高盐废水处理方法
高盐废水处理方法及工艺
高盐废水处理方法及工艺(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!高盐废水处理方法及工艺1 高盐废水处理概述高盐废水处理是现阶段工业发展面临的重大环保问题。
工业高盐废水的处理方法
工业高盐废水的处理方法一、物理方法物理方法是利用物理原理对高盐废水进行处理,常见的物理方法有蒸发结晶法、逆渗透法和电渗析法。
1.蒸发结晶法:将高盐废水加热蒸发,水分蒸发后形成结晶,从而分离出盐分。
蒸发结晶法适用于废水盐浓度高的情况,但处理过程中能源消耗较大。
2.逆渗透法:逆渗透法利用半透膜的选择性透过性,将高盐废水通过压力驱动,使盐分和水分分离,生成淡水和盐浓缩液。
逆渗透法处理效果好,但设备投资和运行成本较高。
3.电渗析法:电渗析法是利用电场力驱动离子在离子膜中的迁移,并通过离子膜的选择性透过性对离子进行分离。
电渗析法适用于盐分浓度较低的高盐废水处理,但存在电能消耗问题。
二、化学方法化学方法是利用化学原理对高盐废水进行处理,常见的化学方法有化学沉淀法、离子交换法和电化学法。
1.化学沉淀法:化学沉淀法通过添加化学药剂,使废水中的盐分形成易沉淀的固体颗粒,从而实现盐分的分离。
化学沉淀法易于实施和控制,但产生的沉淀物需要进一步处理。
2.离子交换法:离子交换法通过固体离子交换树脂吸附或释放离子,将废水中的盐分去除。
离子交换法处理效果好,但需要定期对树脂进行再生或更换,产生的废液也需要处理。
3.电化学法:电化学法通过电场作用将废水中的盐分转化为氧化物或析出在电极上,从而实现分离。
电化学法能耗较低,但设备投资较高且操作复杂。
三、生物方法生物方法是利用微生物对高盐废水进行处理,常见的生物方法有生物接触氧化法、生物膜法和生物降解法。
1.生物接触氧化法:生物接触氧化法通过将高盐废水与含有微生物的床体接触,使有机物被微生物降解。
生物接触氧化法适用于有机物浓度较高的高盐废水,但存在对高盐浓度不敏感的问题。
2.生物膜法:生物膜法通过在附着剂上培养微生物来进行高盐废水的降解。
生物膜法处理效果好,但需要定期维护和更换附着剂。
3.生物降解法:利用特定微生物对废水中有机物进行分解降解的方法。
生物降解法适用于有机物含量较高的高盐废水,但对高盐浓度和抗腐蚀性要求较高。
高盐废水的处理方法
高盐废水的处理方法
高盐废水的处理方法有以下几种:
1. 蒸发结晶法:将高盐废水进行蒸发,使盐分结晶析出,然后进行固液分离,得到高盐固体和低盐液体。
2. 逆渗透法:通过逆渗透膜将高盐废水进行过滤,将盐分和其他杂质分离出来,得到低盐水。
3. 离子交换法:利用离子交换树脂吸附高盐废水中的盐分离子,通过再生和洗脱,得到高纯度水和高盐溶液。
4. 气体扩散沉降法:将高盐废水通过气体扩散装置,让气泡与废水中的盐分反应生成气泡沉降物,从而实现盐分的去除。
5. 生物法:利用特定的微生物来降解高盐废水中的有机物,然后再进行物理或化学处理,以实现废水中盐分的去除。
6. 真空蒸发法:将高盐废水置于真空环境中,通过降低废水中的气压,促使废水中的水分蒸发,从而实现盐分的去除。
以上是常见的高盐废水处理方法,具体的选择应根据废水的具体情况和处理要求
来确定。
高盐废水处理方法及案例
高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。
为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。
但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。
高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。
