单模与多模的区别

合集下载

单模光纤和多模光纤的区别【超好】

单模光纤和多模光纤的区别【超好】
多模光纤又分为多模突变型光纤和多模渐变型光纤。前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。
由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。而单模光纤就能用在无中继的光通讯上。
相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS千兆网中,多模光纤最高可支持550米的传输距离。
业界一般认为当传输距离超过295尺,电磁干扰非常严重,或频宽需要超过350MHz,那便应考虑采用多模光纤代替双绞线作为传输载体。
多模光纤
多模光纤中光信号通过多个通路传播;通常建议在距离不到英里时应用。
多模光纤从发射机到接收机的有效距离大约是5英里。可用跟离还受发射/接收装置的类型和质量影响; 光源越强、接收机越灵敏,距离越远。研究表明,多模光纤的带宽大约为4000Mb/s。
制造的单模光纤是为了消除脉冲展宽。由于纤芯尺寸很小(7-9微米),因此消除了光线的跳跃。在1310和 1550nm波长使用聚焦激光源。这些激光直接照射进微小的纤芯、并传播到接收机,没有明显的跳跃。如果可以把 多模比作猎怆,能够同时把许多弹丸装人枪筒,那么单模就是步枪,单一光线就像一颗子弹。
二. 单模光纤具备10 micron的芯直径,可容许单模光束传输,可减除频宽及振模色散(Modal dispersion)的限制,但由于单模光纤芯径太小,较难控制光束传输,故需要极为昂贵的激光作为光源体,而单模光缆的主要限制在于材料色散(Material dispersion),单模光缆主要利用激光才能获得高频宽,而由于LED会发放大量不同频宽的光源,所以材料色散要求非常重要。

单模和多模光纤的区别及网线分类

单模和多模光纤的区别及网线分类

单模和多模光纤的区别及网线分类多模纤维:它有一个很大的电缆心线束,能够让数百条光线同时通过光纤进行传播。

多模光纤主要用于短距离的系统中(低于 2km),如房屋通信系统、个人专用数据网络及并行光学应用系统。

单模纤维:它有一个小得很多的电缆心线束,同时只能供一条光束通过电缆心线束进行传播。

单模纤维设计用来保持每一条光学信号经过长距离传输后在空间及光谱方面的完整性,可供更多的信息进行传输。

单模纤维典型的应用就是长距离和高带宽方面的应用程序。

多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。

80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

光纤单模多模作用

光纤单模多模作用

光纤单模多模作用
单模光纤和多模光纤是两种不同类型的光纤,它们在光学和通信领域中有不同的作用。

单模光纤具有较小的纤芯直径,通常为 8-10 微米,只能传输一种模式的光信号。

这使得单模光纤能够传输更高频率和更长距离的光信号,同时减少了信号衰减和色散。

单模光纤适用于高速、长距离的数据传输,如长途通信、光纤传感和光网络等领域。

相比之下,多模光纤具有较大的纤芯直径,通常为 50 或 62.5 微米,可以同时传输多种模式的光信号。

这使得多模光纤适用于短距离的数据传输,如局域网(LAN)、数据中心和光纤到户(FTTH)等应用。

多模光纤的优点是成本较低、易于连接,但在长距离传输和高速数据传输方面性能不如单模光纤。

总的来说,单模光纤和多模光纤的选择取决于具体的应用需求。

对于长距离、高速和高质量的数据传输,单模光纤是更好的选择;而对于短距离、低成本和多连接的应用,多模光纤则更适合。

在实际应用中,通常会根据不同的网络架构和性能要求来选择使用单模光纤还是多模光纤。

单模光纤和双模光纤有什么区别

单模光纤和双模光纤有什么区别

单模光纤和双模光纤有什么区别推荐文章光纤宽带接无线路由器的方法有哪些热度:路由器与光纤猫ip地址冲突怎么办热度:联通光纤路由器设置的方法热度:光纤猫连接路由器无法上网怎么办热度:Cisco思科光纤交换机配置常用命令介绍热度:在网络工程实施中,经常有菜鸟新手不知道如何分辨单模光纤和多模光纤。

