一次函数知识点总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图 像重合; 当两一次函数表达式中的k相同,b不相同时,两 一次函数图像平行; 当两一次函数表达式中的k不相同,b 不相同时,两一次函数图像相交;
当两一次函数表达式中的k不相同,b相同时,两一次函数图 像交于y轴上的同一点(0,b)。
图像性质 1.作法与图形: (1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可 叫“两点法”。 一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k, 0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取 (0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式: y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k, 0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。
一次函数的图Fra Baidu bibliotek特征和性质:
(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意 义。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k. 即: y=kx+b(k,b为常 数,k≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例 函数是特殊的一次函数。
一次函数知识点总结
基本概念: 1、 变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并 且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我 们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这 个函数的定义域。 4、确定函数定义域的方法:
当两一次函数表达式中的k不相同,b相同时,两一次函数图 像交于y轴上的同一点(0,b)。
图像性质 1.作法与图形: (1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可 叫“两点法”。 一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k, 0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取 (0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式: y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k, 0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。
一次函数的图Fra Baidu bibliotek特征和性质:
(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意 义。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k. 即: y=kx+b(k,b为常 数,k≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例 函数是特殊的一次函数。
一次函数知识点总结
基本概念: 1、 变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并 且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我 们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这 个函数的定义域。 4、确定函数定义域的方法: