高盐废水处理方案
工业高盐废水的处理方法
工业高盐废水的处理方法一、物理方法物理方法是利用物理原理对高盐废水进行处理,常见的物理方法有蒸发结晶法、逆渗透法和电渗析法。
1.蒸发结晶法:将高盐废水加热蒸发,水分蒸发后形成结晶,从而分离出盐分。
蒸发结晶法适用于废水盐浓度高的情况,但处理过程中能源消耗较大。
2.逆渗透法:逆渗透法利用半透膜的选择性透过性,将高盐废水通过压力驱动,使盐分和水分分离,生成淡水和盐浓缩液。
逆渗透法处理效果好,但设备投资和运行成本较高。
3.电渗析法:电渗析法是利用电场力驱动离子在离子膜中的迁移,并通过离子膜的选择性透过性对离子进行分离。
电渗析法适用于盐分浓度较低的高盐废水处理,但存在电能消耗问题。
二、化学方法化学方法是利用化学原理对高盐废水进行处理,常见的化学方法有化学沉淀法、离子交换法和电化学法。
1.化学沉淀法:化学沉淀法通过添加化学药剂,使废水中的盐分形成易沉淀的固体颗粒,从而实现盐分的分离。
化学沉淀法易于实施和控制,但产生的沉淀物需要进一步处理。
2.离子交换法:离子交换法通过固体离子交换树脂吸附或释放离子,将废水中的盐分去除。
离子交换法处理效果好,但需要定期对树脂进行再生或更换,产生的废液也需要处理。
3.电化学法:电化学法通过电场作用将废水中的盐分转化为氧化物或析出在电极上,从而实现分离。
电化学法能耗较低,但设备投资较高且操作复杂。
三、生物方法生物方法是利用微生物对高盐废水进行处理,常见的生物方法有生物接触氧化法、生物膜法和生物降解法。
1.生物接触氧化法:生物接触氧化法通过将高盐废水与含有微生物的床体接触,使有机物被微生物降解。
生物接触氧化法适用于有机物浓度较高的高盐废水,但存在对高盐浓度不敏感的问题。
2.生物膜法:生物膜法通过在附着剂上培养微生物来进行高盐废水的降解。
生物膜法处理效果好,但需要定期维护和更换附着剂。
3.生物降解法:利用特定微生物对废水中有机物进行分解降解的方法。
生物降解法适用于有机物含量较高的高盐废水,但对高盐浓度和抗腐蚀性要求较高。
高浓度含盐废水处理工艺
高浓度含盐废水处理工艺一、高浓度含盐废水的定义及危害高浓度含盐废水是指废水中含有较高浓度的盐类(如氯化钠、硫酸盐、碳酸盐等)。
这种废水往往来自于化工、电子、矿业等行业,在生产过程中产生。
高浓度含盐废水假如直接排放到环境中,会造成以下危害:1. 对水体生态环境造成直接破坏,导致水生生物死亡和生态平衡失调。
2. 加重土地污染,对植被生长和土壤质量造成不良影响。
3. 造成大气污染,严重影响四周居民的日常生活。
因此,高浓度含盐废水的处理特别紧要,需要找寻适合的处理技术。
二、高浓度含盐废水处理技术1. 浓缩技术浓缩技术是指将高浓度含盐废水通过蒸发、冷冻结晶、扩散等方式,将废水中的水分蒸发掉,使废水中的盐分达到肯定的浓度。
这种技术可以将高浓度含盐废水中的盐分浓缩到较高的浓度,降低处理的难度和成本。
浓缩后的盐分可以进一步用于回收利用或销售。
2. 离子交换技术离子交换技术是指通过树脂对废水中的离子进行吸附和交换。
通过选择特定的吸附树脂,可以将废水中的高浓度离子快速吸附到树脂上并得到纯洁的水。
这种技术可以有效地去除废水中的高浓度盐分,得到高品质的废水。
3. 反渗透技术反渗透技术是指利用半透膜对废水进行过滤,过滤后的废水中水分较少,离子浓度较高。
通过这种技术,可以将废水中的高浓度离子和溶解物分别出来。
反渗透技术一般需要高压和高能耗,但是可以得到纯洁的废水,是一种特别有效的处理方法。
4. 气浮沉淀技术气浮沉淀技术是指将高浓度含盐废水中的悬浮物通过气浮或沉淀的方式分别出来。
这种技术特别适用于处理含大量悬浮物的高浓度废水,可以有效地去除废水中的物质,得到更纯洁的水。