其实两者之间也是有一定的区别的。

下面就跟着店铺一起来看看吧。

单模光纤和多模光纤的区别根据传输点模数的不同,光纤可分为单模光纤和多模光纤。

所谓"模"是指以一定角速度进入光纤的一束光。

单模光纤采用固体激光器做光源,多模光纤则采用发光二极管做光源。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个“模”光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散。

),模分散技术限制了多模光纤的带宽和距离,因此,多模光纤的芯线粗,传输速度低、距离短,整体的传输性能差,但其成本比较低,一般用于建筑物内或地理位置相邻的环境下。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性,因而,单模光纤的纤芯相应较细,传输频带宽、容量大,传输距离长,但因其需要激光源,成本较高。

单模光纤单模光纤的纤芯较细,使光线能够直接发射到中心。

建议距离较长时采用。

另外,单模信号的距离损失比多模的小。

在头3000英尺的距离下,多模光纤可能损失其LED光信号强度的50%,而单模在同样距离下只损失其激光信号的6.25%。

单模的带宽潜力使其成为高速和长距离数据传输的唯一选择。

最近的测试表明,在一根单模光缆上可将40G以太网的64信道传输长达2,840英里的距离。

多模光纤多模光纤中光信号通过多个通路传播;通常建议在距离不到英里时应用。

多模光纤从发射机到接收机的有效距离大约是5英里。

可用跟离还受发射/接收装置的类型和质量影响; 光源越强、接收机越灵敏,距离越远。

研究表明,多模光纤的带宽大约为4000Mb/s。

在安全应用中,选择多模还是单模的最常见决定因素是距离。

单模光纤、多模光纤的区别

单模光纤、多模光纤的区别

单模光纤(SingleModeFiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

多模光纤是指可以传输多个光传导模的光纤。

局域网(LAN)多选用多模光纤,其理由一为多模光纤收发机便宜(比同档次相应单模光纤收发器的价格低一半);二为多模光纤接续简单方便和费用低。

常用的多模光纤主要有IEC-60793-2光纤产品规范中的A1a类(50/125μm)和A1b类(62.5/125μm)两种。

这两种多模光纤的包层直径和机械性能相同,都能提供如以太网、令牌环和FDDI协议在标准规定的距离内所需的带宽,而且二者都能升级到Gbit/s的速率。

单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。

单模光纤的纤芯很小,约4~10um,只传输主模态。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势。

多模光纤又分为多模突变型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。

而单模光纤就能用在无中继的光通讯上。

在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

光纤激光器单模和多模有何区别

光纤激光器单模和多模有何区别

光纤激光器是激光切割机中的核心部件,对激光切割机的切割效果有很大的影响。

在选择激光切割机时,需要考虑光纤激光器的模块集成方式是怎样的?光纤激光器的模块组成分为单模和多模两种,在切割应用中,聚焦光斑对切割出的质量有很大影响,单模激光器的纤芯比较细,光束质量优于多模,能量分布呈高斯分布,中间能量密度最高,三维图是一个尖圆的山峰状。

多模激光器的纤芯相比粗一些,光束质量相比单模要差一些,能量分布相比单模光斑平均一些,三维图像一个倒扣的杯子,从边缘陡峭程度来看,多模的比单模的陡峭很多。

同功率的1.5KW单模和1.5KW的多模激光器对比1mm薄板切割速度单模比多模高20%,视觉效果差不多,但从2mm开始,速度优势逐步下降,从3mm开始,无论是速度还是效果,高功率多模激光器速度和效果的优势就非常明显的体现出来,如下图:所以单模的优势在薄板,多模的优势在厚板,单模和多模并没有相互比较的价值,都是光纤激光器的一项配置,就好比一辆车,轿车适合公路,越野适合山地,但是轿车也能跑山地,越野也能跑公路,所以光纤激光器到底选多模还是单模要看实际终端客户的加工需求。

单模和多模,该如何选择呢?从功率级区分来看,1000W以内的激光器因为本身能量不高的原因,主要加工材料厚度偏向于薄板,因此1KW以内的激光器用单模配置比较符合市场实际情况,1KW以上功率的激光器要薄厚兼顾。

从整个加工行业来讲,加工质量的提升是一项刚性需求,是不能妥协的,因此很多高功率激光器选型不会考虑单模,必须保证加工质量为第一位!同时,单模的纤芯一般较细,意味着同样功率的激光在其中传输,单模纤芯的光能量承载更大,对材料是一项考验。

同时当切割高反材料时,高强度反射光和射出的激光叠加,如果光纤材料容忍度不足会非常容易“烧纤芯”,同时对纤芯材料寿命也是一项挑战!因此很多激光器厂商在高功率光纤激光器的配置上仍选用多模的配置!。

多模单模光纤区别

多模单模光纤区别

单模光纤和多模光纤的区别
单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。

单模光纤的纤芯很小,约4~10um,只传输主模态。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势。

多模光纤又分为多模突变型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。

而单模光纤就能用在无中继的光通讯上。

在光纤通信理论中,光纤有单模、多模之分,区别在于:
1. 单模光纤芯径小(10um左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相对困难。

2. 多模光纤芯径大(62.5um或50um),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容易。

于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。

一般有以下区别:
1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好。

2013-10-24 HUAWEI Confidential Page1, Total1。

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

一、纤芯直径不同
1、多模:多模光纤的纤芯直径多为是50μm/62.5μm。

2、单模:单模光纤的纤芯直径多为是9μm。

二、光源不同
1、多模:采用LED(发光二极管)或垂直腔面发射激光器(VCSEL)作为光源,因为LED光源能产生许多模式的光(光较分散)。

2、单模:采用激光器或激光二极管作为光源,因为激光光源能产生单一模式的光,具备高亮度、高功率等优势。

三、色散不同
1、多模:多模光纤的折射率分为渐变和阶跃两种类型。

2、单模:单模光纤的纤芯多为为单一材质,古折射率。

四、带宽不同
光纤的色散是影响光纤带宽的因素,光纤色散越小,光纤带宽就越宽。

单模光纤是几乎不存在色散,因此单模光纤的带宽比多模光纤的带宽宽。

多膜光纤和单膜光纤

多膜光纤和单膜光纤

多膜光纤和单膜光纤
多膜光纤和单膜光纤都是用于光通信领域的光纤。

它们之间的区别在于内部构造和传输性能。

多膜光纤(Multi-mode Optical Fiber)是指内部芯线直径较粗,一般为50μm或62.5μm的光纤,具有多种折射率的光纤,用于短距离通信(常用距离2公里以内)。

由于多膜光纤芯线比较粗,因此光传输时的损耗比单膜光纤大,而且里面的多种百余种反射光线会出现时间的延迟,导致信号失真的问题。

同时多膜光纤由于存在多个模式,所以不适合进行高速和高带宽的数据传输。

单膜光纤(Single-mode Optical Fiber)是内部芯线直径很细,仅有9μm的光纤。

单膜光纤内部只允许一种模式的光线通过,在传输距离特别长的情况下,单模光纤的信号传输质量会更好,并且对于高速、宽带高频率信号的传输,单模光纤的信噪比更高,传输距离也更远。

总之,多模光纤与单模光纤的应用领域是相对的。

使用多模光纤适用于需要低成本,但对信号传输质量与距离要求不高的短距离通信场景。

使用单模光纤适用于高质量、高速度和大距离要求的长距离通信场景。

单模光纤、多模光纤的区别

单模光纤、多模光纤的区别

单模光纤(SingleModeFiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

多模光纤是指可以传输多个光传导模的光纤。

局域网(LAN)多选用多模光纤,其理由一为多模光纤收发机便宜(比同档次相应单模光纤收发器的价格低一半);二为多模光纤接续简单方便和费用低。

常用的多模光纤主要有IEC-60793-2光纤产品规范中的A1a类(50/125μm)和A1b类(62.5/125μm)两种。

这两种多模光纤的包层直径和机械性能相同,都能提供如以太网、令牌环和FDDI协议在标准规定的距离内所需的带宽,而且二者都能升级到Gbit/s的速率。

单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。

单模光纤的纤芯很小,约4~10um,只传输主模态。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势。

多模光纤又分为多模突变型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。

而单模光纤就能用在无中继的光通讯上。

在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm。

单模与多模光纤区别及相关介绍

单模与多模光纤区别及相关介绍

单模光纤与多模光纤区别单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。

单模光纤的纤芯很小,约4~10um,只传输主模态。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势。

多模光纤又分为多模突变型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。

而单模光纤就能用在无中继的光通讯上。

在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难。

2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm 或1310nm。

与光器件的耦合相对容易。

而对于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。

一般有以下区别:1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好。

单模光纤只传基模一种模式,多模可以传多种模式。

单模主要用于长途干线,多模用于局域。

前面有人说单模比多模细得多,其实是不对的,两种纤包层直径都为125只是芯径不一样,单模为9多模一般常用的有50和62.5两种。

一般情况单模不会直接和多模相接是通过设备转换。

下面是一些更详细的介绍:一、光纤二、光缆三、光纤通信系统及其构成四、光缆的种类和机械性能一、光纤1、概述光纤和同轴电缆相似,只是没有网状屏蔽层。

光模块的单模和多模的六大区别及区分方法

光模块的单模和多模的六大区别及区分方法

光模块的单模和多模的六大区别及区分方法单模和多模光模块在光传输中所使用的光纤类型和传输方式有所不同,具体的区别和区分方法如下:1. 光纤类型:单模光模块使用的是单模光纤,而多模光模块使用的是多模光纤。

