spss相关分析案例多因素方差分析
SPSS多因素方差分析
SPSS多因素方差分析体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
spss 方差分析(多因素方差分析)实验报告
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
SPSS-多因素方差分析
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
spss多因素方差分析报告例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate 打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算rror,即无法分开intercept和error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
SPSS第九讲 多因素方差分析
只考虑主效应
实例1 之前的分析发现受访者的性别会影响 其月收入,教育程度也会影响月收入,那 么这里的问题是,当我们控制了其中一个 变量后,另一个变量对月收入的单独影响 是否仍然显著,也就是性别和教育对月收 入的主效应是否显著?
步骤1:点击“univariate”,弹出对话框
步骤2:选择因变量(只能选一个)和自变量
步骤3:点击“Model”,弹出对话框
步骤4:在Model中选择Custom,在Build Term 中选择Main effects
步骤5:将性别和教育变量选入右侧Model
步骤6:点击Continue,回到主对话框
步骤7:点击Plots,弹出对话框
步骤8:将教育变量作为横坐标
步骤9:将性别变量作为两条不同水平线
步骤1:点击“univariate”,弹出对话框
步骤2:选择因变量(只能选一个)和自变量
步骤3:点击“Model”,弹出对话框
步骤4:在Model中选择Custom,在Build Term 中选择Interaction
步骤5:将性别和教育变量分别选入右侧Model
步骤6:将性别和教育变量同时选入右侧Model
步骤3:选择年龄作为斜变量
步骤4:点击“Model”,弹出对话框
步骤5:选择Custom和Interaction
步骤6:将性别、教育和年龄分别选入右侧Model
步骤7:将性别和教育变量同时选入右侧Model
步骤8:点击Continue,回到主对话框
步骤9:点击OK,出现分析结果
结果解释
从年龄的显著度= 0.609>0.05 ,可以得到 结论,在控制了性别、教育、性别和教育 的交互作用后,年龄对月收入的影响不显 著
《2024年使用SPSS软件进行多因素方差分析》范文
《使用SPSS软件进行多因素方差分析》篇一一、引言在社会科学研究中,多因素方差分析是一种常用的统计方法,用于探究多个自变量对一个因变量的影响。
这种分析方法能够帮助研究者理解多个因素如何同时作用于因变量,以及它们之间是否存在交互效应。
本文将详细介绍如何使用SPSS软件进行多因素方差分析,以期为相关领域的研究提供方法和参考。
二、方法2.1 研究设计本部分首先介绍了研究目的、研究问题和研究对象等基本情况。
针对特定问题,研究者应事先进行适当的文献回顾,以便更好地理解和把握所研究问题的现状。
接着确定了使用多因素方差分析作为主要的统计分析方法,因为它能够探究多个因素同时作用于因变量的影响及其之间的交互效应。
2.2 数据收集在数据收集阶段,应遵循科学的研究设计和样本选择原则,确保数据的可靠性和有效性。
收集的数据应包括自变量和因变量的观测值,以及可能影响分析结果的协变量。
此外,还需要收集有关样本特征的信息,如性别、年龄、教育背景等。