5. 生物处理技术生物处理技术是指通过生物菌群对废水进行分解、转化和吸附,以去除其中的污染物。
这种技术可以完成一些常规的废水处理,如去除有机物和氨氮等污染物。
但是,对于高浓度含盐废水,生物处理技术往往只能起到辅佑襄助作用。
三、综合处理方案针对高浓度含盐废水的特点,综合采纳多种处理技术是特别有效的。
高盐废水的处理方法
高盐废水的处理方法
高盐废水的处理方法有以下几种:
1. 蒸发结晶法:将高盐废水进行蒸发,使盐分结晶析出,然后进行固液分离,得到高盐固体和低盐液体。
2. 逆渗透法:通过逆渗透膜将高盐废水进行过滤,将盐分和其他杂质分离出来,得到低盐水。
3. 离子交换法:利用离子交换树脂吸附高盐废水中的盐分离子,通过再生和洗脱,得到高纯度水和高盐溶液。
4. 气体扩散沉降法:将高盐废水通过气体扩散装置,让气泡与废水中的盐分反应生成气泡沉降物,从而实现盐分的去除。
5. 生物法:利用特定的微生物来降解高盐废水中的有机物,然后再进行物理或化学处理,以实现废水中盐分的去除。
6. 真空蒸发法:将高盐废水置于真空环境中,通过降低废水中的气压,促使废水中的水分蒸发,从而实现盐分的去除。
以上是常见的高盐废水处理方法,具体的选择应根据废水的具体情况和处理要求
来确定。
高盐废水处理方法及案例
高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。
为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。
但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。
高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。
将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。
吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。
吸附法的优点1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔过滤器 高盐废水 后续蒸发氧化后返回生化系统 脱附液2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低;3.工艺流程简单,可实现全程自动化操作,操作维护方便。
4.可实现多层布置,占地面积小,安装周期短。
案例介绍本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。
海普对该废水进行了定制化的工艺设计,废水设计指标如下表。
表1 废水设计参数表指标水量(m3/d)颜色(mg/L)吸附进水100 棕红色吸附出水~100 淡黄色出水蒸盐白色图2 原水(左)、出水(右)外观图图3 出水蒸盐图吸附工艺能深度吸附去除废水中的有机物,减少出水的色度,提高后续蒸盐系统的稳定性和蒸盐的品质,降低企业的生产运行费用,为客户现场稳定生产提供保障。
高盐废水处理工艺
高盐废水处理工艺高盐废水是指含盐量大于15000mg/L的废水,常见于化工、制药、电镀等行业。
由于高盐废水的处理难度较大,使得处理成本较高,因此探究高效、低成本的高盐废水处理工艺具有紧要意义。
下面将介绍几种常见的高盐废水处理工艺。
一、蒸发結晶法蒸发结晶法是一种基于物理方法处理高盐废水的传统技术。
该方法依靠加热使废水蒸发,除水分以外的盐类物质渐渐浓集、结晶,形成盐渣,通过离心、过滤等步骤分别出盐渣。
该方法具有处理效率高、处理本领大、耗能低等优点。