单模光纤只允许单一光模式通过,而多模光纤允许多种光模式同时传输。

2. 光纤芯径:单模光模块使用的光纤芯径较小,通常为9/125μm,而多模光模块使用的光纤芯径较大,通常为50/125μm或62.5/125μm。

3. 传输带宽:单模光模块具有较高的传输带宽,能够传输高达10 Gbps以上的数据,而多模光模块的传输带宽较低,一般在1 Gbps以下。

4. 传输距离:由于单模光纤的较小芯径和较低的传输损耗,使得单模光模块的传输距离较长,达到数十千米甚至上百千米。

而多模光模块的传输距离较短,一般在几百米到几千米之间。

5. 使用波长:单模光模块使用的光波长通常在1310nm或1550nm范围内,而多模光模块使用的光波长通常在850nm或1300nm范围内。

6. 价格和功耗:由于单模光模块的制造工艺和材料成本较高,使得单模光模块的价格较多模光模块要高。

同时,由于多模光模块传输距离较短,所以功耗也较低。

区分方法:1. 通过查看光模块的标识牌或型号,单模光模块通常以SM (Single Mode)为标志,多模光模块通常以MM(Multi Mode)为标志。

2. 观察光模块的光纤接口,单模光模块的接口通常为绿色,多模光模块的接口通常为蓝色或黑色。

3. 查看光模块的规格参数,如芯径、传输带宽和传输距离等。

单模光模块的芯径较小、传输带宽较高、传输距离较长,而多模光模块则相反。

4. 可以通过测量光纤的衰减或传输距离来判断使用的光纤类型。

单模光纤的衰减较小、传输距离较长,而多模光纤则相反。

5. 可以通过检测光模块的光波长来判断其使用的光纤类型。

单模光模块通常使用的光波长在1310nm或1550nm范围内,而多模光模块通常使用的光波长在850nm或1300nm范围内。

单模和多模光纤的特点和应用

单模和多模光纤的特点和应用

单模和多模光纤的特点和应用单模光纤是一种具有非常小的核心直径(通常在8-10微米)的光纤,可以传输单个模式(或光束)的光信号。

相比之下,多模光纤的核心直径通常较大(约为50-100微米),可以同时传输多个模式的光信号。

以下是单模光纤和多模光纤的特点和应用的详细介绍。

单模光纤的特点:1.小的核心直径:单模光纤的核心直径非常小,可以减少光信号的色散和衰减,提高光信号的传输质量和距离。

2.单模传输:单模光纤只能传输单个模式的光信号,避免了多模光纤中的模式间互相干涉和色散现象。

3.高带宽:单模光纤可以支持高带宽的传输,适用于高速数据传输和长距离通信。

4.低衰减:由于小的核心直径和单模传输的特性,单模光纤的传输衰减非常低,可以保持较高的信号强度。

单模光纤的应用:1.长距离通信:单模光纤适用于长距离的光纤通信,如城域网、广域网等。

其低衰减和高带宽的特点可以实现高质量和高速的数据传输。

2.激光器和光放大器:单模光纤可用于连接光源和激光器,将激光信号传输到远距离的位置。

同时也可以用于连接光放大器,将弱信号放大至所需的能量级别。

3.光纤传感器:由于单模光纤的高灵敏度和低衰减,可以用于制作各种光纤传感器,如温度传感器、应变传感器等。

多模光纤的特点:1.大的核心直径:多模光纤的核心直径较大,可以同时传输多个模式的光信号,从而形成光束扩散或重叠的现象。

2.便宜:相比于单模光纤,多模光纤的制造成本较低,更容易获得和安装。

3.灵活性:多模光纤可以容纳较大的模式直径,使得其在连接光源和接收器时更加灵活。

多模光纤的应用:1.短距离通信:多模光纤适用于短距离的通信和数据传输,如局域网、数据中心等。

由于多模光纤的制造成本低,可以实现经济高效的短距离通信。

2.光纤传感器:多模光纤可以用于制作一些基本的光纤传感器,如光纤光栅传感器、流量传感器等。

3.图像传输:多模光纤可以用于传输图像和视频信号,如监控系统、医疗图像传输等。

总结起来,单模光纤适用于长距离、高带宽和高质量的通信和数据传输需求,而多模光纤则适用于短距离、经济高效的通信和数据传输需求。

单模光纤和多模光纤的区别(超全)

单模光纤和多模光纤的区别(超全)

单模光纤与多模光纤的区别从纤芯的尺寸大小来简单地判别单模光纤的纤芯很小,约8~10μm,只传输基模一种模式。

这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。

这种光纤适用于大容量、长距离的光纤通信。

它是未来光纤通信与光波技术发展的必然趋势;多模光纤又分为多模阶跃型光纤和多模渐变型光纤。

前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。

纤芯直径为50μm或62.5μm,单模多模的外直径(包层直径)都为125μm。

模的数量取决于纤芯的直径、数值孔径和波长。

模和多模是相对特定波长而言的,相同的光纤在不同的波长可能是单模也可能是多模。

在光纤通信理论中区别单模光纤芯径小(10μm左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm),与光器件的耦合相对困难。

多模光纤芯径大(62.5μm或50μm),允许上百个模式传输,色散大,工作在850nm或1310nm。

与光器件的耦合相对容易。

而对于光端模块来讲,严格的说并没有单模、多模之分。

所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。

工作波长及损耗上区别单模光纤在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这就是说在1.31μm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1.31μm处正好是光纤的一个最低损耗窗口。

多模光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为 2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

光源使用上区别单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别

单模光纤和多模光纤的区别
区别:
1、不同的光源
单模光纤使用固态激光器作为光源。

以发光二zhi极管为光源的多模光纤。

2、不同的成本
单模光纤具有较宽的传输频率带宽和较长的传输距离,但由于需要激光源,因此成本较高。

多模光纤传输速度低,距离短,但成本相对较低。

3、传输方式的数量不同
单模光纤的纤芯直径和色散很小,并且仅允许一种模式传输。

多模光纤芯径和色散大,允许上百种模式传输。

4、单模光缆的表面通常印有G652B或G652D或芯号+ B1.x,例如24B1.1,表示有24芯B1.1光纤,即G.652B。

例如48B1.3,表示存在48芯B1.3光纤,即G.2D光纤。

多模光缆通常具有相对较少的芯数。

通常,它们印有芯号+ A1b或A1a(注意,A1a代表50/125多模光纤,A1b代表62.5 / 125多模光纤),或直接印有50/125或62.5 / 125和其他标识,例如MM,OM1,Om2,OM3等。