将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。
吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。
吸附法的优点1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔过滤器 高盐废水 后续蒸发氧化后返回生化系统 脱附液2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低;3.工艺流程简单,可实现全程自动化操作,操作维护方便。
4.可实现多层布置,占地面积小,安装周期短。
案例介绍本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。
海普对该废水进行了定制化的工艺设计,废水设计指标如下表。
表1 废水设计参数表指标水量(m3/d)颜色(mg/L)吸附进水100 棕红色吸附出水~100 淡黄色出水蒸盐白色图2 原水(左)、出水(右)外观图图3 出水蒸盐图吸附工艺能深度吸附去除废水中的有机物,减少出水的色度,提高后续蒸盐系统的稳定性和蒸盐的品质,降低企业的生产运行费用,为客户现场稳定生产提供保障。
环氧树脂生产中高盐废水的特点与处理方法
环氧树脂生产中高盐废水的特点与处理方法环氧树脂是一种重要的合成材料,在很多领域中都得到广泛应用,如建筑、航空、汽车等。
然而,在其生产过程中,会产生大量的废水,其中高盐废水是一个重要的组成部分。
本文将重点讨论环氧树脂生产中高盐废水的特点以及处理方法。
一、高盐废水的特点1. 盐类含量高:环氧树脂生产中的废水中含有大量的盐类物质,如钠离子、氯离子、硫酸根离子等,其浓度通常较高。
2. 高COD和BOD:高盐废水中的化学需氧量(COD)和生化需氧量(BOD)通常较高,这是由于环氧树脂生产过程中使用的化学药剂和原料中含有大量有机物。
3. 颜色较深:高盐废水的颜色通常较深,这是由于废水中含有大量的有机物质和无机盐类。
二、高盐废水的处理方法高盐废水的处理需要采用相应的处理方法,以达到排放标准或回用要求。
1. 化学沉淀法化学沉淀法是高盐废水处理中常用的方法之一。
通过加入适量的化学药剂,使废水中的悬浮物和溶解物在中性或碱性条件下形成沉淀物,从而实现污水的固液分离。
常用的化学沉淀剂有氢氧化钙、聚合氯化铝等。
2. 反渗透技术反渗透技术是高盐废水处理的一种高效方法。
通过高压作用下,在半透膜上形成逆渗透流,将废水中的溶解性离子、有机物和颗粒物等截留下来,从而实现废水的处理和回收。
反渗透技术具有处理效果好、适应性广等优点,被广泛应用于高盐废水处理。
3. 离子交换法离子交换是通过将废水中的阳离子和阴离子与固体交换树脂上的其他离子进行交换,从而去除废水中的盐类和有机物。
离子交换技术具有处理效果好、操作简便等特点,适用于高盐废水处理中。
4. 蒸发结晶法蒸发结晶法是一种将废水中的溶质通过蒸发浓缩,形成晶体沉淀的方法。
通过加热蒸发废水,将水分蒸发掉,废水中的盐类和有机物随着浓缩,形成晶体沉淀。
该方法适用于高盐废水处理中,但能耗较高。
5. 生物处理法生物处理法是通过利用微生物对废水中的有机物进行降解和转化的方法。
通过构建适合微生物生长的环境条件,并添加相应的微生物菌剂,加速废水中有机物的生物降解过程。
高盐废水处理工艺
高盐废水处理工艺高盐废水是指含盐量大于15000mg/L的废水,常见于化工、制药、电镀等行业。
由于高盐废水的处理难度较大,使得处理成本较高,因此探究高效、低成本的高盐废水处理工艺具有紧要意义。
下面将介绍几种常见的高盐废水处理工艺。
一、蒸发結晶法蒸发结晶法是一种基于物理方法处理高盐废水的传统技术。
