SPI总线有四种工作方式,哪几种最为广泛

合集下载

spi通信规范

spi通信规范

竭诚为您提供优质文档/双击可除spi通信规范篇一:spi通讯协议介绍spi通讯协议介绍spiinterfacespi接口介绍spi是由美国摩托罗拉公司推出的一种同步串行传输规范,常作为单片机外设芯片串行扩展接口。

spi有4个引脚:ss(从器件选择线)、sdo(串行数据输出线)、sdi(串行数据输入线)和sck(同步串行时钟线)。

spi可以用全双工通信方式同时发送和接收8(16)位数据,过程如下:主机启动发送过程,送出时钟脉冲信号,主移位寄存器的数据通过sdo移入到从移位寄存器,同时从移位寄存器中的数据通过sdi移人到主移位寄存器中。

8(16)个时钟脉冲过后,时钟停顿,主移位寄存器中的8(16)位数据全部移人到从移位寄存器中,随即又被自动装入从接收缓冲器中,从机接收缓冲器满标志位(bF)和中断标志位(sspiF)置“1”。

同理,从移位寄存器中的8位数据全部移入到主寄存器中,随即又被自动装入到主接收缓冲器中.主接收缓冲器满标志位(bF)和中断标志位(sspiF)置“1”。

主cpu检测到主接收缓冲器的满标志位或者中断标志位置1后,就可以读取接收缓冲器中的数据。

同样,从cpu检测到从接收缓冲器满标志位或中断标志位置1后,就可以读取接收缓冲器中的数据,这样就完成了一次相互通信过程。

这里设置dspic30F6014为主控制器,isd4002为从器件,通过spi口完成通信控制的过程。

spi总线协议spi是一个环形总线结构,由ss(cs)、sck、sdi、sdo 构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。

假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。

那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。

下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。

SPI总线的特点、工作方式及常见错误解答

SPI总线的特点、工作方式及常见错误解答

SPI总线的特点、工作方式及常见错误解答1. SPI总线简介SPI(serial peripheral interface,串行外围设备接口)总线技术是Motorola公司推出的一种同步串行接口。

它用于CPU与各种外围器件进行全双工、同步串行通讯。

它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOS I)、低电平有效从机选择线CS。

当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。

发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。

即完成一个字节数据传输的实质是两个器件寄存器内容的交换。

主SPI的时钟信号(SCK)使传输同步。

其典型系统框图如下图所示。

图1 典型系统框图2.SPI总线的主要特点· 全双工;· 可以当作主机或从机工作;· 提供频率可编程时钟;· 发送结束中断标志;式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示):· 写冲突保护;.总线竞争保护等。

3.SPI总线工作方式SPI总线有四种工作方图2 SPI0和SPI3方式(实线表示)四种工作方式时序分别为:图3 四种工作方式时序时序详解:CPOL:时钟极性选择,为0时SPI总线空闲为低电平,为1时SPI总线空闲为高电平CPHA:时钟相位选择,为0时在SCK第一个跳变沿采样,为1时在SCK第二个跳变沿采样工作方式1:当CPHA=0、CPOL=0时SPI总线工作在方式1。

MISO引脚上的数据在第一个SPSCK沿跳变之前已经上线了,而为了保证正确传输,MOSI引脚的MSB位必须与SPSCK的第一个边沿同步,在SPI传输过程中,首先将数据上线,然后在同步时钟信号的上升沿时,SPI的接收方捕捉位信号,在时钟信号的一个周期结束时(下降沿),下一位数据信号上线,再重复上述过程,直到一个字节的8位信号传输结束。

SPI接口

SPI接口

SPI接口1.技术性能SPI接口是Motorola 首先提出的全双工三线同步串行外围接口,采用主从模式(Master Slave)架构;支持多slave模式应用,一般仅支持单Master,多用于CPU与各种外围器件进行全双工、同步串行通讯。

时钟由Master控制,在时钟移位脉冲下,数据按位传输,高位在前,低位在后(MSB first);SPI接口有2根单向数据线,为全双工通信,目前应用中的数据速率可达几Mbps的水平。

总线结构如下图所示。

2.接口定义SPI接口共有4根信号线,分别是:设备选择线、时钟线、串行输出数据线、串行输入数据线。

(1)MOSI:主器件数据输出,从器件数据输入(2)MISO:主器件数据输入,从器件数据输出(3)SCLK :时钟信号,由主器件产生(4)/SS:从器件使能信号,由主器件控制3.内部结构4.传输时序在SPI操作中,最重要的两项设置就是时钟极性(CPOL或UCCKPL)和时钟相位(CPHA或UCCKPH)。