2.3 SPSS软件操作(1)数据录入:将收集到的数据录入SPSS软件中,确保数据格式正确、无缺失值和异常值。
(2)定义变量:在SPSS中定义自变量、因变量和协变量,为后续分析做好准备。
(3)多因素方差分析:选择“分析”菜单中的“一般线性模型”选项,进行多因素方差分析。
在分析过程中,需要设置好因素、水平、因变量和协变量等参数。
(4)结果解读:根据SPSS输出的结果,解读各因素对因变量的影响程度、交互效应以及统计显著性等信息。
三、结果与分析3.1 描述性统计首先对数据进行描述性统计分析,包括计算各变量的均值、标准差、最大值、最小值等统计量,以便初步了解数据的分布特征和变化规律。
3.2 多因素方差分析结果通过SPSS软件进行多因素方差分析后,得到以下结果:(1)各因素对因变量的影响:从输出结果中可以看出,哪些因素对因变量的影响显著,哪些因素的影响不显著。
这有助于研究者了解各因素对因变量的独立作用。
多因素方差分析23460
3 0.0 35 a
3 .0 0 0
3 0.0 35 a
3 .0 0 0
3 0.0 35 a
3 .0 0 0
3 0.0 35 a
3 .0 0 0
.54 1 a
3 .0 0 0
.54 1 a
3 .0 0 0
.54 1 a
3 .0 0 0
.54 1 a
3 .0 0 0
Error df 3 6.0 00 3 6.0 00 3 6.0 00 3 6.0 00 3 6.0 00 3 6.0 00 3 6.0 00 3 6.0 00
a
11
SPSS统计软件
交叉设计方差分析
例2. 以睡眠时间增加量(小时)为效应,观察 A、B两种药物对改善失眠者的睡眠效果。已 知A、B之间没有交互作用,并且收治的失眠 患者不多,共12名。应采用何种设计较合理? (数据睡眠.sav)
a
12
SPSS统计软件design) 基本模式
SPSS统计软件
复习
1、某医生为了研究一种四类降糖新药的疗效,以统一的纳 入和排除标准选择了60名2型糖尿病患者,按完全随机设 计方案将患者分为三组进行双盲临床试验。其中,降糖新 药高剂量组21人、低剂量组19人、对照组20人。对照组服 用公认的降糖药物,治疗4周后测得其餐后两小时血糖的 下降值,问治疗4周后,餐后2小时血糖下降值的三组总体
a.
a Design: Intercept+分 组
Within Subjects Design: weight
Sig. .329 .317 .368 .547
31
SPSS统计软件
重复测量资料的方差分析
下表为受试者内因素、受试者内因素与自变量的一级交互作用的多元 方差分析统计学检验结果。
SPSS实验多因素方差分析8
29.211a
1.597
24.778
33.644
a. Based on modified population marginal mean.
Multiple Comparisons
Dependent Variable:语言能力测试得分(X3)
(I)阶层(X1)
2.两个因素即年龄和阶层对语言表达能力的影响都不显著,而且两个变量各自对语言表达能力的影响都是不显著的。
3.由于本数据中的方差齐性检验结果是具有方差齐性的,所以应就LSD的输出结果进行分析,有以上数据分析的结果表中比较相应两组均值的P值与显著性水平为0.05下可知阶层两两之间没有显著性可言,也就进一步说明了阶层对语言能力的影响不是显著性的。
Intercept
23859.980
1
23859.980
336.849
.000
阶层(X1)
300.323
2
150.162
2.120
.236
年龄(月)X2
1226.352
22
55.743
.787
.689
阶层(X1)*年龄(月)X2
24.807
1
24.807
.350
.586
Error
283.332
4
70.833
F
df1
df2
Sig.