该方法依靠加热使废水蒸发,除水分以外的盐类物质渐渐浓集、结晶,形成盐渣,通过离心、过滤等步骤分别出盐渣。
该方法具有处理效率高、处理本领大、耗能低等优点。
但是,由于该方法需要高温进行,因此需要大量能源,且处理过程中易产生二次污染物。
二、电渗析法电渗析法是一种基于电化学方法处理高盐废水的技术。
该方法利用电场作用下离子在水中的运动来实现溶质的分别,电渗析法成本较低,处理效率高,且易于操作,具有较广泛的应用前景。
然而,由于渗析膜的寿命较短,且简单受到脏物质沉积而失效,因此需要定期更换渗析膜,加添了处理成本。
三、生物法生物法重要是指利用细菌、藻类等生物对高盐废水中的有机物进行生物降解处理的技术,同时也可以兼顾除盐的作用。
处理高盐废水中常用的生物法有反硝化—厌氧氧化(R—ANOX)法和光合活性池法等。
其中,R—ANOX法的原理是在无氧环境下进行反硝化,将硝酸盐还原为氮气,同时利用厌氧氧化还原废水中的有机物;光合活性池法则是利用藻类的光合作用将废水中的酸碱度降低,同时将废水中的氮气有机物降低至安全范围。
四、反渗透法反渗透法是一种利用半透膜对高盐废水进行过滤处理的技术,该方法具有对高盐废水的适应性强、处理效率高等优点。
该方法将高盐废水经由反渗透膜过滤后,将其中的盐类物质渐渐排放,排放的水质量可达到纯化水的标准。
但是,反渗透法成本较高,半透膜简单污染,不适用于废水处理量较大的情况。
综上所述,以上几种高盐废水处理工艺各具特色,应用于不同的废水处理场景中。
在实际操作过程中,可以依据废水的参数和处理需求选择合适的工艺进行实施,以达到最佳处理效果。
废水盐分分析方法国标
废水盐分分析方法国标高盐分废水即:高含盐量,高盐分的有机废水,这类高盐分废水主要来自于化工厂、印染、造纸、农药、制药等行业,生产过程中都会产生高盐废水,这些企业都希望了解高盐分废水处理方案,康景辉小编在此给大家简单介绍一下高盐分废水处理方案。
高盐废水蒸发浓缩法高盐分废水是指总含盐质量分数至少1%的废水,这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
高盐分废水处理的主流手段及方法:面对高盐废水处理,业内一般从物理化学和生物两方面入手,主流处理手段有:一、耐盐菌生化处理法优势:成本较低,效果一般。
劣势:对处理水质要求苛刻,受废水中有机物影响较大。
二、膜渗透处理法优势:原理简单,操作简便,但膜渗透处理法只适用于小量高盐废水处理。
劣势:膜渗透设备娇贵,易堵易污染,无法大量处理废水。
三、电解除盐法优势:电解除盐法,也只适用于小量高盐废水处理。
劣势:只能处理废水中的含盐类,所含的其他物质无法电解。
四、浓缩蒸发处理法优势:处理量大,对处理水质要求不高,操作简便。
劣势:运行成本高。
高盐分废水处理方案:就目前的高盐废水处理技术而言,只有浓缩蒸发处理法能比较理想的处理高盐废水。
但是由于浓缩蒸发需要大量热量,传统蒸发器使用烧炉存在有烧炉内温度不发精确控制、热能传递流失等众多缺陷,虽然可以做到高盐废水处理或零排放,但是运行成本非常昂贵。
“MVR蒸发器”随着蒸发技术的发展,被研发出来,该MVR蒸发器,不同于传统蒸发器,MVR蒸发器,降低传统蒸发器需大量加热过程和热能流失的情况,将蒸汽进行循环利用,降低企业生产成本。
高浓度含盐废水处理
高浓度含盐废水处理处理高盐有机废水的工艺方法有物理法、化学法、生物法,一般都是以降低废水的COD和含盐量为目的。
一、物化法(1)焚烧法:对于热值较高的高盐废水,COD含量高,在800-1000℃的条件下充分与空气中的氧气反应,COD转化为气体和固体残渣,一般适用于COD 值大于100g/L的废水,且能耗较高。
(2)电解法:高盐废水具有较高的导电性,在电解过程中,有机物电解质溶液可以发生一系列氧化还原反应,生成不溶于水的物质,经过沉淀或生成无害气体除去,降低COD。