但是,由于该方法需要高温进行,因此需要大量能源,且处理过程中易产生二次污染物。
二、电渗析法电渗析法是一种基于电化学方法处理高盐废水的技术。
该方法利用电场作用下离子在水中的运动来实现溶质的分别,电渗析法成本较低,处理效率高,且易于操作,具有较广泛的应用前景。
然而,由于渗析膜的寿命较短,且简单受到脏物质沉积而失效,因此需要定期更换渗析膜,加添了处理成本。
三、生物法生物法重要是指利用细菌、藻类等生物对高盐废水中的有机物进行生物降解处理的技术,同时也可以兼顾除盐的作用。
处理高盐废水中常用的生物法有反硝化—厌氧氧化(R—ANOX)法和光合活性池法等。
其中,R—ANOX法的原理是在无氧环境下进行反硝化,将硝酸盐还原为氮气,同时利用厌氧氧化还原废水中的有机物;光合活性池法则是利用藻类的光合作用将废水中的酸碱度降低,同时将废水中的氮气有机物降低至安全范围。
四、反渗透法反渗透法是一种利用半透膜对高盐废水进行过滤处理的技术,该方法具有对高盐废水的适应性强、处理效率高等优点。
该方法将高盐废水经由反渗透膜过滤后,将其中的盐类物质渐渐排放,排放的水质量可达到纯化水的标准。
但是,反渗透法成本较高,半透膜简单污染,不适用于废水处理量较大的情况。
综上所述,以上几种高盐废水处理工艺各具特色,应用于不同的废水处理场景中。
在实际操作过程中,可以依据废水的参数和处理需求选择合适的工艺进行实施,以达到最佳处理效果。
高盐废水处理方法
高盐废水处理方法高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
常用的高盐废水处理工艺
常用的高盐废水处理工艺高盐废水是指总含盐量至少为1%的废水,主要包括含盐工业废水、含盐生活废水和其他含盐废水。
除了有机污染物,这些废水还含有大量无机盐。
这些盐的存在对常规生物处理具有明显的抑制作用,从而使得高盐废水的生物处理变得困难。
1.热浓缩技术热浓缩通过加热进行,主要包括多级闪蒸(MSF)、多效蒸发(MED)和机械蒸汽再压缩(MVR)技术。
MSF是最早的蒸馏技术。
由于其成熟的工艺和可靠的运行,MSF在世界范围内被广泛应用于海水淡化。
但存在热力学效率低、能耗高、设备结垢和腐蚀严重的缺点。
多效蒸发器(MED)是将几个蒸发器串联运行,这样蒸汽热量可以多次使用,从而提高热能的利用率。
MED较MSF的热力学效率高,但占地面积大。
MED的热力学效率与效率数成正比。
虽然增加效率数可以提高系统的经济性,降低运行成本,但也会增加投资成本。
MVR技术公司使用压缩机压缩蒸发器中产生的二次蒸汽,增加其压力、温度和焓,然后将其用作加热蒸汽。
它具有占地面积小、运行成本低的优点。
相对于MED,能够将二次蒸汽压力全部压缩,减少蒸汽产生量,因此更节能。
在国外,MVR技术已广泛应用于食品、化工和制药等行业。
国内MVR技术已应用于制盐工业,节能效果显着,但在处理含盐废水中,仍处于研究和试运行阶段,主要是高含盐废水成分比海水复杂,物理化学性质与海水存在较大差异。
MVR蒸发系统用于处理含硫酸铵的废液。
通过对比实验系统和数值模拟的能耗值,证明利用MVR技术进行更高效的蒸发每年可节约运行成本53.58%。
2.膜分离技术膜分离技术受压力差、浓度差和电势差等因素驱动,通过溶质、溶剂和膜之间的尺寸排斥、电荷排斥和物理化学作用来实现。
与热浓缩相比,其结构简单、易于操作、操作温度低,在高含盐废水脱盐处理中主要应用的是纳滤膜(NF)、电渗析(ED)和反渗透膜(RO)技术。
NF技术可去除绝大部分Ca2+、Mg2+、SO42-等易结垢离子,因此脱盐是纳滤技术最主要的应用,其可对RO系统进水进行预处理,以降低结垢离子对RO膜污染。
高盐废水处理方案