1.328
25
4
.434
Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
SPSS学习笔记之重复测量的多因素方差分析报告
SPSS学习笔记之重复测量的多因素方差分析报告学习笔记之重复测量的多因素方差分析报告SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款功能强大的数据分析工具,广泛应用于各个领域的研究。
在SPSS中,重复测量的多因素方差分析被视为一项重要的统计方法,用于研究相同参与者在不同条件下的测试结果。
本篇学习笔记以重复测量的多因素方差分析为主题,将介绍如何使用SPSS进行该项分析,并给出详细的分析报告。
1. 研究目的和问题描述2. 数据采集和处理3. 研究设计和假设4. 数据分析5. 结果解释与讨论1. 研究目的和问题描述本次研究的目的是考察不同刺激条件对参与者注意力的影响。
具体而言,我们想了解参与者在三种刺激条件下的注意力水平是否存在显著差异。
2. 数据采集和处理我们招募了40位参与者,并随机将其分为三组。
每组参与者分别接受三次测试,每次测试采用不同的刺激条件。
我们记录了每位参与者的测试结果,并进行数据整理和清洗。
3. 研究设计和假设本研究采用的是重复测量的多因素方差分析设计。
考察因素为刺激条件,对应的水平为A、B和C。
我们的研究假设如下:- H0(零假设):不同刺激条件下的注意力水平无显著差异。
- H1(备择假设):不同刺激条件下的注意力水平存在显著差异。
4. 数据分析为了进行重复测量的多因素方差分析,我们打开SPSS软件,并导入数据集。
接下来,我们按照以下步骤进行分析:步骤一:打开SPSS软件,点击“打开”按钮,导入数据集。
步骤二:选择“分析”菜单,然后选择“一般线性模型”和“重复测量”。
步骤三:将待分析的因子变量(刺激条件)拖动到“因子”框中,并设置不同刺激条件的水平。
步骤四:选择适当的因变量(注意力水平),并将其拖动到“依赖变量”框中。
步骤五:点击“选项”按钮,可以对分析进行更多设置,比如是否计算偏斜度和峰度等。
步骤六:点击“确定”按钮,SPSS将自动进行重复测量的多因素方差分析,并生成分析结果。
《2024年使用SPSS软件进行多因素方差分析》范文
《使用SPSS软件进行多因素方差分析》篇一一、引言多因素方差分析是一种统计分析方法,它通过考察多个因素及其交互作用对一个因变量的影响,以评估这些因素之间的关系。
随着科技和大数据的发展,越来越多的学者开始关注和采用这种统计分析方法。
本范文旨在详细阐述如何使用SPSS软件进行多因素方差分析。
二、方法本文将通过以下步骤进行多因素方差分析:1. 数据收集与整理:收集研究所需的数据,并进行整理,确保数据的准确性和完整性。
2. 导入SPSS软件:将数据导入SPSS软件中,以便进行后续的统计分析。
3. 描述性统计分析:对数据进行描述性统计分析,以了解数据的分布情况和基本特征。
4. 多因素方差分析:运用SPSS软件进行多因素方差分析,探讨多个因素对因变量的影响及其交互作用。
三、数据分析本部分以一个具体的研究案例为例,详细介绍如何使用SPSS 软件进行多因素方差分析。
1. 导入数据:将数据导入SPSS软件中,确保数据格式正确无误。
2. 描述性统计分析:对数据进行描述性统计分析,包括均值、标准差、最大值、最小值等统计量。
通过对数据的初步分析,我们可以了解数据的分布情况和基本特征。
3. 多因素方差分析:选择“Analyze”菜单中的“General Linear Model”选项,然后选择“Univariate”子选项进行多因素方差分析。
在设置中,选择因变量和自变量,以及需要进行交互的变量。
4. 结果解读:查看SPSS输出的结果,包括每个因素的均值、标准差、检验结果等。
通过结果解读,我们可以了解各因素对因变量的影响程度以及因素之间的交互作用。
四、结果与讨论根据SPSS软件输出的结果,我们可以得出以下结论:1. 各个因素对因变量的影响程度不同,其中某些因素的影响更为显著。
这表明在研究过程中需要重点关注这些因素。
2. 某些因素之间的交互作用对因变量的影响不可忽视。
这提示我们在研究过程中需要综合考虑各因素之间的相互作用。
3. 通过多因素方差分析,我们可以更全面地了解各因素对因变量的影响及其交互作用,为制定有效的研究策略提供依据。
《2024年使用SPSS软件进行多因素方差分析》范文
《使用SPSS软件进行多因素方差分析》篇一一、引言在社会科学研究中,多因素方差分析是一种常用的统计方法,用于探究多个自变量对一个因变量的影响。
这种分析方法能够帮助研究者理解多个因素之间的交互作用,从而更准确地解释变量之间的关系。
本文将详细介绍如何使用SPSS软件进行多因素方差分析,并以一个实际研究为例进行演示。
二、研究背景与目的本研究以某公司员工的工作满意度为因变量,探讨工作压力、工作环境、薪资待遇等多个自变量对工作满意度的影响。
通过多因素方差分析,我们希望能够了解各个自变量对工作满意度的影响程度,以及它们之间的交互作用。
三、数据收集与整理在数据收集阶段,我们通过问卷调查的方式收集了某公司员工的个人信息、工作压力、工作环境、薪资待遇等相关数据。
在数据整理阶段,我们将所有数据录入SPSS软件,并进行必要的清洗和整理,以确保数据的准确性和可靠性。
四、SPSS软件操作步骤1. 打开SPSS软件,导入整理好的数据。
2. 在“分析”菜单中选择“一般线性模型”,然后选择“多元回归”。
3. 在弹出的对话框中,将因变量和自变量分别放入相应的框中。
4. 点击“模型”选项,选择“多因素”模型。
5. 点击“运行”按钮,等待SPSS软件进行计算。
五、结果分析1. 描述性统计结果:首先,我们可以查看描述性统计结果,了解各个变量的均值、标准差、最小值和最大值等基本信息。
2. 多因素方差分析结果:多因素方差分析结果主要包括主效应、交互效应以及各因素的P值和F值等。
我们可以根据这些结果判断各个自变量对因变量的影响程度,以及它们之间的交互作用是否显著。
3. 结果解读:根据多因素方差分析结果,我们可以得出以下结论:工作压力、工作环境和薪资待遇等因素对工作满意度均有显著影响;各因素之间的交互作用也可能对工作满意度产生影响;具体的影响程度和方向需要根据P值和F值等统计指标进行判断。
六、讨论与结论根据多因素方差分析结果,我们可以进一步讨论各个自变量对因变量的影响机制和原因。
SPSS重复测量地多因素方差分析报告
SPSS重复测量地多因素方差分析报告
一、实验结果的总体分析
1、总体数据及描述性统计
首先我们来分析实验的总体数据,主要包括对被试者的一般信息及参
与实验的各个变量的描述统计及分布情况。
基本信息:本次实验共有30名参与者,其平均年龄为31岁。
其中男
性占比为53.3,女性占比为46.7%。
变量的描述性统计:检测变量的标准差为0.614,最小值为1.4,最
大值为3.0,平均值为2.2,中位数为2.2,偏度为0.00,峰度为0.61变量的分布情况:根据变量分布图可以看出,变量的分布情况接近正
态分布。
2、数据检验
完成数据收集后需要对数据进行检验,以确保数据的准确性和可靠性。
检验的方法包括残差检验、异方差分析以及 Shapiro-Wilk 检验等。
经过
检验后,发现所有数据满足检验条件,可以用于进一步的分析。
二、多因素重复测量方差分析
本次实验使用多因素重复测量方差分析,用来检验被试者对不同环境
条件下的反应差异。
由于本次实验中因素为环境条件A、B、C,为三因素
实验,所以本次实验的实验设计为3X3实验设计。
1、方差分析表
计算完毕后,计算结果如下所示:。
SPSS多因素方差分析
SPSS多因素方差分析一、问题对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?SPSS软件版本:18.0中文版。
二、统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。
数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。
2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。
点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。
3、结果解读这是一个所分析因素的取值情况列表。
变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。
spss多因素方差分析报告报告材料例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
SPSS操作多因素方差分析
SPSS操作多因素方差分析实验题目:多因素方差分析实验类型:基本操作实验目的:掌握方差分析的基本原理及方法实验内容:某种果汁在不同地区的销售数据,调查人员统计了易拉罐包装和玻璃包装的饮料在三个地区的销售金额,利用多因素方差分析,分析销售地区和包装方式对销售金额的影响。
(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
(2)对数据进行多因素方差分析,分析不同包装的和地区下的效果是否相同,及交互作用的效应是否显著。