该方法处理与有机物和无机盐的种类也有关,Cl-存在时可在阳极放电,生成ClO-降解COD。
但也有实验表明苯酚废水通过电解法处理只改变了COD的存在形式并没有减少TOC的存在总量。
(3)膜分离工艺:目前较成熟的常用膜分离工艺有微滤、超滤、纳滤、反渗透、电渗析。
微滤和超滤所用膜的孔径较大,对于COD和悬浮物(SS)的截留作用较好,但不能有效去除污水中的盐分。
纳滤可以截留大部分二价离子。
反渗透(RO)能够截留一价离子,可以除去部分溶解性有机物,但在水处理应用上有一定的限制。
电渗析技术是比较有效和常用的脱盐技术。
根据不同的要求可以选择不同的膜分离工艺处理,但当有机物浓度高时,膜易被污染,且成本较高。
(4)蒸发结晶工艺:蒸发结晶工艺适用于COD值较低的工艺,其主要目的是使高盐废水固液分离。
目前常用的是多效蒸发工艺和机械压缩蒸发工艺,蒸发结晶工艺瓶颈在于能耗大,各企业含盐废水的水质差异较大,处理效果和费用不同,经济效益不好,也会带来二次污染,常被用于预处理阶段。
(5)吸附工艺:活性炭晶格结构独特,表面有很多含氧官能团,可吸附大量无机物和有机物在表面,同时一些有机物进入活性炭内部微孔形成螯合物,从而净化水质。
Fenton氧化工艺可产生强氧化自由基,自由基可使有机物裂解,从而提高生化活性或去除有机物。
在Fenton试剂体系中引入活性炭,可提高氧化基附近的有机物浓度,提高氧化效率。
常用的高盐废水处理工艺
常用的高盐废水处理工艺高盐废水是指总含盐量至少为1%的废水,主要包括含盐工业废水、含盐生活废水和其他含盐废水。
除了有机污染物,这些废水还含有大量无机盐。
这些盐的存在对常规生物处理具有明显的抑制作用,从而使得高盐废水的生物处理变得困难。
1.热浓缩技术热浓缩通过加热进行,主要包括多级闪蒸(MSF)、多效蒸发(MED)和机械蒸汽再压缩(MVR)技术。
MSF是最早的蒸馏技术。
由于其成熟的工艺和可靠的运行,MSF在世界范围内被广泛应用于海水淡化。
但存在热力学效率低、能耗高、设备结垢和腐蚀严重的缺点。
多效蒸发器(MED)是将几个蒸发器串联运行,这样蒸汽热量可以多次使用,从而提高热能的利用率。
MED较MSF的热力学效率高,但占地面积大。
MED的热力学效率与效率数成正比。
虽然增加效率数可以提高系统的经济性,降低运行成本,但也会增加投资成本。
MVR技术公司使用压缩机压缩蒸发器中产生的二次蒸汽,增加其压力、温度和焓,然后将其用作加热蒸汽。
它具有占地面积小、运行成本低的优点。
相对于MED,能够将二次蒸汽压力全部压缩,减少蒸汽产生量,因此更节能。
在国外,MVR技术已广泛应用于食品、化工和制药等行业。
国内MVR技术已应用于制盐工业,节能效果显着,但在处理含盐废水中,仍处于研究和试运行阶段,主要是高含盐废水成分比海水复杂,物理化学性质与海水存在较大差异。
MVR蒸发系统用于处理含硫酸铵的废液。
通过对比实验系统和数值模拟的能耗值,证明利用MVR技术进行更高效的蒸发每年可节约运行成本53.58%。
2.膜分离技术膜分离技术受压力差、浓度差和电势差等因素驱动,通过溶质、溶剂和膜之间的尺寸排斥、电荷排斥和物理化学作用来实现。
与热浓缩相比,其结构简单、易于操作、操作温度低,在高含盐废水脱盐处理中主要应用的是纳滤膜(NF)、电渗析(ED)和反渗透膜(RO)技术。
NF技术可去除绝大部分Ca2+、Mg2+、SO42-等易结垢离子,因此脱盐是纳滤技术最主要的应用,其可对RO系统进水进行预处理,以降低结垢离子对RO膜污染。
关于高盐废水的处理方法
关于高盐废水的处理方法高盐废水是指盐含量高于普通废水的废水,其主要来源包括化工生产、制造业、海水淡化和电镀等行业。
高盐废水的处理是环境保护和可持续发展的重要课题。
下面将介绍几种常用的高盐废水处理方法。