时钟极性设置时钟空闲时的电平,时钟相位设置读取数据和发送数据的时钟沿。

SPI总线有四种工作方式(SP0, SP1, SP2, SP3),其中使用的最为广泛的是SPI0和SPI3方式。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,主机和从机的发送数据是同时完成的,两者的接收数据也是同时完成的。

所以为了保证主从机正确通信,应使得它们的SPI具有相同的时钟极性和时钟相位。

时钟极性(CPOL)对传输协议没有重大的影响。

如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA="0",在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

CAN、I2S、I2C、SPI、SSP总线简介

CAN、I2S、I2C、SPI、SSP总线简介

一、SPI总线说明串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。

SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。

SPI可以同时发出和接收串行数据。

它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。

这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D、D/A转换子系统或其他的MCU。

当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。

发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。

主SPI的时钟信号(SCK)使传输同步。

其典型系统框图如下图所示。

SPI主要特点有: 可以同时发出和接收串行数据;∙可以当作主机或从机工作;∙提供频率可编程时钟;∙发送结束中断标志;∙写冲突保护;∙总线竞争保护等。

图2示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示):SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

如果 CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI主模块和与之通信的外设音时钟相位和极性应该一致。

SPI解释

SPI解释
2.1、SPI:高速同步串行口
SPI:高速同步串行口。是一种标准的四线同步双向串行总线。 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO – 主设备数据输出,从设备数据输入 (2)SDI – 主设备数据输入,从设备数据输出 (3)SCLK – 时钟信号,由主设备产生 (4)CS – 从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。

SPI工作原理

SPI工作原理

SPI∙由于SPI(setial peripheralinterface)总线占用的接口线少,通信效率高,并且支持大部分处理器芯片,因而是一种理想的选择。

SPI是利用4根信号线进行通信的串行接口协议,包括主/从两种模式。

4个接口信号为:串行数据输入(MISO,主设备输入、从设备输出)、串行数据输出(MOSI,主设备输出、从设备输入)、移位时钟(SCK)、低电平有效的从设备使能信号(cs)。

SPI最大的特点是由主设备时钟信号的出现与否来确定主/从设备间的通信。

一旦检测到主设备的时钟信号,数据开始传输。

∙目录∙SPI工作方式简介∙SPI的数据传输∙SPI用户逻辑∙SPI基本原理与结构SPI工作方式简介∙SPI是由美国摩托罗拉公司最先推出的一种同步串行传输规范,也是一种单片机外设芯片串行扩展接口。

SPI模式可以允许同时同步发送和接收8位数据,并支持4种工作方式:1. 串行数据输出,对应RC5/SDO引脚;2. 串行数据输入,对应RC4/SDI/SDA引脚;3. 串行时钟,对应RC3/SCK/SCL引脚;4. 从动方式选择,对应RA5/SS/AN4引脚。

SPI模式下与之相关的寄存器有10个,其中4个是与I2C模式共用的。

图1所示是由一个主机对接一个从机进行全双工通信的系统构成的方式。

在该系统中,由于主机和从机的角色是固定不变的,并且只有一个从机,因此,可以将主机的丽端接高电平,将从机的SS 端固定接地。

图1 全双工主机/从机连接方法若干个具备SPI接口的单片机和若干片兼容SPI接口的外围芯片,可以在软件的控制下,构成多种简单或者复杂的应用系统,例如以下3种。

(1)一个主机和多个从器件的通信系统。

如图2所示,各个从器件是单片机的外围扩展芯片,它们的片选端SS分别独占单片机的一条通用I/O引脚,由单片机分时选通它们建立通信。

这样省去了单片机在通信线路上发送地址码的麻烦,但是占用了单片机的引脚资源。

当外设器件只有一个时,可以不必选通而直接将SS端接地即可。

SPI总线的工作方式及原理详解

SPI总线的工作方式及原理详解

SPI总线的工作方式及原理详解SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。

SPI总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO;用于CPU与各种外围器件进行全双工、同步串行通讯。

SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

SPI总线有四种工作方式(SP0,SP1,SP2,SP3),其中使用的最为广泛的是SPI0和SPI3方式。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI主模块和与之通信的外设音时钟相位和极性应该一致。

SPI时序详解---SPI接口在模式0下输出第一位数据的时刻SPI接口有四种不同的数据传输时序,取决于CPOL和CPHL这两位的组合。

图1中表现了这四种时序,时序与CPOL、CPHL的关系也可以从图中看出。

图1CPOL是用来决定SCK时钟信号空闲时的电平,CPOL=0,空闲电平为低电平,CPOL=1时,空闲电平为高电平。

SPI四种模式区别资料

SPI四种模式区别资料

SPI四种模式区别资料SPI(Serial Peripheral Interface)是一种基于同步串行通信协议的通信接口。

SPI接口广泛应用于嵌入式系统中,用于连接微控制器与外部设备(如传感器、存储器等)进行数据交换。

SPI接口有四种模式,包括单向全双工模式、全双工模式、主机模式和从机模式。

下面将详细介绍SPI的四种模式的区别。

1.单向全双工模式:在单向全双工模式下,主机和从机都可以同时发送和接收数据,但只有一条数据线(MISO或MOSI)用于数据传输。

主机发送数据和从机接收数据的时钟由主机产生,主机接收数据和从机发送数据的时钟由从机产生。

单向全双工模式下不支持同步或异步传输,只能通过单一时钟进行数据传输。

2.全双工模式:在全双工模式下,主机和从机可以同时发送和接收数据,使用两根数据线(MOSI和MISO)进行数据传输。

主机发送数据的时钟由主机产生,从机发送数据的时钟由从机产生。

全双工模式下主机和从机可以独立地控制数据传输的速率,并且支持同步和异步传输。

3.主机模式:在主机模式下,主机负责控制SPI接口的时序,并通过片选信号(SS,Slave Select)选择与之通信的从机。

主机发送时钟信号,从机根据主机的时钟信号接收和发送数据。

主机模式下主机可以主动控制片选信号,在需要与从机进行数据交换时选择从机,提高了系统的灵活性。

4.从机模式:在从机模式下,从机只能被动地接收和发送数据,无法主动控制时序和片选信号。

从机根据主机的时钟信号接收和发送数据,并使用片选信号表示自身的状态。

从机模式下从机通常作为外设接口,等待主机的操作,在主机的控制下进行数据交换。

这四种模式在SPI接口的应用中分别具有不同的特点和使用场景。

单向全双工模式适用于数据传输要求简单且需要节约引脚的应用场景;全双工模式适用于同时实现数据发送和接收的复杂应用场景;主机模式适用于需要主机主动控制片选信号的系统;从机模式适用于外设接口对时序和片选信号无要求的应用。

can、i2s、i2c、spi、ssp总线简介【优质】

can、i2s、i2c、spi、ssp总线简介【优质】

一、SPI总线说明串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。

SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。

SPI可以同时发出和接收串行数据。

它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。

这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D、D/A转换子系统或其他的MCU。

当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。

发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。

主SPI的时钟信号(SCK)使传输同步。

其典型系统框图如下图所示。

SPI主要特点有: 可以同时发出和接收串行数据;∙可以当作主机或从机工作;∙提供频率可编程时钟;∙发送结束中断标志;∙写冲突保护;∙总线竞争保护等。

图2示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示):SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

如果 CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI主模块和与之通信的外设音时钟相位和极性应该一致。

SPI接口

SPI接口

SPI接口SPI接口简介SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASHR AM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(S CK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI接口SPI接口的全称是"Serial Peripheral Interface",意为串行外围接口,是Motorola 首先在其MC68HCXX系列处理器上定义的。

SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI接口是在CPU和外围低速器件之间进行同步串行数据传输,在主器件的移位脉冲下,数据按位传输,高位在前,低位在后,为全双工通信,数据传输速度总体来说比I2 C总线要快,速度可达到几Mbps。

SPI接口是以主从方式工作的,这种模式通常有一个主器件和一个或多个从器件,接口包括以下四种信号:(1)MOSI –主器件数据输出,从器件数据输入(2)MISO –主器件数据输入,从器件数据输出(3)SCLK –时钟信号,由主器件产生(4)/SS –从器件使能信号,由主器件控制在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。

多个从器件硬件连接示意图在多个从器件的系统中,每个从器件需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。

SPI接口在内部硬件实际上是两个简单的移位寄存器,传输的数据为8位,在主器件产生的从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。

SPI

SPI

SPISPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,如今越来越多的芯片集成了这种通信协议,比如AT91RM9200。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