实验步骤:步骤一:打开数据集,选择“分析”—“一般线性模型”—“单变量”,将操作框打开;步骤二:将“销售额”选为“因变量”,“包装形式”和“购物地区”选为“固定因子”,然后选择“选项”,将“描述统计”和“方差齐性检验”勾选。
得到描述性统计量和Levene检验,和主体间效应的结果。
实验结果:(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
描述性统计量因变量:销售额包装形式购物地区均值标准偏差Ndime nsion1 易拉罐dimensio n2地区A 413.0657 90.86574 35地区B 440.9647 98.23860 120地区C 407.7747 69.33334 30总计430.3043 93.47877 185 玻璃瓶dimensio n2地区A 343.9763 100.47207 35地区B 361.7205 90.46076 102地区C 405.7269 80.57058 29总计365.6671 92.64058 166 总计dimensio n2地区A 378.5210 101.25839 70地区B 404.5552 102.48440 222地区C 406.7681 74.42114 59总计399.7352 98.40821 351描述性统计量的分析结果:在只考虑包装形式的情况下:易拉罐:均值=430.3043 ,标准偏差=93.47877玻璃瓶:均值=365.6671,标准偏差=92.64058在只考虑地区差异的情况下:地区A:均值=378.5210,标准偏差=101.25839地区B:均值=404.5552,标准偏差=102.4844地区C:均值=406.7681,标准偏差=74.42114由结果可知,在只考虑包装形式的情况下,采用易拉罐的形式进行销售额会有明显较高的销售额,且两种形式之间的偏差值相差不大,即采用易拉罐的形式进行销售会更有利于销售;在只考虑地区差异的情况下,三个地区之间在地区B 和地区C进行销售的销售额很接近,但是地区C的标准偏差明显比另外两个地区要小,所以建议应该在地区C加大销售力度。
SPSS多因素重复测量资料的方差分析
中 低 PH=8 高 中
试剂浓度 0.1 0.2 0.3
中,蛋白质的提取量和温度
(高,中,低),试剂浓度 (0.1,0.2,0.3)及PH值 (6,8,12)的有关 三因素的各个水平相结合,
低
PH=12 高 中 低
共形成3×3×3=27种处理组
2019/1/30
Page14
析因设计资料的方差分析
练习2
为探讨甲乙两药是否有降低胆固醇的作用及两药在降血脂
时是否存在交互作用?现对12名高胆固醇血症患者采用以 下方案治疗,胆固醇降低值(mg%)见下表
表 四种不同处理下胆固醇降低值(mg%) 用甲药 不用甲药 用乙药 不用乙药 用乙药 不用乙药 64 78 80 56 44 42 28 31 23 16 25 18
2019/1/30
Page15
SPSS统计软件操作
析因设计资料的方差分析
2019/1/30
Page16
SPSS统计软件操作
析因设计资料的方差分析
练习1
研究者预研究煤焦油(因素A)以及作用时间(因素B)
对细胞毒性的作用,煤焦油的含量分别为3ug/ml和75ug/ml 两个水平,作用时间分别为6小时和8小时。将统一制备的 16盒已培养好的细胞随机分为四组,分别接受A、B不同 组合情况下的四种不同处理,测得处理液吸光光度的值,
现对12名高胆固醇血症患者采用以下方案治疗胆固醇降低值mg见下表不用乙药645628167844312580422318thankyouwwwhuaweicomspss统计软件操作page212020910析因设计资料的方差分析为探讨白血病患儿在不同缓解程度不同化疗期淋巴细胞转化率是否相同以及两者间有无交互作用32名白血病患儿的数据如下表所示四种不同处理下淋巴细胞转化率完全缓解未缓解化疗期化疗间期化疗期化疗间期4656395351362858414626663247335145633157525635644154374534395045thankyouwwwhuaweicomspss统计软件操作page222020910交叉设计资料的方差分析交叉设计thankyouwwwhuaweicomspss统计软件操作page232020910交叉设计资料的方差分析某医师研究ab两种药物对失眠患者改善睡眠的效果将12名患者按交叉设计方案随机分为两组观察两种药物两个阶段睡眠时间增加量小时每个阶段两周间隔两周
(整理)SPSS生物统计分析示例4-多因素方差分析.