1. 浓缩结晶法浓缩结晶法是将高盐废水进行蒸发浓缩,使盐类溶解度超过饱和度而结晶沉淀,以此来减少溶液中的盐含量。
该方法适用于高盐废水,尤其是海水淡化废水的处理。
通过多级浓缩结晶,可以将废水中的盐类浓缩至一定程度,然后进行沉淀、过滤和干燥,得到盐类固体产物,同时获得较为清洁的水。
2. 膜分离技术膜分离技术主要包括反渗透、纳滤和超滤等方法。
这些方法通过膜孔径的选择和压力差驱动,将盐类和其他污染物分离出来,从而实现高盐废水的处理和去盐。
反渗透是将高盐废水通过半透膜进一步除盐,可得到高品质的水,适用于海水淡化和水再利用。
纳滤和超滤技术则更适用于低盐废水的处理,去除其中的溶解性有机物和微生物等。
3. 离子交换法离子交换法利用树脂的特殊结构和性质,将废水中的盐类离子与树脂颗粒表面的功能基团进行交换,从而实现去盐和去除杂质的目的。
该方法适用于低盐废水的处理,如电镀废水和化工废水等。
离子交换法可以有效去除废水中的金属离子、重金属和放射性物质等。
4. 蒸发结晶法蒸发结晶法是将高盐废水通过蒸发浓缩,将水分脱水除去,使溶液中的盐类达到饱和度而结晶沉淀。
该方法适用于海水淡化废水和含盐废水的处理。
蒸发结晶法具有设备简单、操作稳定的优点,但能耗较高。
5. 多效蒸发法多效蒸发法是一种高效的高盐废水处理方法,通过利用废热蒸发器的多效蒸发效应,将废水中的水分逐渐蒸发掉,使盐类得以浓缩和分离。
其优点是能耗低,适用于低温高盐废水的处理。
除了上述常用的高盐废水处理方法外,还可以采用化学沉淀、电化学方法、生物处理等技术来处理高盐废水。
在实际应用中,应根据废水的盐含量、水质特点和具体要求来选择合适的处理方法。
同时,为了提高高盐废水处理的效果和经济性,可以考虑采用多种方法的组合应用,以综合解决高盐废水的处理问题。
高盐废水处理工艺方法
高盐废水处理工艺方法高盐废水是指含盐量较高的废水,通常是由于工业、农业、生活等活动而产生的,其中包含多种无机盐和有机盐。
高盐废水的处理对环境保护和资源利用意义重点。
为了有效地处理高盐废水,需要采纳一系列的处理工艺方法,下面将认真介绍。
一、化学沉淀法化学沉淀法是通过添加沉淀剂将高盐废水中的固体颗粒和溶解物沉淀下来,达到去除污染物的目的。
常用的沉淀剂有氢氧化钙、氯化铁、氯化铝等。
由于高盐废水中含有大量的阳离子,需要选择适合的阴离子沉淀剂,例如硫酸钡、碳酸钙等。
化学沉淀法的优点是处理效果稳定,不受废水中盐的影响,但是会形成大量的沉渣,需要进行后续处理。
二、离子交换法离子交换法是利用离子交换树脂将高盐废水中的有害离子去除,同时将盐类回收利用。
离子交换树脂可以依据需要选择阳离子交换树脂或阴离子交换树脂。
离子交换法的优点是可以实现废水资源化利用,但是需要常常更换树脂并且成本较高。
三、逆渗透法逆渗透法是一种通过压力将高盐废水中的水分强制通过半透膜,将盐类去除的方法。
该方法广泛应用于海水淡化领域,并且在船舶工业、化工、制药等领域也有肯定的应用。
逆渗透法的优点是处理效果好,可以将盐浓度降至10毫克/升以下,但是成本相对较高。
四、气浮法气浮法是一种通过将废水中的溶解气体和固体物质与气泡贴附在一起,使其升上液面并从表面移除的方法。
通常使用压缩空气或氧气供应微小的气泡,并通过气浮池或气浮室来实现废水的处理。
气浮法的优点是对盐的去除效果好,但是处理效率较低,需要加添处理设备。
五、生物方法生物方法包括好氧生物法、厌氧生物法、硝化—反硝化生物法等。
好氧生物法通过在含有氧气的环境中利用微生物将有机物质降解为二氧化碳和水来完成废水处理。
厌氧生物法重要针对高盐和有机物质较多的废水,通过缺氧的环境利用厌氧微生物将有机物质分解并产生甲烷和二氧化碳。
硝化—反硝化生物法是在好氧和厌氧环境交替进行,通过微生物将有机物质转化为硝酸盐和亚硝酸盐,最后转化为氮气和水。
高盐废水分盐结晶工艺