高盐废水处理方案高盐废水处理方案1. 简介高盐废水是指含有高浓度盐类物质的废水。
由于盐类物质的存在,高盐废水处理相对复杂。
本文档将介绍一种高盐废水处理方案,旨在有效降低废水中盐类物质的浓度,使其符合环境排放标准。
2. 方案概述本方案采用以下步骤处理高盐废水:- 预处理:去除悬浮物和沉积物。
- 逆渗透反洗:采用逆渗透技术去除盐类物质。
- 浓缩处理:对逆渗透膜的浓缩液进行处理。
- 残渣处理:处理浓缩过程中产生的残渣。
3. 预处理预处理旨在去除高盐废水中的悬浮物和沉积物,以减少对后续处理设备的损坏和效果的影响。
常用的预处理方法包括:物理沉淀、筛网过滤、调节pH值等。
4. 逆渗透反洗逆渗透是一种通过半透膜分离溶质与溶剂的方法,能有效去除盐类物质。
逆渗透设备主要包括膜组件、沉淀池、高压泵、压力容器等。
在逆渗透处理过程中,由于盐类物质的堆积会影响处理效果,需要定期进行反洗操作,清理膜组件。
反洗过程包括冲洗、反吹、排污等步骤,旨在恢复膜组件的通透性。
5. 浓缩处理逆渗透反洗产生的废液需要进行浓缩处理,以减少处理后的废液体积。
常用的浓缩处理方法包括:蒸发浓缩、结晶、压滤等。
在浓缩处理过程中,需要注意对废液中有价值物质的回收利用。
6. 残渣处理浓缩处理过程中产生的残渣需要进行处理,以减少对环境的影响。
常见的残渣处理方法有:固化、填埋、焚烧等。
选择合适的残渣处理方法时,需要考虑残渣的性质和环境要求。
7. 控制措施为了确保高盐废水处理方案的有效运行,需要采取以下控制措施:- 定期监测废水的盐类物质浓度,以及处理设备的运行状态。
- 保持处理设备的正常运行,及时进行维护和更换膜组件。
- 严格执行废水处理相关法规和标准,确保废水排放符合环境要求。
- 对废水处理过程中产生的化学品、残渣等进行妥善管理和处理。
8. 结论本文介绍了一种高盐废水处理方案,通过预处理、逆渗透反洗、浓缩处理和残渣处理等步骤,可以有效降低废水中的盐类物质浓度,使其达到环境排放标准。
钢铁企业浓含盐废水处理方案分析
钢铁企业浓含盐废水处理方案分析嘿,朋友们,今天我要给大家分享的是一份关于“钢铁企业浓含盐废水处理方案分析”的干货。
这可是我积累了十年方案写作经验的心血之作,话不多说,咱们直接进入正题。
咱们得明白,钢铁企业在生产过程中会产生大量含有高浓度盐分的废水,这种废水如果不经过处理,直接排放,那可是会对环境造成严重污染的。
所以,我们这份方案的目的就是帮助钢铁企业有效地处理这些浓含盐废水,实现环保和可持续发展。
一、废水来源及特性分析1.废水来源(1)冷却水:用于冷却设备的循环水。
(2)清洗水:用于清洗设备、产品及场地的水。
(3)酸洗废水:用于去除金属表面氧化物的酸性废水。
(4)碱性废水:用于中和酸性废水及清洗设备的碱性废水。
2.废水特性(1)盐分浓度高:含有大量氯化钠、硫酸钠等盐分。
(2)悬浮物含量高:含有大量悬浮固体颗粒。
(3)化学需氧量(COD)和生化需氧量(BOD)高:含有大量有机物质。
二、处理方案设计1.预处理阶段(1)格栅:去除废水中的大颗粒悬浮物。
(2)调节池:调节废水水质、水量,降低悬浮物含量。
(3)沉淀池:利用重力沉降作用,去除废水中的悬浮固体颗粒。
2.主处理阶段(1)电解氧化:利用电解氧化技术,将废水中的有机物质氧化分解。
(2)膜生物反应器(MBR):利用膜生物反应器,实现废水的深度处理。
(3)离子交换:利用离子交换树脂,去除废水中的盐分。
3.后处理阶段(1)反渗透:利用反渗透技术,进一步去除废水中的盐分。
(2)蒸发结晶:利用蒸发结晶技术,回收废水中的盐分。
(3)排放或回用:经过处理的废水达到排放标准或回用要求后,进行排放或回用。
三、实施方案1.技术路线预处理阶段:格栅+调节池+沉淀池主处理阶段:电解氧化+MBR+离子交换后处理阶段:反渗透+蒸发结晶2.设备选型(1)预处理设备:格栅、调节池、沉淀池(2)主处理设备:电解氧化装置、MBR装置、离子交换装置(3)后处理设备:反渗透装置、蒸发结晶装置3.运营管理(1)定期检测废水水质,调整处理参数。
关于高盐废水的处理方法
关于高盐废水的处理方法高盐废水是指盐含量高于普通废水的废水,其主要来源包括化工生产、制造业、海水淡化和电镀等行业。
高盐废水的处理是环境保护和可持续发展的重要课题。
下面将介绍几种常用的高盐废水处理方法。
1. 浓缩结晶法浓缩结晶法是将高盐废水进行蒸发浓缩,使盐类溶解度超过饱和度而结晶沉淀,以此来减少溶液中的盐含量。
该方法适用于高盐废水,尤其是海水淡化废水的处理。
通过多级浓缩结晶,可以将废水中的盐类浓缩至一定程度,然后进行沉淀、过滤和干燥,得到盐类固体产物,同时获得较为清洁的水。
2. 膜分离技术膜分离技术主要包括反渗透、纳滤和超滤等方法。
这些方法通过膜孔径的选择和压力差驱动,将盐类和其他污染物分离出来,从而实现高盐废水的处理和去盐。
反渗透是将高盐废水通过半透膜进一步除盐,可得到高品质的水,适用于海水淡化和水再利用。
纳滤和超滤技术则更适用于低盐废水的处理,去除其中的溶解性有机物和微生物等。
3. 离子交换法离子交换法利用树脂的特殊结构和性质,将废水中的盐类离子与树脂颗粒表面的功能基团进行交换,从而实现去盐和去除杂质的目的。
该方法适用于低盐废水的处理,如电镀废水和化工废水等。
离子交换法可以有效去除废水中的金属离子、重金属和放射性物质等。
4. 蒸发结晶法蒸发结晶法是将高盐废水通过蒸发浓缩,将水分脱水除去,使溶液中的盐类达到饱和度而结晶沉淀。
该方法适用于海水淡化废水和含盐废水的处理。
蒸发结晶法具有设备简单、操作稳定的优点,但能耗较高。
5. 多效蒸发法多效蒸发法是一种高效的高盐废水处理方法,通过利用废热蒸发器的多效蒸发效应,将废水中的水分逐渐蒸发掉,使盐类得以浓缩和分离。
其优点是能耗低,适用于低温高盐废水的处理。
除了上述常用的高盐废水处理方法外,还可以采用化学沉淀、电化学方法、生物处理等技术来处理高盐废水。
在实际应用中,应根据废水的盐含量、水质特点和具体要求来选择合适的处理方法。
同时,为了提高高盐废水处理的效果和经济性,可以考虑采用多种方法的组合应用,以综合解决高盐废水的处理问题。
高盐废水处理工艺方法
高盐废水处理工艺方法高盐废水是指含盐量较高的废水,通常是由于工业、农业、生活等活动而产生的,其中包含多种无机盐和有机盐。
高盐废水的处理对环境保护和资源利用意义重点。
为了有效地处理高盐废水,需要采纳一系列的处理工艺方法,下面将认真介绍。
一、化学沉淀法化学沉淀法是通过添加沉淀剂将高盐废水中的固体颗粒和溶解物沉淀下来,达到去除污染物的目的。
常用的沉淀剂有氢氧化钙、氯化铁、氯化铝等。
由于高盐废水中含有大量的阳离子,需要选择适合的阴离子沉淀剂,例如硫酸钡、碳酸钙等。
化学沉淀法的优点是处理效果稳定,不受废水中盐的影响,但是会形成大量的沉渣,需要进行后续处理。
二、离子交换法离子交换法是利用离子交换树脂将高盐废水中的有害离子去除,同时将盐类回收利用。
离子交换树脂可以依据需要选择阳离子交换树脂或阴离子交换树脂。
离子交换法的优点是可以实现废水资源化利用,但是需要常常更换树脂并且成本较高。
三、逆渗透法逆渗透法是一种通过压力将高盐废水中的水分强制通过半透膜,将盐类去除的方法。
该方法广泛应用于海水淡化领域,并且在船舶工业、化工、制药等领域也有肯定的应用。
逆渗透法的优点是处理效果好,可以将盐浓度降至10毫克/升以下,但是成本相对较高。
四、气浮法气浮法是一种通过将废水中的溶解气体和固体物质与气泡贴附在一起,使其升上液面并从表面移除的方法。
通常使用压缩空气或氧气供应微小的气泡,并通过气浮池或气浮室来实现废水的处理。
气浮法的优点是对盐的去除效果好,但是处理效率较低,需要加添处理设备。
五、生物方法生物方法包括好氧生物法、厌氧生物法、硝化—反硝化生物法等。
好氧生物法通过在含有氧气的环境中利用微生物将有机物质降解为二氧化碳和水来完成废水处理。
厌氧生物法重要针对高盐和有机物质较多的废水,通过缺氧的环境利用厌氧微生物将有机物质分解并产生甲烷和二氧化碳。
硝化—反硝化生物法是在好氧和厌氧环境交替进行,通过微生物将有机物质转化为硝酸盐和亚硝酸盐,最后转化为氮气和水。
高盐废水处理工艺流程
高盐废水是指含有较高浓度盐类的废水,处理高盐废水需要采用特定的工艺流程来降低盐浓度和净化水质。
以下是常见的高盐废水处理工艺流程:预处理:高盐废水通常含有悬浮固体和沉淀物,因此首先进行预处理以去除悬浮物和固体颗粒。
常用的预处理方法包括筛网过滤、沉淀池或沉淀槽沉淀等。
逆渗透(RO):逆渗透是高盐废水处理中常用的膜分离技术。
通过逆渗透膜的选择性渗透作用,将水中的溶解盐分和其他杂质分离出来,产生低盐水。
逆渗透膜一般具有较小的孔径,可以有效过滤掉盐类离子和其他溶解物质。
离子交换(IX):离子交换是一种将废水中的离子通过离子交换树脂吸附和交换的过程。
树脂具有特定的化学性质,可以选择性地吸附和去除特定的离子,如钠离子、钙离子和镁离子等。
蒸发结晶(ME):蒸发结晶是通过蒸发废水中的水分,使盐类溶解度超过饱和度而结晶沉淀。
这种方法适用于高盐废水中含有大量结晶盐的情况,如氯化钠、硫酸钠等。
蒸发结晶可以使废水的体积大幅度减少,并得到高纯度的盐产品。
气浮和沉淀:气浮和沉淀是常用的物理处理方法,通过气体细小气泡的作用使废水中的悬浮颗粒和部分溶解物质浮起并聚集,形成浮渣,然后通过沉淀槽或沉淀池沉淀和分离出来。
膜分离:除了逆渗透,其他膜分离技术如超滤和微滤也可以用于去除高盐废水中的悬浮物和颗粒。
离子选择性电极(ISE):离子选择性电极是一种基于电化学原理的测量方法,可以测定废水中特定离子的浓度。
通过对离子浓度的监测,可以控制和调节高盐废水处理过程中的操作参数。
需要根据具体的高盐废水的成分和特点选择合适的处理工艺流程。
在实际应用中,可能需要结合多种工艺方法,根据废水的水质要求和处理成本进行优化设计和操作。
同时,为了确保处理过程的稳定性和效果,需要定期监测和维护处理设备。
高含盐废水的5种处理方式
高含盐废水的5种处理方式有关高盐废水处理工艺的简短总结,大家一起来学习吧!染料、农药、制药和日用化工等精细化工生产过程中产生的废水含盐量为3~10%(以质量计)、COD在50000~150000mg/L范围内,行业内将这类废水统称为高浓度高盐废水,是一种极难处理的废水,对微生物生长的毒害尤其大。
处理高浓度含盐废水通常是“预处理+蒸发浓酸结晶除盐”工艺。
1、加药混凝—气浮、沉淀传统预处理工艺当含盐原水COD浓度在5000mg/L以下,而且对结晶盐质量没有要求时,传统工艺是将含盐原水经过“调节—加药混凝—气浮、沉淀” 预处理后,再进入“蒸发浓缩结晶除盐系统”。
该方法投资少,运行成本低,但结晶盐质差,难销。
2、Fenton 或电—Fenton 催化氧化预处理工艺Fenton试剂含有H2O2和Fe2+,对废水中有机污染物具有很强的氧化力,且反应速度快,投资低,出水经沉淀净化后可实现预处理目的。
但Fenton或电-Fenton催化氧化工艺要求特定的反应条件:pH值2~4,而且产生较多含铁污泥,出水会有颜色。
当含盐原水pH值偏低时使用较经济,否则“加酸降pH,加碱中和”的过程增加运行成本。