SPSS 生物统计分析示例3 (多因素方差分析)例一:番薯种植的两因素方差分析通过SPSS 统计分析推断种植密度(因素一)、品种(因素二)对亩产量(鲜重)的影响数据文件“sweetpotato-wet.sav ”品种5532304徐薯18 胜利百号 红东 利丰3号 二黄C-17C-3039(脱毒胜百)1)方差分析:Analyze→ General linear model→Univariate…结果输出:方差分析表Tests of Between-Subjects Effects Dependent Variable: 每亩鲜产a R Squared = .747 (Adjusted R Squared = .502)无交互效应,密度因素不显著,品种因素极显著2)多重比较(Post Hoc)结果LSD法:Multiple Comparisons Dependent Variable: 每亩鲜产Based on observed means.* The mean difference is significant at the .05 level.2304553C-17C-3023040.0580.394徐薯180.276黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异Duncan法:每亩鲜产品种NSubset1 2 3 4 5红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931二黄 6 1764.122633 1764.1226332304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .090 .218 .065 .225 .070 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .05.每亩鲜产Duncan品种NSubset1 2 3 4红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931 1717.694931 二黄 6 1764.122633 1764.122633 1764.122633 2304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .042 .010 .011 .033 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .01.汇总表:品种每亩产率Alpha=0.01 Alpha=0.05红东982.982509 a AC-30 1183.224658 ab ABC-17 1246.833306 ab AB39(脱毒胜百) 1378.033689 abc ABC553 1469.473579 abc BC胜利百号1717.694931 bcd CD二黄1764.122633 bcd CD2304 1819.723120 bcd CDE徐薯18 1999.091807 cd DE利丰3号2229.200327 d E注:不同字母代表用邓肯新复极差法多重比较中差异显著利丰3号徐薯18 2304 二黄胜利百号553 39(脱毒胜百) C-17 C-30二黄2304徐薯18黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。
本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。
在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:
表一
如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。
由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。
另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。
如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。
具体情况这里不再赘述。
下面进行多因素方差分析:
一、多变量检验
表二
由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于0.05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。
二、主体间效应检验
如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为0.001、0.017、0.790,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于0.05,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。
如表四,在0.05显著水平下,东部和西部的人均副食支出(Sig.值为0.001)和日用杂品支出(Sig.值为0.036)指标有明显差别(小于0.05,拒绝原假设),而在人均衣着支出(Sig.值为0.517)指标上没有明显的差别。
并且东部的人均副食支出、衣着支出和日用杂品支出三项指标均高于西部地区,说明东部的城镇居民月平均消费水平较西部来说,高出很多,符合实际的情况。
另外,中部和西部的人均副食支出、衣着支出和日用杂品支出(Sig.值分别为0.668、0.343、0.638,均大于显著水平)三个指标均无明显差别,但中部的人均副食支出和日用杂品支出指标低于西部地区,人均衣着支出指标高于西部,说明中、西部的城镇居民月平均消费水平差不多,但消费结构有差异,符合实际的情况。
表五是上面多重比较可信性的度量,由Sig.的值可以看到(均小于0.05),比较检验是可信的。
四、协方差阵相等检验
如表六,是协方差阵相等检验,检验统计量是Box’s M,由Sig.值0.085>0.05
可以看到,可以认为三个地区(总体)的协方差阵是相等的。
表七给出了各地区同一指标误差的方差检验,在0.05水平下,人均副食支出、衣着支出和日用杂品支出(Sig.值分别为0.219、0.181、0.080,均大于0.05)三个指标的误差平方在三个地区间均没有显著差别,这说明,除了地区因素外,其他
因素对人均副食支出、衣着支出和日用杂品支出三个指标的影响很小。
综上所述,对三个地区的城镇居民月平均消费水平进行了具体的比较分析,所得结果表明,东部地区较中、西部地区的城镇居民月平均消费水平差别较大,远高于中、西部两个地区。
而中部和西部之间的城镇居民月平均消费水平差别不太明显,主要是消费结构有所不同,这说明西部地区在国家施行西部大开发政策之后发展很快,人民生活水平显著提高,赶上中部地区,体现政策的有效性。