高盐废水分盐结晶工艺高盐废水分盐结晶工艺是一种用于处理高盐废水的技术方法。
随着工业化进程的加快,高盐废水的处理愈发成为一项重要的任务。
高盐废水中的盐分含量高,对环境和生态造成潜在危害。
因此,开发出高效可行的高盐废水分盐结晶工艺具有重要意义。
高盐废水分盐结晶工艺主要包括以下步骤:1. 废水预处理:将高盐废水经过初步处理以去除杂质、悬浮物和有机物质,以提高后续分离结晶过程的效果。
2. 盐结晶槽:将经过预处理的废水转移到盐结晶槽中,借助于控制温度、压力和溶液浓度的方法,促使盐分逐渐结晶沉淀。
通常情况下,过饱和溶液通过晶核形成结晶物,然后沉淀到底部。
3. 结晶分离:将产生的结晶沉淀与废水进行分离。
可以通过离心分离、过滤、沉淀等方法将结晶物与溶液分开。
分离后的溶液可继续回流至盐结晶槽中进行再次结晶,从而提高盐的回收率。
4. 结晶物处理:经过分离的结晶物可以进行后续处理。
可以通过干燥、压制、焚烧等方法将结晶物进行固态化处理,以减少对环境的二次污染。
高盐废水分盐结晶工艺的主要优点是将高盐废水中的盐分有效地分离和回收,减少了对环境的污染。
同时,通过结晶处理,可以大大降低高盐废水的体积,减少后续处理和处置的成本。
此外,该工艺还具有较高的盐分回收效率和良好的工艺稳定性。
然而,高盐废水分盐结晶工艺也存在一些挑战。
首先,该工艺对初始废水中的杂质和有机物质的处理要求较高,以确保结晶过程的顺利进行。
其次,工艺中的温度、压力和溶液浓度的控制较为复杂,需要精确的操作和监控。
最后,结晶物的后续处理也需要针对不同的结晶物采用合适的处理方法。
综上所述,高盐废水分盐结晶工艺是一种可行有效的高盐废水处理方法。
通过合理的操作和控制,可以有效地将高盐废水中的盐分分离和回收,减少对环境的污染。
然而,在实际应用中,仍需进一步研究和改进该工艺,以满足不同废水处理的需求。
高含盐废水的5种处理方式
高含盐废水的5种处理方式有关高盐废水处理工艺的简短总结,大家一起来学习吧!染料、农药、制药和日用化工等精细化工生产过程中产生的废水含盐量为3~10%(以质量计)、COD在50000~150000mg/L范围内,行业内将这类废水统称为高浓度高盐废水,是一种极难处理的废水,对微生物生长的毒害尤其大。
处理高浓度含盐废水通常是“预处理+蒸发浓酸结晶除盐”工艺。
1、加药混凝—气浮、沉淀传统预处理工艺当含盐原水COD浓度在5000mg/L以下,而且对结晶盐质量没有要求时,传统工艺是将含盐原水经过“调节—加药混凝—气浮、沉淀” 预处理后,再进入“蒸发浓缩结晶除盐系统”。
该方法投资少,运行成本低,但结晶盐质差,难销。
2、Fenton 或电—Fenton 催化氧化预处理工艺Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。
但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。
当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。
COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。
3、双膜法预处理工艺先利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。
由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。
这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。
双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。
高盐高COD废水如何处理?COD废水的常见处理方法