COD浓度在10000mg/L左右尚好,如过高,就要多级氧化净化处理,Fenton工艺就无优势了。
3、双膜法预处理工艺先利用孔径在20~2000Ao(10-6.5-10-4.5cm)的半透膜进行超滤,可截留蛋白质、各类酶、细菌等胶体物质和大分子物质在浓缩液中,而水、溶剂、小分子和形成盐的离子则可通过膜,进入透过水中。
由于透过水水量减少,而盐量没变,所以透过水含盐浓度增加。
这时再用孔径在1~20Ao(10-7.5-10-6.5cm)的半透膜进行反渗透,无机盐、糖类、氨基酸、BOD、COD等被截留在浓缩液中,只有水和溶剂进入透过水中,盐在浓缩液中浓度进一步增加,送去蒸发结晶除盐。
双膜法除盐的优势在于大幅度降低了蒸发结晶除盐的水量,从而明显降低蒸发结晶除盐的运行成本和投资。
高盐、高COD与低浓度低盐废水处理技术方案
3.污水水量及水质3.1 设计水量工程水量约为1500m3/d,其中高盐、高COD废水为38m3/d,其他类型废水(称为低浓度低盐废水)为1500m3/d,本项目低浓度低盐废水生化处理能力设计为62.5m3/h,高盐废水蒸发能力设计为38m3/d。
3.2 设计水质3.2.1 原水水质原水水质情况如表3-1所示。
表3-1 原水水质情况3.2.2 设计进水水质本项目产生的36m3/d高盐废水以及2m3/d废气吸收废液采用三效蒸发系统脱盐单独处置,剩余部分每天1462m3排水进入设计处理站处理。
根据表3-1水质计算得出污染物的平均浓度值如表3-2所示:表3-2 设计进水水质项目COD 含盐量NH3-N 浓度(mg/L)8547 1471 23.63.2.3 处理出水要求处理后的出水要求达到《污水排入城镇下水道水质标准》(GB/T31962-2015)的B级排放标准,具体指标见表3-3。
污水处理站临近厂界的无组织排放废气达到《恶臭污染物排放标准》(GB14554-1993),具体指标见表3-4。
表3-3 污水设计出水水质表3-4大气污染物排放限值4.工艺设计4.1 整体设计思路由于医药原料及中间体合成过程中废水种类多、成分复杂、浓度高、生物毒性大,因此,工艺的关键之处在于对各类废水进行合理的分类分质处理。
针对高盐高浓废水,首先进行悬浮物的去除,选择混凝沉淀预处理,之后通过蒸发系统进行脱盐,清水进入综合废水池和其它污水混合处理,固废渣外运处置。
蒸发系统必须要具备足够的处理能力和稳定性,此类废水是绝不允许未经脱盐处理就直接进入下游单元处理的,否则整个生化系统肯定崩溃。
针对特殊废水,由于原水种类和水质参数均为根据其它类似项目的估算值,本项目为订单生产,而且订单不固定,因此生产废水水质会由于订单变化发生较大变化,特别是可能出现有生物毒性物质(如苯酚等),若这部分水不经预处理直接排入生化系统可能导致生化系统微生物死亡,从而导致出水超标。
高盐废水处理方案
高盐废水处理方案
一废水检测:通过检测废水的酸度碱度,PH,溶解氧(DO),氮磷硫化合物,臭和味,色度,浊度,固体物,电导率,化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC)等等性质,来确定不同的废水处理方案。
二实验方案的确立
1.电解凝絮法(用于高盐度有机废水)
将废水放入高位水箱,在搅拌的条件下流入电解凝絮反应器;等水位到达规定的刻度时,开启电源,进行电解凝絮反应;一定时间后取样测定透光率和COD 值,透光率用721 分
光光度计测定;COD 用重铬酸钾法测定(标准法) 和COD Cr校正方法进行测定,达标后排放。
2.膜生物反应器(MBR)
1:通过格栅,滤网等,拦截废水中的悬浮物。
2:水体通过调节池,加入絮凝剂,使水中的细小微粒和自然胶粒凝聚成大块絮状物,从而自水中除去。
3:沉淀浓缩,去除絮凝下来的沉淀。