这就允许在同一总线上连接多个SPI设备成为可能。

接下来就负责通讯的3根线了。

通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。

这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。

数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。

完成一位数据传输,输入也使用同样原理。

这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。

要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。

同样,在一个基于SPI的设备中,至少有一个主控设备。

这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。

也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。

SPI总线规范

SPI总线规范

SPI总线规范SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。

SPI概述SPI:高速同步串行口。

3~4线接口,收发独立、可同步进行.SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。

是Motorola首先在其MC68HCX X系列处理器上定义的。

SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200.SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。

外围设置FLASH RAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。

SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。

也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入(2)SDI –主设备数据输入,从设备数据输出(3)SCLK –时钟信号,由主设备产生(4)CS –从设备使能信号,由主设备控制其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

spi、can等总线的区别

spi、can等总线的区别

一、SPI总线说明串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口,Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。

SPI 用于CPU与各种外围器件进行全双工、同步串行通讯。

SPI可以同时发出和接收串行数据。

它只需四条线就可以完成MCU与各种外围器件的通讯,这四条线是:串行时钟线(CSK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)、低电平有效从机选择线CS。

这些外围器件可以是简单的TTL移位寄存器,复杂的LCD显示驱动器,A/D、D/A转换子系统或其他的MCU。

当SPI工作时,在移位寄存器中的数据逐位从输出引脚(MOSI)输出(高位在前),同时从输入引脚(MISO)接收的数据逐位移到移位寄存器(高位在前)。

发送一个字节后,从另一个外围器件接收的字节数据进入移位寄存器中。

主SPI的时钟信号(SCK)使传输同步。

其典型系统框图如下图所示。

SPI主要特点有: 可以同时发出和接收串行数据;* 可以当作主机或从机工作;* 提供频率可编程时钟;* 发送结束中断标志;* 写冲突保护;* 总线竞争保护等。

图2示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示):SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

如果CPOL="0",串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI总线协议

SPI总线协议

SPI总线协议同步外设接口(SPI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。

SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。

SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。

通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。

SPI通信该总线通信基于主-从配置。

它有以下4个信号:MOSI:主出/从入MISO:主入/从出SCK:串行时钟SS:从属选择芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。

在SPI传输中,数据是同步进行发送和接收的。

数据传输的时钟基于来自主处理器的时钟脉冲,摩托罗拉没有定义任何通用SPI的时钟规范。

然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。

CPOL和CPHA的设置决定了数据取样的时钟沿。

数据方向和通信速度SPI传输串行数据时首先传输最高位。

波特率可以高达5Mbps,具体速度大小取决于SPI 硬件。

例如,Xicor公司的SPI串行器件传输速度能达到5MHz。

SPI总线接口及时序SPI总线包括1根串行同步时钟信号线以及2根数据线。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

spi线的原理与应用研究

spi线的原理与应用研究

SPI线的原理与应用研究1. 概述SPI(Serial Peripheral Interface)是一种串行外设接口协议,被广泛应用于各种嵌入式系统中。

本文将介绍SPI线的原理和应用,包括其基本原理、工作模式、使用场景等。

2. 基本原理SPI线是一种全双工的串行数据传输线,由至少4根线组成,包括主设备发出数据(MOSI)、接收数据(MISO)、时钟信号(SCLK)和片选信号(SS)。

其中,主设备负责发起传输并控制片选信号,从设备负责接收和响应传输。

3. 工作模式SPI线可以工作在多种模式下,主要包括四种常见模式: 1. 模式0:时钟信号空闲时,数据线保持低电平;数据线在时钟信号的上升沿采样,下降沿传输数据。

2. 模式1:时钟信号空闲时,数据线保持低电平;数据线在时钟信号的下降沿采样,上升沿传输数据。

3. 模式2:时钟信号空闲时,数据线保持高电平;数据线在时钟信号的下降沿采样,上升沿传输数据。

4. 模式3:时钟信号空闲时,数据线保持高电平;数据线在时钟信号的上升沿采样,下降沿传输数据。

4. 应用场景SPI线在各种嵌入式系统中广泛应用,特别适用于需要高速数据传输和较短传输距离的场景。

以下是几个常见的应用场景: - 存储器接口:SPI线可以连接各类存储器,如闪存、EEPROM等,实现数据的读写操作。

- 传感器接口:许多传感器设备采用SPI线与主控设备连接,例如温度传感器、加速度传感器等。

- 显示设备接口:SPI线可以用于连接各种显示设备,如液晶屏、OLED屏等,用于传输显示数据。

- 通信接口:SPI线可以用于实现设备之间的通信,如无线模块与主控设备之间的数据传输。

5. 优缺点分析SPI线作为一种串行通信协议,具有以下优点: - 高速数据传输:由于采用串行数据传输,SPI线可以实现较高的数据传输速率。

- 硬件控制简单:SPI线的控制由硬件实现,相比其他协议更加简单。

- 灵活性高:SPI线支持多个从设备连接到一个主设备,因此具有灵活的拓展性。

Verilog实现FPGA作为从机与STM32进行SPI协议通信

Verilog实现FPGA作为从机与STM32进行SPI协议通信

FPGA作为从机与STM32进行SPI协议通信Verilog实现一.SPI协议简要介绍SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议。

SPI总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO;用于 CPU 与各种外围器件进行全双工、同步串行通讯。

SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

SPI总线有四种工作方式(SP0, SP1, SP2, SP3),其中使用的最为广泛的是SPI0和SPI3方式。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。

如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。

如果 CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI主模块和与之通信的外设时钟相位和极性应该一致。

以下是SPI时序图:主要讲解一下广泛使用的两种方式设置:SPI0方式:CPOL=0,CPHA=0;SCK空闲状态为低电平,第一个跳变沿(上升沿)采样数据,无论对Master还是Slaver都是如此。

SPI3方式:CPOL=1,CPHA=1;SCK空闲状态为高电平,第二个跳变沿(上升沿采样数据,无论对Master还是Slaver都是如此。

串行通信UART I2C SPI 原理与简单应用

串行通信UART I2C SPI 原理与简单应用

TXD SBUF
TH1 TL1 1
÷2 ÷16
控制门 发送控制器
TI
去串口中断
≥1
T1溢出率
0 SMOD
接收控制器 移位寄存器
RI
RXD SBUF
电平转换电路
PC机的串口是RS232电平标准(+15V~’0’,-15V~’1’),而显然 MCS51的UART是5V-TTL电平标准,因此需要加上电平转换电 路, 方可实现与PC机串口的通讯。
UART使用的步骤:
• • • • 设置串口工作模式。SCON的SM0=0,SM1=1使其工作于模式1, REN=1使能接收。 根据波特率计算公式设置波特率。注意,需要使定时器工作于 自动重装模式。使用定时器2可以达到较高的波特率。 波特率是否需要倍速。如果使用定时器1做波特率发生器且倍 速后方能满足波特率要求,则需要PCON=0x80。PCON不影响 定时器2产生的波特率。 串口中断。一般来讲串口发送均会采用查询模式,串口接收较 多采用中断模式。ES=1可以打开串口中断,随后要EA=1打开 全局中断。注意,要写好中断服务函数,而且MCS51的串口收 发中断共用,因此中断服务函数中需要判断TI与RI的值。中断 向量标号是4。 向SBUF写入数据启动串口发送,读SBUF可以取出接收到的数 据
在多主机系统中,可能同时有几个主机企图启动总线传送数据。为 了避免混乱, I2C总线要通过总线仲裁,以决定由哪一台主机控制总 线。 在80C51单片机应用系统的串行总线扩展中,我们经常遇到的是 以80C51单片机为主机,其它接口器件为从机的单主机情况。
I2C总线的数据传送
一、数据位的有效性规定 I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据 必须保持稳定,只有在时钟线上的信号为低电平期间,数据线上的高电 平或低电平状态才允许变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPI 总线有四种工作方式,哪几种最为广泛
SPI 总线是Motorola 公司推出的三线同步接口,同步串行3 线方式进
行通信:一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO;
用于CPU 与各种外围器件进行全双工、同步串行通讯。

SPI 主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。

SPI 总线有四种工作方式(SP0, SP1, SP2, SP3),其中使用的最为广泛的是SPI0 和SPI3 方式。

SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输
协议没有重大的影响。

如果CPOL=0,串行同步时钟的空闲状态为低电平;
如果CPOL=1,串行同步时钟的空闲状态为高电平。

时钟相位(CPHA)能够配
置用于选择两种不同的传输协议之一进行数据传输。

如果CPHA=0,在串行
同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行
同步时钟的第二个跳变沿(上升或下降)数据被采样。

SPI 主模块和与之通信的
外设音时钟相位和极性应该一致。

SPI 时序详解---SPI 接口在模式0 下输出第。

相关文档
最新文档