在现代工业生产中,高盐、高COD废水是常见的工业废水类型,其处理对环保和可持续发展至关重要。
在本文中,我们将探讨高盐、高COD 废水的特点和处理方1、高盐高COD废水的定义高盐废水是指总含盐质量分数至少3.5%的废水,含有Cl-、SO2-、Na+、Ca2+等可溶性无机盐离子,虽然这些离子都是微生物生长所必需的营养元素,在微生物的生长过程中起着重要作用。
但是若这些离子浓度过高,会对微生物产生抑制和毒害作用,严重影响生物处理系统的净化效果。
高COD废水是指在一定条件下,用强氧化剂处理时所消耗的氧量较高的废水。
COD是表示水中还原性物质多少的一个指标。
COD值越高,表明水体受到的污染程度越严重。
高COD废水会造成巨大危害:一方面水体中的还原性物质会破坏水体平衡,造成除微生物外几乎所有生物的死亡,进一步影响周边环境;另一方面水中的有机污染物成分复杂,且某些有机物具有剧毒性(如苯和苯酚等),这些有毒物质对水体环境甚至人体都有巨大的危害。
因此,国内外研究人员一直在不断探索适合高盐高COD废水处理的工艺和方法。
2、高盐高COD废水处理技术进展根据废水的性质不同处理技术不尽相同,主要有物理法、化学法、生物法。
其中物化法包括电解法、焚烧法、多效蒸发浓缩结晶法。
生物法是利用微生物的代谢作用,使水中呈溶解、胶体状态的有机污染物质转化为稳定的无害物质。
2.1电解法含铬废水和含氧废水可采用电解法进行处理。
电解处理法是指应用电解的机理,使废水中可电解物质通过电解过程在阳、阴两极上分别失去电子和得到电子从而发生氧化反应和还原反应,最终转化成为无污染物质以净化废水的方法。
此外,还用于去除废水中的重金属离子、油以及悬浮物。
也可以凝聚吸附废水中呈胶体状态或溶解状态的染料分子,而氧化还原作用可破坏生色基团,取得脱色效果。
2.2、焚烧法废水焚烧,顾名思义,是指通过焚烧技术处理废水。
其不受水质等因素影响,适合处理难挥发难降解的废水。
焚烧法通过高温化学反应使废水中有机物质燃烧生成二氧化碳和水,整个过程随着温度升高经历蒸发、气化、氧化三个阶段。
高盐废水处理方案
高盐废水处理方案
一废水检测:通过检测废水的酸度碱度,PH,溶解氧(DO),氮磷硫化合物,臭和味,色度,浊度,固体物,电导率,化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC)等等性质,来确定不同的废水处理方案。
二实验方案的确立
1.电解凝絮法(用于高盐度有机废水)
将废水放入高位水箱,在搅拌的条件下流入电解凝絮反应器;等水位到达规定的刻度时,开启电源,进行电解凝絮反应;一定时间后取样测定透光率和COD 值,透光率用721 分
光光度计测定;COD 用重铬酸钾法测定(标准法) 和COD Cr校正方法进行测定,达标后排放。
2.膜生物反应器(MBR)
1:通过格栅,滤网等,拦截废水中的悬浮物。
2:水体通过调节池,加入絮凝剂,使水中的细小微粒和自然胶粒凝聚成大块絮状物,从而自水中除去。
3:沉淀浓缩,去除絮凝下来的沉淀。
4:水体进入膜反应器,通过膜分离技术与生物处理法的高效结合实现对污水深度净化。
5:检验处理后的废水相关指标,符合国家标准,既可排放。
三:根据实验后的效果,调整工艺方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高盐废水处理方法
高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:
(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。
含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。
