14210000kW·h,产生的经济效益将是非常可观的。

相关文档
最新文档