单模与多模光纤的区别

单模与多模光纤的区别

单模与多模光纤的区别1、光纤分类光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62。

5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

故有62。

5/125μm、50/125μm、9/125μm等不同种类。

光纤的工作波长有短波850nm、长波1310nm和1550nm。

光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1。

55μm的损耗一般为0。

20dB/km,这是光纤的最低损耗,波长1。

65μm以上的损耗趋向加大。

由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、单模光纤单模光纤(SingleModeFiber):单模光纤只有单一的传播路径,一般用于长距离传输,中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光.因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来发现在1310nm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。

这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤. 900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。

目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED系统通过消除了1400nm水峰的影响因素,从而为用户提供了更广泛的传输带宽,用户可以自由使用从1260nm到1620nm的所有波段,因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM粗波分复用技术打下了坚实的基础,TeraSPEED解决方案为园区/城市级理想的主干光纤系统。

单模光纤与多模光纤的区别

单模光纤与多模光纤的区别

1、型号区分, GYFTY、 GYFIZY般为多模: GYXTW、GYTS般为单模
2、颜色区分,室内多模光缆为橙色.室内单模光缆为黄色
3、标识区分,MM为多模,SM为单模
4、按光在光纤中的传输模式区分。

多模光纤:在给定的工作波长上传输多种模式的光纤。

按其折射率的分布分为突变型和新变型。

由于多模光纤中传输的模式多达数百个,各个模式的传播常数和速率不同,使光纤的帯宽窄,色散大,损耗也大,只适于中短距离和小容量的光纤通信系统。

单模光纤(Singlemodefibe):中心玻璃芯很细(芯径一般为9或10um),只能传一种模式的光纤。

因此,其模间色散很小、适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱和稳定性有较高的要求,即谱宽要窄,稳定性要好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最主要的差别:
多模光纤多用于传输速率相对较低,传输距离相对较短的网络中,如局域网等,这类网络中通常具有节点多,接头多,弯路多,而且连接器、耦合器的用量大,单位光纤长度使用光源个数多等特点,使用多模光纤可以有效的降低网络成本。

单模光纤多用于传输距离长,传输速率相对较高的线路中,如长途干线传输,城域网建设等。

光纤分类方式有几种,按光在光纤中的传输模式分:单模光纤和多模光纤。

多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ的吸收作用,
0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。

80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤
多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤
单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽
要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这就是说在1.31μm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

单模光纤
单模光纤中,模内色散是比特率的主要制约因素。

由于其比较稳定,如果需要的话,可以通过增加一段一定长度的“色散补偿单模光纤”来补偿色散。

零色散补偿光纤就是使用一段有很大负色散系数的光纤,来补偿在1550nm处具有较高色散的光纤。

使得光纤在1550nm附近的色散很小或为零,从而可以实现光纤在1550nm处具有更高的传输速率。

在单模光纤中,另一种色散现象是偏振模色散(PMD),由于PMD是不稳定的,因而不能进行补偿。

多模光纤
多模光纤中,模式色散与模内色散是影响带宽的主要因素。

PCVD工艺能够很好地控制折射率分布曲线,给出优秀的折射率分布曲线,对渐变型多模光纤(GIMM),可限制模式色散而得到高的模式带宽。

全系统带宽达到一定程度时,同样也受到模内色散的制约,尤其在850nm 处,多模光纤的模内色散非常大。

一些国际标准给出的多模光纤在850nm处的色散系数为-120ps/(nm·km),而PCVD多模光纤的色散值介于-95~-110 ps/(nm·km)。

相关文档
最新文档