4:水体进入膜反应器,通过膜分离技术与生物处理法的高效结合实现对污水深度净化。
5:检验处理后的废水相关指标,符合国家标准,既可排放。
三:根据实验后的效果,调整工艺方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。
所以采用生化工艺来处理。
当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。
主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。
这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。
方案分析:
1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。
2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。
3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。
可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。
4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。
然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。
5、厌氧池+接触氧化池:这是整个工艺的核心部分,是个组合工艺可以放在一起讲,此工艺不但可以去除COD,而且还可以进行脱氮除磷,是化工废水的常用工艺,厌氧池用于处理高浓度有机废水,使有机物通过发酵过程得到降解并完成反硝化和除磷过程,为了提高处理废水脱氮的效果,设置了内循环,以保证硝态氮能够得到反硝化,而含NaCl较高的废水生物处理时,污泥灰分含量低,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法,而为了提高废水的处理规模,效率和强度,所以采用了淹没式生物滤池的方法即接触氧化法。
此工艺的关键是对耐盐菌的培养和驯化,高浓度盐对于活性污泥所产生的抑制作用与废水中盐浓度变化的快慢程度密切相关,从低盐到高盐时,微生物有一个适应期,由高盐到低盐适应期更长,盐浓度的变化可能引起微生物代谢途径的改变。
细菌驯化过程无非就是使代谢方式逐渐适应高盐环境,并使耐盐菌大量增殖的过程,但这需要一定的时间,急剧地变化盐浓度或驯化时间过短都会使细菌受到抑制,因此把握盐浓度的变化程度和驯化时间是十分重要,并且要其活性污泥絮凝性能有较大幅度的提高,对于浓度相对恒定的高盐度有机废水而言,污泥的驯化是生化处理系统取得成功的最重要因素。
另外微生物在高盐环境的适应表现为好氧呼吸速率加大,因此呼吸会造成额外的氧耗量,所以应提高水中溶解氧浓度利于微生物的新陈代谢作用,以提供其适应高盐环境的生理要求。
7、二沉池:二沉池就是使废水固液分离,上清液即处理后可以直接排出,而污泥则通过沉降,浓缩,脱水然后在进行处理,如果沉降效果不好可以考虑添加絮凝剂。
二沉池表面负荷应有一定的余量,主要是考虑废水密度增加,不利于污泥沉淀,在高盐环境下污泥指数降低,因此,不必担心过低负荷造成的污泥膨胀,尤其是含NaCl废水,所以要增加污泥浓度,高盐处理污泥的蓄凝性差,污泥流失严重。
因此在设计中应保证高的污泥浓度。
这也是提高处理效率的一种手段,还可以在设计污泥浓缩池时,保证额外的污泥储量,当污泥流失时,迅速补给,另外还可以加大澄清池停留时间,高盐影响蓄凝性,因此加长的停留时间有力于污泥的沉降。