在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该
相应减小。
在处理盐度波动较大的废水的时候,仍然需要设置调节池。
有高浓度含盐废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。
生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。
接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。
含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。
(3)二沉池。
二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,尤其是含NaCl废水。
处理水量较大时,特别是含CaCL2废水,最好采用周边传动式刮泥机,以适应污泥浓度高、密度大的特点。
在采用传统活性污泥法处理高CaCL2废水时,应适当加大污泥回流量,以减少废水波动造成的冲击,提高系统的稳定性。
(4)污泥脱水。
由于含CaCL2废水生物处理的剩余污泥含钙盐多,有利于脱水,可不用加絮凝剂。
经浓缩后的污泥浓度可大于50g/L。
剩余污泥量与普通废水处理的剩余污泥类似,设计参数可参考普通污泥脱水。
在处理钙离子浓度高的废水时,由于活性污泥中的无机成分高,有机物去除能力较低,较低的负荷情况下运行,污染物的去除率要高于高负荷条件下,但是延时曝气又不太适合处理高盐废水,因为污泥龄长,水力停留时间长,活性污泥容易老化,絮凝性能变差,最终影响出水效果。
针对高盐废水如何处理的问题,我们详细介绍一种处理方法:
蒸馏脱盐
蒸馏法是一种最古老、最常用的脱盐方法。
目前工业废水的蒸馏法脱盐技术基本上均是从海水脱盐淡化技术基础上发展而成。
蒸馏法就是把含盐水加热使之沸腾蒸发,再把蒸汽冷凝成淡水的过程。
蒸馏法是最早采用的淡化法,其优点是结构简单、操作容易、所得淡水水质好等。
蒸馏法有很多种,如多效蒸发、多级闪蒸、压气蒸馏、膜蒸馏等。
(1)多效蒸发(MED)
多效蒸发是让加热后的盐水在多个串联的蒸发器中蒸发,前一个蒸发器蒸发出来的蒸汽作为下一蒸发器的热源,并冷凝成为淡水。
其中低温多效蒸馏是蒸馏法中最节能的方法之一。
低温多效蒸馏技术由于节能的因素,近年发展迅速,装置的规模日益扩大,成本日
益降低,主要发展趋势为提高装置单机造水能力,采用廉价材料降低工程造价,提高操作温度,提高传热效率等。
(2)多级闪蒸(MSF)
以海水淡化为例,将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。
多级闪蒸就是以此原理为基础,使热盐水依次流经若干个压力逐渐降低的闪蒸室,逐级蒸发降温,同时盐水也逐级增浓,直到其温度接近(但高于)天然海水温度。
多级闪蒸是海水淡化工业中较成熟的技术之一,是针对多效蒸发结垢较严重的缺点而发展起来的。
MSF一经问世就得到应用和发展,具有设备简单可靠、运行安全性高、防垢性能好、操作弹性大以及可利用低位热能和废热等优点,适合于大型和超大型淡化装置,并主要在海湾国家使用。
(3)蒸汽压缩冷凝(VC)
蒸汽压缩冷凝脱盐技术是将盐水预热后,进入蒸发器并在蒸发器内部分蒸发。
所产生的二次蒸汽经压缩机压缩提高压力后引入到蒸发器的加热侧。
蒸汽冷凝后作为产品水引出,如此实现热能的循环利用。
当其作为循环冷却水脱盐回收工艺时,可使冷却水中的有害成份得到浓缩排放,并使95%以上的排污水以冷凝液的形式得到回收,作为循环水和锅炉补充水返回系统。
这种工艺对设备材质的要求极高,运行中需消耗大量的热量,存在一次性投入和运行费用极高的缺点,只可能在特别缺水的地区发电厂中采用。
来源:中国污水处理工程网。